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Abstract

®

CrossMark

An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition
metal atom having an orbital singlet state is introduced and its properties analyzed using

the Schrieffer—Wolf transformation (exchange coupling) and the poor man’s scaling method
(Kondo temperature). We find that the effective exchange coupling between the metal and the
atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic
fluctuations, either § — S — 1/2 or § = § + 1/2, associated with the metal-atom coupling.

We present a general scheme for all those processes and calculate, for the antiferromagnetic

interaction, the corresponding Kondo-temperature.

Keywords: ionic Hamiltonian, Kondo, spin fluctations, inelastic electron scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

Most works on the Kondo effect use very idealistic models
[1-3], with a very poor description of the inner structure of
the magnetic atom involved in the problem [4]. Although this
approach is very convenient to start analyzing the basic prop-
erties of the Kondo many-body problem [5], it might be in
order to take into account that inner structure of the atom by
introducing an appropriate Hamiltonian to better understand
the general properties of the system [4, 6, 7]. In our approach,
we concentrate our discussion on d-shell magnetic atoms with
an orbital singlet state; this is particularly relevant for cases
where the symmetry of the magnetic atom environment is
low, as may happen with d-transition metal atoms adsorbed
on surfaces or in the gap of a STM-microscope (see [4] for a
discussion of the symmetry of the problem with respect to the
orbital singlet state in real metals). To be specific, this is the

4 Author to whom any correspondence should be addressed.
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case of ‘inelastic tunneling spectroscopy’ of magnetic atoms
[8—11] or in single-atom transistors [12].

In the Anderson model [2], the interaction between
an atom with a non-degenerate d-level and a metal is
described by the Hamiltonian H; = ﬁo + I?im, where
Hy= Z€k5205k0+€o(|T><T| + |l><l|), o is the spin pro-
jection, k and |a> being the metal and the atomic states,
respectively (here we assume, for simplicity, the doubly
occupied state to be forbidden, implying that U — oco); and
H, = S [Vk\a><0|5/m + Vzﬁkt,|0><a ], describing how elec-
trons are transferred between the atom and the metal (the metal
Fermi energy, EF, is taken as the origin of energies). We stress
that, for the convenience of our discussion below, we are using
the projector operators|o ) (0| and |0) (| for the atom instead of
the more conventional creation and annihilation operators [13].

Hamiltonian Hj can be transformed into an effective spin
scattering Hamiltonian by means of a Schrieffer—Wolf trans-
formation [14], assuming that the atom is mostly in a spin
state with S = 1/2. This transformation yields the following

© 2016 IOP Publishing Ltd  Printed in the UK
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exchange coupling between the atomic spin, S, and the metal
states:

|Vil?
eff—ZJkkS Skk+ ZJkk{CchkT—’—cklckl} Z
kK 2 EY
(1
where Jy: = ViV2/ |eo| and
o Ata . o _ata, . oot _ At a At A
S = Crilbe Sg=Ciley ST = 1/2{CkTCk'T - Cklck'l}'
2
If the k-band and the atom interact through a single channel
state |a>, the atomic spin part of Hamiltonian (1) can be
written as follows:

~(spin)

Heff = 2]0 S\ . 3'\& (3)

with Jy = |V[*/|eo|. Equation (3) represents the s-d model [15]
of the Anderson Hamiltonian with an antiferromagnetic inter-
action; that exchange interaction was used by different authors
[1, 16] to calculate, by means of the poor man’s scaling
method, the corresponding Kondo temperature.

Anderson Hamiltonian was generalized by Hirst [17]
who introduced a new Hamiltonian including fluctuations
between all the d-levels of a magnetic atom and the metal.
This Hamiltonian was, apparently, rather complicated because
of the many parameters required to specify it. However, using
Hund’s rule and the spin symmetry of the states associated with
the d-shell we have introduced in [18] an ionic Hamiltonian
that only depends on one parameter. In this paper, we gen-
eralize this Hamiltonian and introduce the Schrieffer—Wolf
transformation to calculate the equivalent spin interaction,
r's- S, + 'yf associated with that ionic model; finally, we ana-
lyze the Kondo temperature for the resulting antiferromagn-
etic effective spin Hamiltonian, and present a general picture
that embodies all our results.

2. The ionic Hamiltonian

We start our discussion of the ionic model by introducing the
following Hamiltonian for our transition metal atom/metal
system:

H = Hy+ Hi. 4)

In equation (4) Hy = Y ko ks + Hyom includes the energy
terms of both, the solid and the atom. The solid is described
by the conduction band energies ¢, with an occupation number
given by 7, = ¢}, Ci. The atomic part, Hyom, in the extended
version appropriate for treating any multi-electron atom [19],
takes the form:

Hatom = Z 5mnm{r + Z Udannml + Z «/dnmrrnm —0

m,o m=m',o

+ E z (Jd - in)h\ma'ﬁm’o'

m=m',oc

Xt A~
Z ‘Idnmdnm ﬂnm’ onmd

)
Here ¢ c » (Cmo) are the fermionic operators creating (annihi-
lating) an electron with spin projection o in the orbital m and

fime = €, Cmos the intra-atomic coulomb interactions U; and
Jy, as well as the intra-atomic exchange interaction J3, are
assumed to be constants independent of the m-orbital index.
The last term, related to spin-flip processes, restores the invari-
ance under rotation in spin space.

The interaction term, I?im, contemplates the charge
exchange between the atom and the solid through a one
electron tunnelling mechanism described by the following
expression:

I/i\int = Z [Vkmé\lfgé\mrr + mGé\;aé\k(f]' (6)
k,m,o

In our approach we assume that the orbital contribution to the
angular moment is quenched by the crystal field environment,
so that the ground state of the atom is an orbital singlet. Then,
in agreement with the first Hund rule, the maximum spin
associated with a given number of electrons, say N determines
the atomic ground state. Accordingly, we reduce the configu-
rational space spanned by the atomic Hamiltonian (5) to the
)3
so that Y S, M)(S, M| = 1, in order to project the atomic
Hamiltonian and rewrite it as I/-I;tom =>sm >< s
where the total energies Eg are calculated taking into account
equation (5).

Regarding the interaction term, (equation (6)), we assume
that the most probable charge fluctuations from the ground
state with N electrons, |S, M >, are to the states with N — 1 or
N + 1 electrons, |S — 1/2, M) or|S + 1/2, M):

mt - Z [Vi;/laé\z_d
k.M,o

—1/2,M — o )(S. M|

+ VkMa|S’M><S -

+ 2 [v

kM,o

172, M — o]y, |

Vi el S, M — o) (S + 1/2,M|

+ Vid, 1S + 172, M) (S, M — oléi, | @)

The different spin configurations |S,M> are calculated by
ensuring the invariance under spin rotation, which means that
all of them are generated from the state |S, S > by successive
applications of the operator S . In this way the following
expression for the coupling terms, ViMU in equation (7), is
obtained for the case of a half-filled or less than half filled
shell (N <5 for a d-shell) [10, 18]:

S+ (DM
28

while for an occupation larger than half filled shell (N > 5 for
a d-shell), we arrived to the expression:

Vine = Via (8a)

S—(—1)rM
Vive = (=P | ¥——L"V,.
o = (—1) 25 kd
In equations (8a) and (8b), p is equal to 0 if ¢ = T and equal to
1 in the opposite case.
In many cases, it is a good approximation to consider only
one type of fluctuation, either S-S —1/2 or S— S+ 1/2.

(8b)
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In this case, we neglect the terms of Hamiltonian (7) associ-
ated with those less probable fluctuations (infinite-U limit).

3. The Schrieffer—Wolf transformation

We apply the Schrieffer—Wolf transformation [14] to
Hamiltonian (4), f\lo + I/{\im, assuming I/-I\im small and using a
second order perturbation theory in Hi, (equation (7)); in this

way, we introduce the following effective Hamilonian, ﬁeff:

—~ I/_I\int|n><n|1/'1\inl
Hep=—) ———————
¢ Z E,—E
and assume that the atom is mostly in a state with spin S; for
simplicity, we also assume that only states [n) =[S — 1/2, M)

contribute. The Schrieffer—Wolf transformation [14] can be
achieved by eliminating in that way the atomic excited states

In) =[S — 1/2,M):

_ At
A= 3 Vol ><SM U+U|VkM o+, s
eff = ES _ ES-12 _ —
KMo (e — &)
k.o

If we consider in the expression above that the energy level
(ES — ES~12)is very large and negative (the state with spin S is
more stable than the state with spin S — 1/2), we can approxi-
mate ES — E5~12 — (¢, — g) ~ ES — ES712 = — A, Making
use of the expression of ViMU given by equation (8a), we have:

2SA

ViV
Hep = — Z[ ]Z\/(S-&-M)CMS M) (s, M|‘/(S+M)C:¢

[lm]Z‘/(s M) ey |S. M) (S. M5 = M)y,
ViV,
Z{ 2SA]Z*/WC”|S M) (S, M~ 1S =M= D)cf,
E( 2SA]Z\/(S M)c|S,M)(S. M+ 1S+ M+ 1) )CZT
R )
Moreover, using the following equations for S:
8§, =SS+ 1) — MM+ 1) |SM + 1)(SM|
M
= IS+ 1) — MM —1)|SM — 1)(SM]|
M
(10)

S, =" M|SM)(SM|
M

and the expressions of §° , §,- and § ;- given by equation (2),
we can write equation (9) as:
JoY ~ J,
Her = Z(ﬂ) S - Sl + > 2 (ef
S w2

2 k'TckT + Czlckl — 26kk')

(1D
which defines a Heisenberg exchange interaction between a
local moment and the conduction electrons with a coupling

constant Jy,; = Vsz,/ A. The last term in equation(11) provides

the scattering potential which has to be added to the s-d
Hamiltonian [1]. This equation can be written in a more trans-

parent way if we assume that the k-band and the magnetic atom
interact through a single channel state |a>; then, we replace
SISk BY LaardaaSaa’ = JaSas and equation (11) reads:

Jo o~ J.
Her = =2 [S - 5,0 — =21,
ff S[ ] :

12)
where we have introduced the spin-1/2 operator for the
orbital channel «, and have defined J, = |V,J*/A and
Iy = clicat +CaiCoy (the unit tensor in the s,-space).
Equation (12) shows the antiferromagnetic character of this
interaction.

Up to this point we have assumed the atom to fluctuate from
the spin S (the normal state of the atom) to spin S — 1/2. If the
atom fluctuates to S + 1/2, our analysis yields that the effec-
tive Hamiltonian is (written in the channel-representation):

Ja PPN J(S+1)

[S-S.]+——7=
S+ 172 (S + 1/2)

which appears to be a ferromagnetic interaction.

A similar argument can be applied to the case N> 35,
with the magnetic atom of spin § fluctuating to spin § — 1/2:
S — S — 1/2, S defining the normal state of the atom. In gen-
eral, our analysis yields the same result, equation (12), for the
corresponding effective Hamiltonian, while for the fluctua-
tions S — S + 1/2 we also obtain equation(13).

Notice that in all these cases, there appear renormalization
factors, S or S + 1/2, changing the J-coupling, defined in the
conventional way J, = |V,[*/A, to either J/S [6] or J /(S + 1/2)
Obviously, we can redefine this new interaction as J' in such
a way that the effective Hamiltonian has the conventional
form J'S - S.; one should remember, however, that a large spin
would imply a reduction in the effective (S - 5,) interaction
[6]. On the other hand, it is worth mentioning that our results
for the effective exchange coupling keeps the rotational sym-
metry of the problem, giving an independent confirmation to
the validity of the ionic Hamiltonian introduced above.

We are going now to consider the case of having more
than one channel for the metal [4]. In our approach, new
channels can be introduced by considering several kr-states
(r=1...R) which are assumed to interact with the atom

through their corresponding channel orbitals, |r> [20]. Then,

Hepr = — (13)

we can proceed as done for the case of one channel, apply
the Schrieffer—Wolf transformation and obtain the following
equation (for N < 5):

Jor\rn - T
Hegr = Z(M) [S . Skr,kt] 45 ek (cktTcm + Cir Crr) — 26,(,’,(,)
kr kt N kr.,kt 2
(14)

which, in the channel representation, takes the form

(i = VVIIA):

N J,
Hee = =5 Z . tsrt Z Lt(crﬁcﬁ + C;Llctl)

> (15)
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to be compared with equation (12).

On the other hand, we should mention that for fluctuations
S — S+ 1/2, we obtain the following effective Hamiltonian,
as written in the localized channel representation:

- boo
Hee = —S - —
e ;54—1/2 !

T
+(S+1 ’
) )%:S—H/Z

(cren+eien)  16)
to be compared with equation (13). Similar equations are
obtained for N > 5 in both cases.

4. The Kondo temperature

We analyze the Kondo temperature, Tk, associated with the
antiferromagnetic multichannel Hamiltonian (15), by means
of the poor man’s scaling method [20, 21] used successfully
for similar problems. We start with the atomic spin part of
Hamiltonian (14):

Jr PN
Hegr = Z( kS’kl) [S - Skl

kr,kt

(a7

and assume to have a metal band between —D and D. Then,
we remove the kr-states in the intervals, (D, D — 8D) or
(=D, —D + 6D), by summing upon the K-states in the
equation:

SHegr = — Y (Herr| K') (K| Hesr }/(Ex — Eo) (18)
K

where |K) represents excited states like: ¢,,|S,M) (or
¢rolS.M)) with the momentum g, in the energy interval
(D, D — 6D) or (—D, —D + 6D); due to the high energy of the
excited gr-states, (Ex — Ey) can be approximated by D. Then,
we calculate — Y {Hefr|K ) (K|Her}/D and obtain the fol-

lowing renormalization of the effective exchange coupling:
o { S tt(Jor st S)S - S pr }
= _Eqr(-lqr,qr/S) quéD{ Ekr,kt(Jkr,kt/S)S\ : 3‘\kt,kr}/D-

For the sake of simplicity, it is convenient to analyze this
expression using the channel representation; moreover, iden-
tifying each (kt, kr)-term in this equation gives:

D6 1S) = =S, (J1S)p,6DY(UrilS)  (19a)

this equation shows that 6(J, ,)/J,; is independent from r or ¢
along the renormalization process, so that the symmetry of
the interaction, Er,s(Jr, A )§ - 84 18 preserved along the scaling
[4]. This implies that along our scaling trajectory the system
develops only one fixed point and an equivalent one channel
Kondo physics. The corresponding Kondo temperature can
be calculated taking r = ¢ in equation (19a), multiplying it by
p,, the assumed constant density of states associated with the
r-channel, and summing upon r; this leads to:

Dé[S:(J,18)p,) = —[E,(/S)p, 1 6D (19b)

where J, = |V;[?/A. Integrating equation (19b) in 6D, we
obtain the following Kondo temperature:

kgTx ~ D' = Dexp{—S/%.p,J,}. (20)
Notice that for one channel,
kBTK%D’:Dexp{fS/pOJ}. (21)

Equation (21) highlights the importance played by the expo-
nent, exp(—S/pyJ), where a correction associated with the
spin S appears [6], correction that makes Tk smaller for large
S, as it was found experimentally [22, 23].

5. Results and discussion

Our results for the effective spin interaction are summarized
in figure 1. In this figure we show the different levels asso-
ciated with the atomic wave-functions |S,M). The atomic
occupancy is determined by the position of the Fermi level;
for E(dV*') > Ex > E(d"), we can expect the atom to be in
the d¥-state (with N electrons and S = N/2 for N < 5 and
S= (10— N)/2 for N>5), and to develop charge fluc-
tuations to states with either N+ 1 (@t or N — 1 @V
electrons. Depending on those fluctuations we find different
effective spin interactions with the metal. For example, con-
sider the case E(d?) > Er > E(d"): if Er is closer to the E(d")
level, the system develops an antiferromagnetic (AF) inter-
action with d'— d° fluctuations; when Ep approaches the
E(d?) level, the effective spin interaction is ferromagnetic
(FM) and d' — d Things evolve in a similar way when Eg
crosses E(d*) and E(d?) > Eg > E(d?); then, the system is ini-
tially AF and develops a Kondo resonance with d> — d' fluc-
tuations, while for Eg closer to E(d?) the system is FM with
d?> - d3 fluctuations. Things continue in this way up to the
case E(d®) > Eg > E(d”), which shows in both cases, for Eg
close to either E(d®) or E(d”), an AF interaction; this is due to
the electron—hole symmetry of the system between the cases
N < 5 and N > 5. For example, the case E(d>) > Er > E(d?)
is the symmetric of E(d®) <Er<E(d®), the system
being in both cases AF if E is closer to either E(d®) or
E(d?); for that AF interaction, we find the following fluctua-
tions: d2(S =1)—d'(S=1/2) or d¥(S=1)—d°S = 1/2),
and a similar effective spin interaction: (J,/S) [S - S5.] (equa-
tion (12)) with § = 1.

It is also worth commenting that we can combine into a
single equation the AF and FM interactions appearing for a
given level, dV, due to its fluctuations to either d¥~! or dV+!
(equation (7)). The reason is the second order perturbation
theory used to eliminate those states; this approach allows us
to combine the effective spin interactions for @V (N < 5) in
the following equation: (J,,/S)§ 8, — /(S + 1/2)] §.§A. This
equation suggests that the AF interaction changes to the FM
one, around (J,/S) ~ [J2/(S + 1/2)]; as J, = |V, /A (A, defined
as ES~V2_ES or ES— ES*12] is equal to ‘Ep— E(dN)|),
that condition can be approximated by A/A = S/(S + 1/2)
assuming V, ~ V!. Notice that for E(d®) > Er > E(d’) and
combining both fluctuations d>(S = 5/2) = d*(S =2) and
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Figure 1. AF and FM indicate the Fermi energy windows for which the magnetic atom has an antiferromagnetic or a ferromagnetic

exchange coupling. The one electron energy levels, E(d"), are defined as EWN)—EN—1), the difference
of energies between states with N and N — 1 electrons, respectively. For the Yoshimori model: E(d?) — E(d") =
ee..=E(d®)—E@d* =EWd) —EWd® = .... = Ed") — E(d®) = J; — J;*; while E(d°) — E(d°) = U; + 4J,.

d>(S = 5/2) - d°(S = 2), the AF effective interaction can be
written as (J,/S)S - §, + (J//$)S - §' with S = 5/2; moreover,
for the symmetric case with Ep = [E(d®) + E(d”)]/2, that
effective interaction becomes 2(J,/S )§ - Sy

Inanextstep, we have used the poor man s scaling method to
calculate the Kondo temperature associated with the AF inter-
action obtained above. Our result for the effective interaction
(Ja/S)§ - 5, is simple: take the well-known Tx-value [1, 4] for
the AF interaction, J'S - 5, ksTk ~ D CXP(* 1/pyJ '), obtained
in the scaling method to order .J/ 2, and replace J' by (J,/S); this
yields the following Tk, kgTk ~ D exp(—S/py/,), for our ionic
Hamiltonian [6]. We should also comment that for S = 1/2, a
calculation of the scaling equations up to third order in J, [21]
yields kgTx ~ D,/ (2Jnp,) exp [—1/(2J,p,)] for the one channel
case. This result suggests the following generalization for any
value of S: kgTx ~ D,/ (Jup,/S) exp [—S/(Jap,)]-

Up to this point we have assumed to have a single channel
in the metal; for more channels, the AF interaction reads
as: Zrt(lr,,/Sﬁ - §., in the channel representation; then, our
analysis shows that Tk is given by: kgTx ~ D exp{ =S, pJ }
If all the channels contribute equally, that equation takes the
form: kgTx ~ D exp{—S/RpyJ} where R is the number of chan-
nels; further on, for 25 = R we recover the Kondo temper-
ature of a single channel with S = 1/2. We also expect that the
scaling equations up to third order in J, [21] would modify T

from kgTx ~ D exp{ =S5, p, J} to:

ksTk ~ D(Srp,JuIS) 2 exp [— SISm0, ;] .

The case E(d®) > Er > E(d°) is different; we only mention
that for the symmetric case, Er =[E(d®) + E(d®)]/2, the
spin interaction is 2(J,/S)S - 5, and the Kondo temperature

kplk ~ Dexp{fS 2%, p,J,}, a factor of 1/2 appearing in the
exponent due to the contributions from both fluctuations.

In many d-shell problems associated with transition metal
atoms, the ionic Hamiltonian analyzed in this paper is only a
first approximation to a more complex case where crystal field
effects have to be introduced [8—11]. Typically, those crystal
field effects are a small perturbation in front of the more impor-
tant ionic Hamiltonian; however, they can play an important
role in the behavior of the Kondo resonances and/or the struc-
ture that can be developed around the Fermi energy. We should
stress, however, that our results, as summarized in figure 1,
can be of relevance as regards the discussion of the fluctua-
tions that the magnetic atom has. As an example, assume that
Co with 7 electrons in the d-orbitals is adsorbed on a metal
and that a Kondo resonance is observed experimentally [9, 10,
12]; an important point that one has to address in this problem
is the following: which kind of fluctuations are associated
with that Kondo peak, d” — d® or d7 — d®? The answer from
figure 1 is clear: when considering crystal field effects, only
fluctuations from d” to d® (or, equivalently, from S = 3/2 to
S = 1) can develop a Kondo resonance and a small structure
around the Fermi energy, because those crystal field effects can
introduce only some splitting in the original peak of the ionic
Hamiltonian; on the other hand, fluctuations d’ — d° (S = 3/2
to § = 2) do not develop a Kondo resonance when considering
the ionic Hamiltonian, and the small perturbation of the crystal
field effects cannot introduce new states at the Fermi level.
This has been observed independently by Park ef al [12] in a
single-atom transistor for the ions Co*" and Co®*.

Finally, we should comment that the most favorable case
for observing the Kondo peak in transition metal atoms cor-
responds to the case where 25 = R with all the channels con-
tributing equally; then:
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kgTx =~ D\|(2p) ) exp [—1/2py] |

= D,/(2A/m|eo|) exp [—eo|2A].

Typically, D~ 5 eV, and |go|/A = 3 corresponds to a well-
defined Kondo peak and still a high Kondo temperature; with
these values we find kg7 ~ 20 meV (Tx =~ 200 K), which we
can be taken as the maximum possible limit for that temper-
ature (this high value can be attributed to having a small value
of |eo|/A, which implies a rather large value of the hybridized
d-level half-width, A). Transition metal ad-atoms on simple
metals, like Au, have probably very few channels defining
the interaction between ad-atom and metal [20]; for a single
channel we find that:

kgTx ~ D/ (A/7S|eo|) exp [—7S|eo|/A),

the new factor S reducing 7x a lot. For example, for S =4,
D=5 eV and |g|/A ~ 3 we find kpTk ~ 10~'* meV; even for
S =1, kgTx ~ 0.26 meV. These numbers indicate the diffi-
culty of detecting Kondo peaks in magnetic atoms with S > 1,
as already noticed in [22, 23].

6. Conclusions

In conclusion, we have analyzed the interaction between a
metal and a d-shell transition metal atom by means of an ionic
Hamiltonian, and have calculated the exchange metal/atom
coupling and the corresponding atom Kondo temperature.
Figure 1 summarizes our main results, indicating how the
exchange coupling is either ferromagnetic or anti-ferromagn-
etic depending on the kind of atomic fluctuations associated
with the coupling between the atom and the metal surface,
and selecting in that way the possible existence of a Kondo
resonance.
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