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1. Introduction

Most works on the Kondo effect use very idealistic models 
[1–3], with a very poor description of the inner structure of 
the magnetic atom involved in the problem [4]. Although this 
approach is very convenient to start analyzing the basic prop-
erties of the Kondo many-body problem [5], it might be in 
order to take into account that inner structure of the atom by 
introducing an appropriate Hamiltonian to better understand 
the general properties of the system [4, 6, 7]. In our approach, 
we concentrate our discussion on d-shell magnetic atoms with 
an orbital singlet state; this is particularly relevant for cases 
where the symmetry of the magnetic atom environment is 
low, as may happen with d-transition metal atoms adsorbed 
on surfaces or in the gap of a STM-microscope (see [4] for a 
discussion of the symmetry of the problem with respect to the 
orbital singlet state in real metals). To be specific, this is the 

case of ‘inelastic tunneling spectroscopy’ of magnetic atoms 
[8–11] or in single-atom transistors [12].

In the Anderson model [2], the interaction between 
an atom with a non-degenerate d-level and a metal is 
described by the Hamiltonian H H HA 0 int= +� � � , where 

( )  ↑⏐⏐ ↑⏐⏐
⏐↓⏐ ⏐↓⏐ε ε= ∑ + +σ σ

+̂ � �H c ck k k0 0 , σ is the spin pro-

jection, k and σ  being the metal and the atomic states, 
respectively (here we assume, for simplicity, the doubly 
occupied state to be forbidden, implying that U →∞); and 
H V c V c0 0k k k k kint [ ]σ σ= ∑ +σ σ σ

∗ +� �� , describing how elec-

trons are transferred between the atom and the metal (the metal 
Fermi energy, EF, is taken as the origin of energies). We stress 
that, for the convenience of our discussion below, we are using 
the projector operators 0σ  and 0 σ  for the atom instead of 
the more conventional creation and annihilation operators [13].

Hamiltonian HA�  can be transformed into an effective spin 
scattering Hamiltonian by means of a Schrieffer–Wolf trans-
formation [14], assuming that the atom is mostly in a spin 
state with S  =  1/2. This transformation yields the following 
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exchange coupling between the atomic spin, S, and the metal 
states:

H J S s J c c c c
V1

2kk
kk kk

kk
kk k k k k

k

k
eff

2

0
{ }∑ ∑ ∑ ε

= ⋅ + + −↑
+

↑ ↓
+

↓
′

′ ′

′

′ ′ ′� � � ���

 (1)
where J V Vkk k k 0/ ε= ∗′ ′  and

= = = −+
↓
+

↓
−

↑
+

↑
+

↑
+

↑ ↓
+

↓′ ′ ′ ′ ′ ′ ′� � � � � � � �� � �s c c s c c s c c c c; ; 1 2 .
kk k k kk k k z kk k k k k, { }/

 (2)
If the k-band and the atom interact through a single channel 
state α , the atomic spin part of Hamiltonian (1) can be 
written as follows:

= ⋅ α̂ ��H J S s2eff
(spin)

0 (3)

with J V .0
2

0/ ε= α  Equation (3) represents the s-d model [15] 
of the Anderson Hamiltonian with an antiferromagnetic inter-
action; that exchange interaction was used by different authors 
[1, 16] to calculate, by means of the poor man´s scaling 
method, the corresponding Kondo temperature.

Anderson Hamiltonian was generalized by Hirst [17] 
who introduced a new Hamiltonian including fluctuations 
between all the d-levels of a magnetic atom and the metal. 
This Hamiltonian was, apparently, rather complicated because 
of the many parameters required to specify it. However, using 
Hund´s rule and the spin symmetry of the states associated with 
the d-shell we have introduced in [18] an ionic Hamiltonian 
that only depends on one parameter. In this paper, we gen-
eralize this Hamiltonian and introduce the Schrieffer–Wolf 
transformation to calculate the equivalent spin interaction, 

S s Ia γΓ ⋅ +� ��  associated with that ionic model; finally, we ana-
lyze the Kondo temperature for the resulting antiferromagn-
etic effective spin Hamiltonian, and present a general picture 
that embodies all our results.

2. The ionic Hamiltonian

We start our discussion of the ionic model by introducing the 
following Hamiltonian for our transition metal atom/metal 
system:

= +̂ ̂ ̂H H H .0 int (4)

In equation  (4) H n Hk k k0 atomε= ∑ +σ σ�� �  includes the energy 
terms of both, the solid and the atom. The solid is described 
by the conduction band energies kε  with an occupation number 
given by n c ck k k=σ σ σ

+� �� . The atomic part, Hatom� , in the extended 
version appropriate for treating any multi-electron atom [19], 
takes the form:

∑ ∑ ∑

∑ ∑

ε= + +

+ − −

′
′

′
′ ′ ′

σ
σ

σ
σ σ

σ
σ σ

σ
σ σ σ σ

↑ ↓
≠

−

≠ ≠

+
− −

+

̂ � � � � �

� � � � � �

H n U n n J n n

J J n n J n n n n

1

2

1

2

1

2
.

m
m m

m
d m m

m m
d m m

m m
d d

x
m m

m m
d
x

m m m m

atom
, ,

, ´,
( )

 (5)
Here cmσ

+�  (cmσ� ) are the fermionic operators creating (annihi-
lating) an electron with spin projection σ in the orbital m and 

n c cm m m=σ σ σ
+� �� ; the intra-atomic coulomb interactions Ud and 

Jd, as well as the intra-atomic exchange interaction Jd
x, are 

assumed to be constants independent of the m-orbital index. 
The last term, related to spin-flip processes, restores the invari-
ance under rotation in spin space.

The interaction term, Hint� , contemplates the charge 
exchange between the atom and the solid through a one 
electron tunnelling mechanism described by the following 
expression:

[ ]∑= +
σ

σ σ σ σ
+ +̂ � � � �H V c c V c c .

k m
km k m mk m kint

, ,
 (6)

In our approach we assume that the orbital contribution to the 
angular moment is quenched by the crystal field environment, 
so that the ground state of the atom is an orbital singlet. Then, 
in agreement with the first Hund rule, the maximum spin 
associated with a given number of electrons, say N determines 
the atomic ground state. Accordingly, we reduce the configu-
rational space spanned by the atomic Hamiltonian (5) to the 
Hund’s states of total spin S and spin projection M, S M, , 
so that ∑ =S M S M, , 1S M, , in order to project the atomic 
Hamiltonian and rewrite it as H E S M S M, ,S M Satom ,= ∑� , 
where the total energies ES are calculated taking into account 
equation (5).

Regarding the interaction term, (equation (6)), we assume 
that the most probable charge fluctuations from the ground 
state with N electrons, S M, , are to the states with N  −  1 or 
N  +  1 electrons, S M1 2,/−  or S M1 2,/+ :

/

/

/

/

/

/

′

∑

∑

σ

σ

σ

σ

= − −

+ − −

+ − +

+ ′ + −

σ
σ σ

σ σ

σ
σ σ

σ σ

∗ +

+ ∗ +

+

⎡⎣

⎤⎦
⎡⎣

⎤⎦

̂ �

�

�

�

H V c S M S M

V S M S M c

V c S M S M

V S M S M c

1 2, ,

, 1 2,

, 1 2,

1 2, , .

k M
kM
S

k

kM
S

k

k M
kM

S
k

kM
S

k

int
, ,

, ,

1 2

1 2

 

(7)

The different spin configurations S M,  are calculated by 
ensuring the invariance under spin rotation, which means that 
all of them are generated from the state S S,  by successive 
applications of the operator S

−� . In this way the following 
expression for the coupling terms, V kM

S
σ in equation  (7), is 

obtained for the case of a half-filled or less than half filled 
shell (N 5⩽  for a d-shell) [10, 18]:

V
S M

S
V

1

2kM
S

p

kd
( )

=
+ −

σ (8a)

while for an occupation larger than half filled shell (N  >  5 for 
a d-shell), we arrived to the expression:

( ) ( )
= −

− −
σV

S M

S
V1

1

2
.kM

S p
p

kd (8b)

In equations (8a) and (8b), p is equal to 0 if σ =↑ and equal to 
1 in the opposite case.

In many cases, it is a good approximation to consider only 
one type of fluctuation, either S S 1 2→ /−  or S S 1 2→ /+ .  
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In this case, we neglect the terms of Hamiltonian (7) associ-
ated with those less probable fluctuations (infinite-U limit).

3. The Schrieffer–Wolf transformation

We apply the Schrieffer–Wolf transformation [14] to 
Hamiltonian (4), H H0 int+� � , assuming Hint�  small and using a 
second order perturbation theory in Hint�  (equation (7)); in this 
way, we introduce the following effective Hamilonian, Heff� :

H
H n n H

E En n
eff

int int
∑= −

−
�

� �

and assume that the atom is mostly in a state with spin S; for 
simplicity, we also assume that only states /= −n S M1 2,  
contribute. The Schrieffer–Wolf transformation [14] can be 
achieved by eliminating in that way the atomic excited states 

= −n S M1 2,/ :

( )/∑
σ σ

ε ε
=

− +

− − −σ
σ

σ σ σ σ σ σ
′

− +
∗ +

−

′ ′

′ ′ ′ ′ ′

′

̂
� �

H
V c S M S M V c

E E

, ,
.

k M

k

kM
S

k k M
S

k
S S

k k
eff

, ,

,

,
1 2

If we consider in the expression above that the energy level 
E ES S 1 2( )/− −  is very large and negative (the state with spin S is 

more stable than the state with spin S  −  1/2), we can approxi-
mate E E E ES S

k k
S S1 2 1 2( )/ /ε ε− − − ≈ − = −∆− −

′ . Making 
use of the expression of V kM

S
σ given by equation (8a), we have:

( ) ( )

( ) ( )

( ) ( ( ))

( ) ( ( ))

∑ ∑

∑ ∑

∑ ∑

∑ ∑

= −
∆

+ +

−
∆

− −

−
∆

+ − − −

−
∆

− + + +

∗

↑ ↑
+

∗

↓ ↓
+

∗

↑ ↓
+

∗

↓ ↑
+

′

′

′

′

′

′

′

′

′

′

′

′

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

�H
V V

S
S M c S M S M S M c

V V

S
S M c S M S M S M c

V V

S
S M c S M S M S M c

V V

S
S M c S M S M S M c

2
, ,

2
, ,

2
, , 1 1

2
, , 1 1 .

k k

k
k

M
k k

k k

k
k

M
k k

k k

k
k

M
k k

k k

k
k

M
k k

eff
,

,

,

,

 (9)
Moreover, using the following equations for S�:

∑

∑

∑

= + − + +

= + − − −

=

+

−

�

�

�

S S S M M SM SM

S S S M M SM SM

S M SM SM

1 1 1

1 1 1
M

M

z
M

( ) ( )

( ) ( ) 

(10)

and the expressions of s
kk
+
′� , s

kk
−
′�  and sz kk, ′�  given by equation (2), 

we can write equation (9) as:

H
J

S
S s

J
c c c c

2
2

k k

kk
kk

k k

kk
k k k k kkeff

, ,

[ ] ( )
⎛
⎝
⎜

⎞
⎠
⎟∑ ∑ δ= ⋅ + + −

↑
+

↑ ↓
+

↓
′

′
′

′

′

′ ′ ′��

 (11)
which defines a Heisenberg exchange interaction between a 
local moment and the conduction electrons with a coupling 

constant J V Vkk k k
/= ∆∗′ ′ . The last term in equation(11) provides 

the scattering potential which has to be added to the s-d 
Hamiltonian [1]. This equation can be written in a more trans-
parent way if we assume that the k-band and the magn etic atom 
interact through a single channel state α ; then, we replace 

J skk kk kkΣ ′ ′ ′�  by J s J sΣ =αα αα αα α α′ ′ ′� � , and equation (11) reads:

[ ]= ⋅ −α
α

α
α��H

J

S
S s

J
I

2
eff (12)

where we have introduced the spin-1/2 operator for the 
orbital channel α, and have defined J V 2 /= ∆α α  and 
I c c c c= +α α α α α↑

+
↑ ↓

+
↓ (the unit tensor in the sα-space). 

Equation  (12) shows the antiferromagnetic character of this 
interaction.

Up to this point we have assumed the atom to fluctuate from 
the spin S (the normal state of the atom) to spin S  −  1/2. If the 
atom fluctuates to S  +  1/2, our analysis yields that the effec-
tive Hamiltonian is (written in the channel-representation):

H
J

S
S s

J S

S
I

1 2

1

1 2
eff /

[ ] ( )
( / )

= −
+

⋅ +
+
+

α
α

α
α�� (13)

which appears to be a ferromagnetic interaction.
A similar argument can be applied to the case N  ⩾  5, 

with the magnetic atom of spin S fluctuating to spin S  −  1/2: 
S S 1 2→ /− , S defining the normal state of the atom. In gen-
eral, our analysis yields the same result, equation (12), for the 
corresponding effective Hamiltonian, while for the fluctua-
tions S S 1 2→ /+  we also obtain equation(13).

Notice that in all these cases, there appear renormalization 
factors, S or S  +  1/2, changing the J-coupling, defined in the 
conventional way J V 2 /= ∆α α , to either J S/  [6] or J S 1 2/( / )+  
Obviously, we can redefine this new interaction as J′ in such 
a way that the effective Hamiltonian has the conventional 
form J S s⋅′ α�� ; one should remember, however, that a large spin 
would imply a reduction in the effective (S s⋅ α�� ) interaction 
[6]. On the other hand, it is worth mentioning that our results 
for the effective exchange coupling keeps the rotational sym-
metry of the problem, giving an independent confirmation to 
the validity of the ionic Hamiltonian introduced above.

We are going now to consider the case of having more 
than one channel for the metal [4]. In our approach, new 
channels can be introduced by considering several kr-states 
(r  =  1…R) which are assumed to interact with the atom 
through their corre sponding channel orbitals, r  [20]. Then, 
we can proceed as done for the case of one channel, apply 
the Schrieffer–Wolf transformation and obtain the following 
equation (for N  ⩽  5):

∑ ∑ δ= ⋅ + + −↑
+

↑ ↓
+

↓⎜ ⎟
⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦��H
J

S
S s

J
c c c c

2
2

kr kt

kr kt
kr kt

kr kt

kr kt
kr kt kr kt kr kteff

,

,
,

,

,
,( )

 

(14)
which, in the channel representation, takes the form 
J V Vr t r t,( / )= ∆∗ :

H S
J

S
s

J
c c c c

2r t

r t
r t

r t

r t
r t r teff

,

,
,

,

, ( )∑ ∑= ⋅ − +↑
+
↑ ↓

+
↓�� (15)
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to be compared with equation (12).
On the other hand, we should mention that for fluctuations 

S S 1 2→ /+ , we obtain the following effective Hamiltonian, 
as written in the localized channel representation:

( )
/

( )
/

∑

∑

= − ⋅
+

+ +
+

+↑
+
↑ ↓

+
↓

��H S
J

S
s

S
J

S
c c c c

1 2

1
1 2

r t

r t
r t

r t

r t
r t r t

eff
,

,
,

,

,
 

(16)

to be compared with equation  (13). Similar equations  are 
obtained for N  ⩾  5 in both cases.

4. The Kondo temperature

We analyze the Kondo temperature, TK, associated with the 
antiferromagnetic multichannel Hamiltonian (15), by means 
of the poor man´s scaling method [20, 21] used successfully 
for similar problems. We start with the atomic spin part of 
Hamiltonian (14):

H
J

S
S s

kr kt

kr kt
kr kteff

,

,
,[ ]⎜ ⎟

⎛
⎝

⎞
⎠∑= ⋅ �� (17)

and assume to have a metal band between  −D and D. Then, 
we remove the kr-states in the intervals, (D, D  −  δD) or 
(−D,  −D  +  δD), by summing upon the K-states in the 
equation:

H H K K H E E
K

Keff eff eff 0{ }/( )  ∑δ = − −� �
 (18)

where K  represents excited states like: c S M,qrσ
+�  (or 

c S M,qrσ
+� ) with the momentum qr in the energy interval  

(D, D  −  δD) or (−D, −D  +  δD); due to the high energy of the  
excited qr-states, E EK 0( )−  can be approximated by D. Then, 

we calculate H K K H DK eff eff{ }/−∑ � �  and obtain the fol-
lowing renormalization of the effective exchange coupling:

{ }
{ }( )

( )
( )

/

/   / /  

δ

ρ δ

Σ ⋅

= −Σ Σ ⋅

�

�

�

�

J S S s

J S D J S S s D.

kr kt kr kt kt kr

qr qr qr qr kr kt kr kt kt kr

, , ,

, , , ,

For the sake of simplicity, it is convenient to analyze this 
expression using the channel representation; moreover, iden-
tifying each (kt, kr)-term in this equation gives:

D J S J S D J Sr t r r r r t, ,( / ) {( / ) }( / )δ ρ δ= −Σ ′ ′ ′ (19a)

this equation shows that J Jr t r t, ,( )/δ  is independent from r or t 
along the renormalization process, so that the symmetry of 

the interaction, J S S sr s r s a, ,( / )∑ ⋅ �� , is preserved along the scaling 
[4]. This implies that along our scaling trajectory the system 
develops only one fixed point and an equivalent one channel 
Kondo physics. The corresponding Kondo temperature can 
be calculated taking r  =  t in equation (19a), multiplying it by 

rρ , the assumed constant density of states associated with the 
r-channel, and summing upon r; this leads to:

D J S J S Dr r r r r r
2[ ( / ) ] [ ( / ) ]δ ρ ρ δΣ = − Σ (19b)

where J Vr r
2 /= ∆. Integrating equation  (19b) in Dδ , we 

obtain the following Kondo temperature:

ρ≈ = − Σ′k T D D S Jexp .r r rB K { }/ (20)

Notice that for one channel,

ρ≈ = −′k T D D S Jexp .B K 0{ }/ (21)

Equation (21) highlights the importance played by the expo-
nent, ( )/ρ−S Jexp 0 , where a correction associated with the 
spin S appears [6], correction that makes TK smaller for large 
S, as it was found experimentally [22, 23].

5. Results and discussion

Our results for the effective spin interaction are summarized 
in figure 1. In this figure we show the different levels asso-
ciated with the atomic wave-functions S M, . The atomic 
occupancy is determined by the position of the Fermi level; 
for E d E E dN N1

F( ) ( )> >+ , we can expect the atom to be in 
the dN-state (with N electrons and S  =  N/2 for N ⩽ 5 and 
S  =  (10  −  N)/2 for N  >  5), and to develop charge fluc-
tuations to states with either N  +  1 (dN 1+ ) or N  −  1 (dN 1− ) 
electrons. Depending on those fluctuations we find different 
effective spin interactions with the metal. For example, con-
sider the case E d E E d2

F
1( ) ( )> > : if EF is closer to the E d1( ) 

level, the system develops an antiferromagnetic (AF) inter-
action with d d1 0→  fluctuations; when EF approaches the 
E d2( ) level, the effective spin interaction is ferromagnetic 
(FM) and d d1 2→ . Things evolve in a similar way when EF 
crosses E d2( ) and E d E E d3

F
2( ) ( )> > ; then, the system is ini-

tially AF and develops a Kondo resonance with d d2 1→  fluc-
tuations, while for EF closer to E d3( ) the system is FM with 
d d2 3→  fluctuations. Things continue in this way up to the 
case E d E E d6

F
5( ) ( )> > , which shows in both cases, for EF 

close to either E d6( ) or E d5( ), an AF interaction; this is due to 
the electron–hole symmetry of the system between the cases 
N  <  5 and N  >  5. For example, the case E d E E d3

F
2( ) ( )> >  

is the symmetric of E d E E d8
F

9( ) ( )< < , the system 
being in both cases AF if EF is closer to either E d9( ) or 
E d2( ); for that AF interaction, we find the following fluctua-
tions: d S d S1 1 22 1( ) → ( / )= =  or d S d S1 1 28 9( ) → ( / )= = , 
and a similar effective spin interaction: J S S s( / ) [ ]⋅α α��  (equa-
tion (12)) with S  =  1.

It is also worth commenting that we can combine into a 
single equation  the AF and FM interactions appearing for a 
given level, dN, due to its fluctuations to either dN 1−  or dN 1+  
(equation (7)). The reason is the second order perturbation 
theory used to eliminate those states; this approach allows us 
to combine the effective spin interactions for dN (N  <  5) in 
the following equation: J S S s J S S s1 2 .a a a A( / ) [ /( / )]⋅ − +′ ′� �� � . This 
equation suggests that the AF interaction changes to the FM 
one, around J S J S 1 2a a( / ) [ /( / )]≈ +′ ; as J Va a

2 /= ∆ (Δ, defined 
as E ES S1 2/ −−  or E ES S 1 2/− + , is equal to E E dN

F ( )− ), 
that condition can be approximated by S S 1 2/ /( / )∆ ∆ = +′  

assuming V Va a≈ ′ . Notice that for E d E E d6
F

5( ) ( )> >  and 

combining both fluctuations d S d S5 2 25 4( / ) → ( )= =  and 
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d S d S5 2 25 6( / ) → ( )= = , the AF effective interaction can be 
written as J S S s J S S sa a a a( / ) ( / )⋅ + ⋅′ ′� �� �  with S  =  5/2; moreover, 
for the symmetric case with E E d E d 2F

6 5[ ( ) ( )] /= + , that 
effective interaction becomes J S S s2 a a( / ) ⋅ �� .

In a next step, we have used the poor man´s scaling method to 
calculate the Kondo temperature associated with the AF inter-
action obtained above. Our result for the effective interaction 
J S S sa a( / ) ⋅ ��  is simple: take the well-known TK-value [1, 4] for 

the AF interaction, J S sa⋅′ �� , ρ≈ − ′k T D Jexp 1B K 0( )/ , obtained 
in the scaling method to order J′2, and replace J′ by J Sa( / ); this 
yields the following TK, k T D S Jexp aB K 0( / )ρ≈ − , for our ionic 
Hamiltonian [6]. We should also comment that for S  =  1/2, a 
calculation of the scaling equations up to third order in Jα [21] 

yields k T D J J~ 2 exp 1 2o oB K  ( ) [ /( )]ρ ρ−α α  for the one channel 
case. This result suggests the following generalization for any 

value of S: k T D J S S J~ expo oB K  ( / ) [ /( )]ρ ρ−α α .
Up to this point we have assumed to have a single channel 

in the metal; for more channels, the AF interaction reads 
as: J S S srt r t r t, ,( / )∑ ⋅ ��  in the channel representation; then, our 
analysis shows that TK is given by: k T D S Jexp r rB K { }/ ρ≈ − ∑ . 
If all the channels contribute equally, that equation takes the 
form: k T D S R JexpB K 0{ / }ρ≈ −  where R is the number of chan-
nels; further on, for 2S  =  R we recover the Kondo temper-
ature of a single channel with S  =  1/2. We also expect that the 
scaling equations up to third order in Jr [21] would modify TK 

from { }/ ρ≈ − ∑k T D S Jexp r rB K  to:

k T D J S S J~ exp .r r r r r rB K
1 2( / ) [ / ]/ρ ρΣ − Σ

The case E d E E d6
F

5( ) ( )> >  is different; we only mention 
that for the symmetric case, E E d E d 2F

6 5[ ( ) ( )] /= + , the 
spin interaction is J S S s2 a a( / ) ⋅ ��  and the Kondo temperature 

k T D S Jexp 2 r r rB K { }/ ρ≈ − ∑ , a factor of 1/2 appearing in the 
exponent due to the contributions from both fluctuations.

In many d-shell problems associated with transition metal 
atoms, the ionic Hamiltonian analyzed in this paper is only a 
first approximation to a more complex case where crystal field 
effects have to be introduced [8–11]. Typically, those crystal 
field effects are a small perturbation in front of the more impor-
tant ionic Hamiltonian; however, they can play an important 
role in the behavior of the Kondo resonances and/or the struc-
ture that can be developed around the Fermi energy. We should 
stress, however, that our results, as summarized in figure  1, 
can be of relevance as regards the discussion of the fluctua-
tions that the magnetic atom has. As an example, assume that 
Co with 7 electrons in the d-orbitals is adsorbed on a metal 
and that a Kondo resonance is observed experimentally [9, 10, 
12]; an important point that one has to address in this problem 
is the following: which kind of fluctuations are associated 
with that Kondo peak, d d7 8→  or d d7 6→ ? The answer from 
figure 1 is clear: when considering crystal field effects, only 
fluctuations from d7 to d8 (or, equivalently, from S  =  3/2 to 
S  =  1) can develop a Kondo resonance and a small structure 
around the Fermi energy, because those crystal field effects can 
introduce only some splitting in the original peak of the ionic 
Hamiltonian; on the other hand, fluctuations d d7 6→  (S  =  3/2 
to S  =  2) do not develop a Kondo resonance when considering 
the ionic Hamiltonian, and the small perturbation of the crystal 
field effects cannot introduce new states at the Fermi level. 
This has been observed independently by Park et al [12] in a 
single-atom transistor for the ions Co2+ and Co3+.

Finally, we should comment that the most favorable case 
for observing the Kondo peak in transition metal atoms cor-
responds to the case where 2S  =  R with all the channels con-
tributing equally; then:

Figure 1. AF and FM indicate the Fermi energy windows for which the magnetic atom has an antiferromagnetic or a ferromagnetic  
exchange coupling. The one electron energy levels, ( )E dN , are defined as ( ) ( )− −E N E N 1 , the difference  
of energies between states with N and N  −  1 electrons, respectively. For the Yoshimori model:   ( ) ( )− =E d E d2 1

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )… = − = − = … = − = − − = +E d E d E d E d E d E d J J E d E d U J. . ; while 4 .d d
x

d d
5 4 7 6 10 9 6 5
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[ ]( )
[ ]( )
/

/ /

ρ ρ

π ε π ε

≈ −

= ∆ − ∆

k T D J J

D

2 exp 1 2

2 exp 2 .

B K 0 0

0 0

Typically, D 5≈  eV, and 30 /ε ∆≈  corresponds to a well-
defined Kondo peak and still a high Kondo temperature; with 
these values we find k T 20B K≈  meV (T 200K≈  K), which we 
can be taken as the maximum possible limit for that temper-
ature (this high value can be attributed to having a small value 
of 0 /ε ∆, which implies a rather large value of the hybridized 
d-level half-width, Δ). Transition metal ad-atoms on simple 
metals, like Au, have probably very few channels defining 
the interaction between ad-atom and metal [20]; for a single 
channel we find that:

k T D S Sexp ,B K 0 0[ )( / ) /π ε π ε≈ ∆ − ∆

the new factor S reducing TK a lot. For example, for S  =  4, 
D 5≈  eV and 30 /ε ∆≈  we find k T 10B K

14≈ −  meV; even for 
S  =  1, k T 0.26B K ≈  meV. These numbers indicate the diffi-
culty of detecting Kondo peaks in magnetic atoms with S  >  1, 
as already noticed in [22, 23].

6. Conclusions

In conclusion, we have analyzed the interaction between a 
metal and a d-shell transition metal atom by means of an ionic 
Hamiltonian, and have calculated the exchange metal/atom 
coupling and the corresponding atom Kondo temperature. 
Figure  1 summarizes our main results, indicating how the 
exchange coupling is either ferromagnetic or anti-ferromagn-
etic depending on the kind of atomic fluctuations associated 
with the coupling between the atom and the metal surface, 
and selecting in that way the possible existence of a Kondo 
resonance.
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