

Oxford, UK 30 March - 1 April 2023

International Conference on Human-Wildlife Conflict and Coexistence

www.hwcconference.org

The long-awaited first International Conference on Human-Wildlife Conflict and Coexistence will be held in Oxford, UK on 30 March - 1 April 2023. This will bring together 600 participants from governments, NGOs, intergovernmental organisations, indigenous and local communities, business and development, and academic research institutions, from over 80 countries.

This interdisciplinary conference will cover a wide range of topics related to human-wildlife conflict and coexistence, including the human, social and political dimensions, ecological and animal behaviour aspects, policy and governance, conflict resolution and mediation, tools and technologies, financial instruments, engagement with stakeholders, landscape planning, preventing emerging conflicts, and much more. Delegates will share their experiences via presentations, panels, discussions, posters, side meetings, exhibits, and will be joined by a dozen keynote speakers.

The conference follows the recent UN Biodiversity COP15 and newly agreed Global Biodiversity Framework, which for the first time specifically mandates all countries to address human-wildlife conflict for coexistence. To this end this event provides a very timely and unique opportunity for learning, networking and collaboration towards implementation of the new UN framework and achieving human-wildlife coexistence around the globe.

Oxford, UK 30 March - 1 April 2023

Abstracts

Thursday 30 March

Coexistence between the media and conservationists

Abstract ID: 503 Format: Presentation

Presenter: Nikit Surve

Big cat in Mumbai city: from conflict to co-existence

Nikit Surve¹, Anwar Ahmed², Vidya Athreya¹

¹Wildlife Conservation Society India

²Indian Forest Service

Interactions which are negative in nature between large carnivores and humans have been documented across the world. Globally there is a need to integrate carnivores into multi-use landscapes including areas outside protected areas, which means co-occurance with humans. India is really unique in the way wildlife and people share spaces. Although we are only at the brink of understanding human-carnivore interactions, there is no doubt that India has many lessons the rest of the world can learn from in terms of shared spaces. Our research conducted in Sanjay Gandhi National Park (SGNP) in Mumbai shows that it is one of the few protected areas that has a high density of leopards (26.34/100 sq. kms.) present among high density of humans (a peripheral density of 20,000 people/sq. km.). Commonly, the leopards observed in the city are termed "strays", indicating how people still view the animal without acknowledging the fact that they do not understand boundaries drawn by humans. This traditional belief gave rise to a management intervention where leopards were translocated because of fear among people and pressure from the media. Between the years 2002 & 2004, 84 attacks on people were reported around SGNP, these years also showed maximum no. of leopard translocations. But a mass awareness drive to all stakeholders including residents, slum dwellers, local municipalities and specially media based on research findings helped people understand the do's and don'ts while dealing with leopards. I wish to share how leopards feed on both wild as well as domestic prey in this landscape, and how due to mass awareness and media sensitisation trapping of leopards has reduced, resulting in reduced conflict (two fatal attacks out of 8 attacks on children between the years 2014 to 2022) and traditional association of tribals with leopards for peaceful coexistence.

Abstract ID: 285 Format: Presentation

Presenter: Kai Williams

Changing the narrative: how wildlife rehabilitators help manage human-wildlife interactions

Adam Grogan¹, Jayanthi Kallam^{2,3,4}, Kai Williams⁴

¹RSPCA, The International Wildlife Rehabilitation Council

Finally, we will illustrate how real-time reporting and alert algorithms, such as geo-fencing, alert us to potential crop-raiding incidents before they happen. These important applications of tracking data that we present are being used in Kenya in regional elephant management strategies, spatial planning and development plans across the country.

Abstract ID: 175 Format: Presentation

Presenter: Carlos Bautista

Multiscale approach to model the risk of predation of a very small livestock: beehives and brown bears in North-East Carpathians

Carlos Bautista¹, Eloy Revilla², Teresa Berezowska-Cnota¹, Néstor Fernández³, Javier Naves², Nuria Selva¹

¹Institute of Nature Conservation of the Polish Academy of Science

Risk modelling is becoming a popular tool to predict the probability of wildlife damage to agriculture and livestock across the landscape based on past damage events. The motivation to do so is to optimize the efforts to prevent damage and reduce economic losses, which is pivotal to secure farmers' livelihood and increase their tolerance towards wild animals. We used 277 records of brown bear (Ursus arctos) damage to apiaries occurring in 2010-2017 in the Polish Carpathian Mountains, to model the risk of bear predation of beehives. We hypothesized that bear predation occurs in areas of interface between suitable habitats for bears and for apiaries. We used generalized additive models at three spatial scales to test our hypothesis and map the risk of bear predation of beehives in Podkarpackie Province, SE Poland. At the larger scale (5x5km grid), we found that the probability of damage increased with the probability of apiary occurrence, but was weakly influenced by the probability of bear presence. At the medium scale (1x1 km grid), damage tended to occur in areas with higher densities of forest edges, national roads and agricultural surface. At the smaller scale (the apiary geographical location) the damage occurrence decreased with the distance to the forest edge and with the probability of bear presence, suggesting a higher probability of damage in apiaries located near to forest in suboptimal habitats for bears. Our results highlight that damage to beehives are more related to the availability and accessibility of apiaries than the availability of bears, and warn that in areas of high interspersion of forest and agriculture the risk of damage increases. Our results show that managing the location of apiaries may be a very effective way to maintain the risk of damages by bears at low levels in areas where bears live.

Abstract ID: 384 Format: Presentation

Presenter: Mauro Lucherini

Addressing puma-livestock conflicts across the Americas

Lucherini Mauro^{1,2}, Luengos Vidal Estela^{1,2}

¹Grupo de Ecología Comportamental de Mamíferos (GECM), INBIOSUR, CONICET-UNS, Bahía Blanca, Argentina

²Laboratorio Fisiología Animal, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina

²Doñana Biological Station

³German Centre for Integrative Biodiversity Research

The puma (Puma concolor) is the most widespread apex carnivore across the American continent. Their ecological adaptability has enabled pumas to survive in anthropogenically modified areas but has also frequently put them in conflict with a still expanding livestock industry, especially in Latin America. Although puma-livestock conflicts are widespread and threaten heavily this felid's role in ecosystems, our comprehension of the factors trigging them and their consequences for both components of the conflict equation is still poor. We will present a global review (92 papers from 14 countries) on the geographic, anthropogenic, and habitat characteristics that conflict areas have in common, indicating that conflicts are primarily located in the Southern Hemisphere and characterized by high densities of livestock. We will revise the scattered data available on the magnitude and monetary impact of the losses caused by puma predation on livestock in the context of local economies, including the little-explored phenomenon of surplus killing, to show that the impact is typically small but can be locally disruptive. We will use a global database (84 papers covering 102 sites from 15 countries) to assess the importance of livestock compared to wild prey (introduced and native) in the diet of pumas. We will show that while puma diet included 211 distinct species globally, only 31 species had a mean frequency of occurrence in diet greater than 5% or occurred in more than five study sites. The great majority of these species was large or medium-sized, but only two were domesticated (sheep and cow). The introduced European hare is the most widespread puma prey. Finally, we will discuss the lack of evidence of the efficacy of lethal control of puma populations (which is one of the most widespread conflict reduction strategies) to mitigate conflict with ranchers.