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2 Centro Atómico Bariloche, Instituto Balseiro and CONICET, 8400 Bariloche, Argentina
3 Centro de Investigación en Complejidad Social, Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
4 Instituto de F́ısica y Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Apartado
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Abstract. We explain how specific dynamical properties give rise to the limit distribution of sums of
deterministic variables at the transition to chaos via the period-doubling route. We study the sums of
successive positions generated by an ensemble of initial conditions uniformly distributed in the entire
phase space of a unimodal map as represented by the logistic map. We find that these sums acquire their
salient, multiscale, features from the repellor preimage structure that dominates the dynamics toward
the attractors along the period-doubling cascade. And we explain how these properties transmit from the
sums to their distribution. Specifically, we show how the stationary distribution of sums of positions at the
Feigebaum point is built up from those associated with the supercycle attractors forming a hierarchical
structure with multifractal and discrete scale invariance properties.

1 Introduction

Sums of deterministic variables, such as those generated
from consecutive positions of trajectories of iterated one-
dimensional nonlinear maps, lead to limit distributions
that reflect the periodic or chaotic character of the dy-
namics at work. In the former case when the Lyapunov
exponent is negative, λ < 0, the distribution of trajecto-
ries initiated within the attractor is trivially determined
by its finite set of positions. In the latter case, when λ > 0,
a single chaotic trajectory (or an ensemble of them) leads
to a Gaussian stationary distribution, in line with the or-
dinary central limit theorem, just as independent random
variables do [1,2]. The limiting case of vanishing Lyapunov
exponent λ = 0 poses interesting questions about the na-
ture of its stationary distribution: does this borderline case
lead to a general type of stationary distribution, or, on the
contrary, to distributions that capture the particular fea-
tures of the dynamics involved? Do the absence of ergodic-
ity and mixing preclude the appearance of broad-spectrum
distributions compatible with statistical-mechanical the-
ories? There has been speculation and discussion [3–5]
about whether sums of correlated deterministic variables
at vanishing, or near vanishing, Lyapunov exponent give
rise to a general type of non-Gaussian stationary dis-
tribution. The well-known multifractal attractor at the
period-doubling transition to chaos, the Feigenbaum at-
tractor, has proved to be a suitable model system for the
exploration of this issue [3–5].
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We have previously provided an answer [6,7] for the
case of trajectories initiated within the Feigenbaum at-
tractor and here we present definite conclusions for the
more involved case of the dynamics towards this attractor.
In the former case the support of the stationary distribu-
tion is the multifractal set that makes up the Feigenbaum
attractor and its amplitude follows its multiscaling prop-
erty. For the latter case we demonstrate at this time that
the stationary distribution possesses an infinite-level hi-
erarchical structure that originates from the properties of
the repellor set and its preimages. This ladder organiza-
tion can be more easily understood by consideration of
the family of periodic attractors, conveniently, the super-
cycle attractors [8], along the period-doubling cascade. We
bring to a close the clarification of this issue.

Specifically, we consider the logistic map fµ(x) =
1 − μx2, −1 ≤ x ≤ 1, 0 ≤ μ ≤ 2, for which the con-
trol parameter value for its main period-doubling cascade
accumulation point is μ = μ∞ = 1.401155189092 . . . The
dynamics at and toward the Feigenbaum attractor is now
known in much detail [9,10] and this makes it possible to
analyze the properties of sums of iterated positions that
advance to this attractor with the same kind of analytic
reasoning and numerical detail. A fundamental property
in the analysis is the following: time evolution at μ∞ from
t = 0 up to t → ∞ traces the period-doubling cascade pro-
gression from μ = 0 up to μ∞ [9,10]. Beyond a close resem-
blance between these two developments there is asymp-
totic quantitative agreement. Thus, the trajectory inside
the Feigenbaum attractor with initial condition x0 = 0,
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Fig. 1. Left panel: absolute value of attractor positions for
the logistic map fµ(x) in logarithmic scale as a function of
− ln(µ∞ − µ) . Right panel: absolute value of trajectory posi-
tions for fµ(x) at µ∞ with initial condition x0= 0 in logarith-
mic scale as a function of the logarithm of time t, also shown
by the numbers close to the circles. The arrows indicate the
equivalence between the diameters dn,0 in the left panel, and
position differences Dn with respect to x0 = 0 in the right
panel.

takes positions xt such that the distances between nearest
neighbor pairs of them reproduce the diameters dn,m [8]
defined from the superstable, or supercycle, orbits of pe-
riod 2n, n = 1, 2, 3, . . ., with μn < μ∞ (see Fig. 1). This
property has been central to obtain rigorous results for the
fluctuating sensitivity to initial conditions ξt(x0) within
the Feigenbaum attractor, as separations at chosen times
t of pairs of trajectories originating close to x0 can be ob-
tained as diameters dn,m [9]. It has also been essential in
establishing the discrete scale invariance property of the
collective rate of approach of an ensemble of trajectories
to this attractor where the total length of the dn,m, n
fixed, gives the fraction of trajectories still away from the
attractor at time t = 2n [10].

Below we present results for the sums of values of iter-
ated positions obtained from an ensemble of trajectories
initially distributed uniformly along all the phase space of
the logistic map. We evaluated numerically the sums for
μ∞ and also those for the first few supercycle values μn,
n = 1, 2 and 3. Subsequently we determined, numerically
also, the stationary distributions associated with these col-
lections of sums. To analyze the set of sums of all such
positions visited by the ensemble of trajectories we record
their values for all x0, −1 ≤ x0 ≤ 1, at a fixed large to-
tal final time N . When μ∞ the set of sums is observed
to have a complex structure as a function of x0 with very
rough, jagged, features that reflect the properties of the
preimage arrangement of positions of trajectories on the
way to the attractor, such as the long journeys taken by
initial positions in the neighborhood of the multifractal re-
pellor. The distribution of these sums is observed to have
an asymmetric, exponentially-decaying, framework dressed
with motifs that involve detail in many scales.

Fig. 2. Sums X(x0, N ; µn) as a function of x0, N ∼ O(106).
(a) Period 2 at µ1, (b) period 22 at µ2, (c) period 23 at µ3, and
(d) Feigenbaum point 2∞ at µ∞. When inverted and rescaled
the area enclosed within the dashed lines in (b) and (c) become
panels (a) and (b), respectively. See text for details.

2 Sums of positions and their distributions
for supercycles and their accumulation point

We consider the sum of positions xt up to a final iteration
time N of a trajectory with initial condition x0 and control
parameter value μ, i.e.

X(x0, N ; μ) ≡
N∑

t=0

xt.

The four panels in Figure 2 show the results for
X(x0, N ; μ) for all possible initial conditions −1 ≤ x0 ≤ 1
and N ∼ O(106) when the control parameter takes the val-
ues μ1, μ2, μ3 and μ∞. The plots are all symmetrical with
respect to x0 = 0 and exhibit two large peaks and a central
valley. As it can be clearly observed, X(x0, N ; μ1) for pe-
riod 2 in panel (a) provides the main frame onto which mo-
tifs of alternating signs are added consecutively to produce
X(x0, N ; μ2) for period 22 in panel (b), and X(x0, N ; μ3)
for period 23 in panel (c). The amplitude of these mo-
tifs decreases rapidly with n such that the fine features
in X(x0, N ; μ∞) for period 2∞ cannot be observed at
the scale of the plot in panel (d). However, zooming on
a especially precise evaluation of X(x0, N ; μ∞) reveals a
delicate and jagged structure that becomes a multifractal
when N → ∞.

To appreciate better the organization of the structures
of the sets of sums we plot in Figure 3 the right-hand sides
with x0 > 0 of the panels in Figure 2 with a logarith-
mic scale for the distance between the initial condition x0

to the position y for the maximum in the sums, i.e. we
use the variables w+ = ln(x0 − y) and w− = ln(y − x0).
Panel (a) of Figure 3 shows an almost linear behavior
(with slope σ = −1.36) that indicates an exponential
form around each peak of X(x0, N ; μ1), a basic element
preserved for μ2, μ3 and μ∞ as can be observed in pan-
els (b), (c) and (d). Next, we notice that the additional
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Fig. 3. Same as Figure 2 but only the sums with initial
conditions x0 > 0 are plotted in terms of the new variables
w+ = ln(x0 − y) (upper curves) and w− = ln(y − x0) (lower
curves). The insets show greater detail.

motifs (of smooth protrusions bounded by sharp drops)
in panel (b) for μ2 are spaced regularly in the logarithmic
scale, a feature that will let us identify its origin below.
Panel (c) for μ3 shows the appearance of additional small
amplitude motifs (this time small smooth valleys bounded
by sharp peaks) that enhance the alternating character to
the smooth motifs for μ2. The scale of panel (d) for μ∞
precludes the observation of fine features at the transition
to chaos. The insets in panels (c) and (d) help distinguish
some differences between the sums for μ3 and μ∞.

We proceed to evaluate the distributions associated
with the sets of sums X(x0, N ; μ). The four panels in Fig-
ure 4 show in semi-logarithmic scales the results for the
(non-normalized) histograms that correspond to the sums
in the panels with same labels in Figures 2 and 3. The
essentially linear plot with slope Σ1 = −0.76 in panel (a)
for μ1 indicates an anticipated exponential decay distribu-
tion. The histogram in panel (b) for μ2 shows two features
in addition to that in panel (a), a repeated motif structure
superposed on the line of slope Σ1 and a new smooth line
of slope Σ2 = 5.02 that gives the distribution an overall
asymmetrical tent shape (in the semi-logarithmic scales
of Fig. 4). The histogram in panel (c) for μ3 adds to the
features of panel (b) both more detail to the motif struc-
ture superposed on the line of slope Σ1 = −0.99 and now
a repeated motif structure superposed on the previously
smooth line of slope Σ2 = 4.87. These alternating finer de-
tail appears progressively in the histograms for the distri-
butions associated with period 2n until in the limit n → ∞
we obtain the histogram in panel (d). As before, the scale
of panel (d) for μ∞ precludes the observation of fine fea-
tures at the transition to chaos. The insets in panels (c)
and (d) help distinguish some differences between the his-
tograms for μ3 and μ∞. The stationary distribution for μ∞
has an asymmetrical double exponential global shape with
superposed motifs of ever-decreasing finer detail charac-
teristic of a multifractal object. Below we explain the dy-
namical origin of all the features of this distribution, but

Fig. 4. Histograms obtained from the sums in Figures 2 and 3.
(a) Period 2 at µ1, (b) period 22 at µ2, (c) period 23 at µ3,
and (d) Feigenbaum point 2∞ at µ∞. The insets show greater
detail.

before we rationalize this intricate arrangement we need
to refer to the dynamical properties of trajectories as they
evolve towards the Feigenbaum attractor.

3 Specifics of the dynamics towards
supercycles and to their accumulation point

For our purposes we recall some basic features of the
trajectories at control parameter values μ = μn associ-
ated with the supercycles of periods 2n, n = 1, 2, 3, . . .,
that are located along the bifurcation forks that form the
period-doubling cascade sequence in unimodal maps (and
typically illustrated by the logistic map fµ(x)). The posi-
tions (or phases) of the 2n-supercycle attractor are given
by xi = f

(i)
µn

(0), i = 1, 2, . . . , 2n. Notice that infinitely
many other sequences of superstable attractors appear at
the period-doubling cascades within the windows of pe-
riodic attractors for values of μ > μ∞. Related to the
2n-attractor at μ = μn there is a (2n − 1)-repellor con-
sisting of 2n − 1 positions yi, i = 1, 2, . . . , n − 1 (one for
y1, 2 for y2, 22 for y3, and so on). These positions are
the unstable solutions,

∣∣∣df (2i)
µn

(y)/dy
∣∣∣ > 1, of the equa-

tions y = f
(2i)
µn

(y), i = 1, 2, . . . , n − 1. The first, i = 1,
originates at the initial period-doubling bifurcation, the
next two, i = 2, start at the 2nd bifurcation, and so on,
with the last group of 2i, i = n − 1, setting out from the
(n−1)th bifurcation. Other families of periodic attractors
along the period-doubling cascade share most of the prop-
erties of supercycles. We consider explicitly the case of a
map with quadratic maximum but the results are easily
extended to general nonlinearity z > 1.

The organization of the entire set of trajectories gen-
erated by all possible initial conditions (i.e. −1 ≤ x0 ≤ 1)
as they flow towards a period 2n-supercycle attractor
has been studied in detail [10]. It was found that the
paths taken by the full set of trajectories in their way
to the attractors (or to their complementary repellors)
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are extraordinarily structured. To visualize this organiza-
tion, define the preimage x(k) of order k of position x to
satisfy x = h(k)(x(k)) where h(k)(x) is the kth composi-
tion of the map h(x) ≡ f

(2n−1)
µn

(x). The preimages of the
attractor of period 2n, n = 1, 2, 3, . . . are distributed into
different basins of attraction, one for each of the 2n phases
(positions) that compose the cycle. That is, a trajectory
initiated at x(k) arrives after k iterations at the attractor,
entering first at a given position of the attractor that de-
fines its basin1. When n > 1 these basins are separated
by fractal boundaries whose complexity increases with in-
creasing n. The boundaries consist of the preimages of the
corresponding repellor and their positions cluster around
the 2n − 1 repellor positions according to an exponential
law. As n increases the structure of the basin boundaries
becomes more involved. Namely, the boundaries for the
2n-cycle develops new features around those of the pre-
vious 2n−1-cycle boundaries, with the outcome that a hi-
erarchical structure arises, leading to embedded clusters
of clusters of boundary positions, also crowded exponen-
tially, and so forth. The dynamics of families of trajecto-
ries always displays a characteristically concerted order in
which positions are visited, that in turn reflects the repel-
lor preimage boundary structure of the basins of attrac-
tion. That is, each trajectory has an initial position that
is identified as a preimage of a given order of an attrac-
tor (or repellor) position, and this trajectory necessarily
follows the steps of other trajectories with initial condi-
tions of lower preimage order belonging to a given chain
or pathway to the attractor (or repellor). When the pe-
riod 2n of the cycle increases the dynamics becomes more
involved with increasingly more complex stages that re-
flect the hierarchical structure of preimages (see Figs. 2
to 11 in Ref. [10] and details therein). The fractal features
of the boundaries between the basins of attraction of the
positions of the periodic orbits develop a structure with
hierarchy, and this in turn reflects on the properties of
the trajectories. The set of trajectories produces an or-
dered flow towards the attractor or towards the repellor
that mirrors the ladder structure of the sub-basins that
constitute the mentioned boundaries.

Another way by which the preimage structure de-
scribed above manifests in the dynamics of trajectories
moving to the supercycles of periods 2n is via the succes-
sive formation of gaps in phase space [−1, 1], that in the
limit n → ∞ gives rise to the attractor and repellor mul-
tifractal sets. To observe explicitly this process, in refer-
ence [10] was considered an ensemble of initial conditions
x0 distributed uniformly across [−1, 1] and their positions
were recorded at subsequent times. The set of gaps devel-
ops in time beginning with the largest one containing the
i = 1 repellor, then followed by a set of two gaps associated
with the i = 2 repellor, next a set of four gaps associated

1 We consider a trajectory “entering” the attractor at a finite
number of iterations k for all x0 to be the result of a cut off in
the numerical calculation, i.e. when the distance of the position
xk to an attractor position xj is less than a prescribed small
number [10].

with the i = 3 repellor, and so forth. This process stops
when the order of the gaps i reaches n − 1 (see Figs. 14
to 16 in Ref. [10] and text therein for more details).

The rate of convergence of an ensemble of trajecto-
ries to the attractor and to the repellor was measured in
reference [10] by evaluating a single time-dependent quan-
tity. A partition of phase space was made of Mb equally-
sized intervals or bins and a uniform distribution of Mc

initial conditions placed along the interval [−1, 1], with
r = Mc/Mb the number r of trajectories per bin. The num-
ber of bins Wt that contain trajectories at time t is shown
in Figure 19 in reference [10] in logarithmic scales for the
first five supercycles of periods 21 to 25 where the follow-
ing features were observed: in all cases Wt shows a simi-
lar initial nearly-constant plateau, and a final well-defined
exponential decay to zero. In between these two features
there are n− 1 oscillations in the logarithmic scales of the
figure. The duration of the overall decay grows approxi-
mately proportionally to the period 2n of the supercycle.
The dynamical mechanism at work behind the features of
the decay rate Wt is as follows: every time the period of a
supercycle increases from 2n−1 to 2n by a shift in the con-
trol parameter value from μn−1 to μn the preimage struc-
ture advances one stage of complication in its hierarchy.
Along with this, and in relation to the time evolution of
the ensemble of trajectories, an additional set of 2n smaller
phase-space gaps develops and also a further oscillation
takes place in the corresponding rate Wt for finite period
attractors. The rate Wt for μ∞ is shown in Figure 20 in ref-
erence [10], the time evolution tracks the period-doubling
cascade progression, and every time t increases from 2n−1

to 2n the flow of trajectories undergoes equivalent pas-
sages across stages in the itinerary through the preimage
ladder structure, in the development of phase-space gaps,
and in logarithmic oscillations in Wt.

Concisely, each doubling of the period introduces ad-
ditional modules or building blocks in the hierarchy of
the preimage structure, such that the complexity of these
added modules is similar to that of the total period 2n

system. As shown in reference [10], each period doubling
adds also new components in the family of sequentially-
formed phase space gaps, and also increases in one unit
the number of undulations in the log-periodic power-law
decay displayed by the fraction Wt of ensemble trajecto-
ries still away at a given time t from the attractor (and
the repellor).

4 Explanation of the structure of the limit
distribution for sums of positions
at the Feigenbaum point

We are in a position now to understand the structure
of the sums in Figures 2 and 3 and their distributions
in Figure 4 in terms of the dynamical properties of the
trajectories that give rise to them. We start by pointing
out that the peak for x0 > 0 in Figure 2a is precisely
located at the position of the i = 1 repellor at μ1,
y1 = −1 +

√
1 + 4μ1/2μ1 � 0.6180340 . . ., the solution of

y1 = fµ1
(y1), whereas the position of the accompanying
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peak for x0 < 0 in the same panel is located at the re-
pellor’s only preimage x

(1)
1 = −y1. Actually, the sums at

x0 = ±y1 are infinite when N → ∞ but our calculation
yields only peaks of finite height since N < ∞ while ad-
ditionally the values of ±y1 are not exactly reproduced
by the numerical method. Any other value of x0 leads to
a finite sum when N → ∞ and to smaller values than
those of the peaks when N < ∞. As x0 departs gradually
from ±y1 the values of the sums decrease monotonically
generating the shape of the plot in the panel because the
number of iterations required to reach the period-2 attrac-
tor decreases accordingly1 (see Fig. 2 in Ref. [10]).This
decrement in iteration numbers is exponential in |y1 − x0|
and is captured by the sums as indicated in Figure 3a.
The histogram in Figure 4a is an exponentially decreasing
function of the sum X because of the exponential shape
of the latter, where the lower values of X are responsible
for the larger values of the histogram and vice versa. This
simple shape provides the backbone of all histograms of
the sums X(x0, N ; μ) along the period-doubling cascade.

A drastic difference in the dynamics between period 2
and period 4 is that for the latter there is now an infinite
number of preimages for the i = 1 repellor, now located
at y1 = fµ2

(y1), and the same occurs to its mirror 1st
preimage located at x

(1)
1 = −y1. The basins of attraction

of the 22-attractor positions have now fractal boundaries.
The preimages of either ±y1 on these boundaries cluster
exponentially towards ±y1 (as can be seen in Figs. 4 and 5
in Ref. [10]). The two positions of the i = 2 repellor, the
solutions of y2 = f

(2)
µ2

(y2), have each only single preimages

located symmetrically at x
(1)
2 = −y2. The (infinite num-

ber of) singular cusp shapes that point downwards in Fig-
ures 2b and 3b also cluster exponentially towards the po-
sitions ±y1 and appear precisely located on the preimages
of either ±y1. The sums with x0 located on the preimages
of ±y1 are local minima for the following reasons: first,
the trajectories initiated in the close vicinity of any such
locations flow towards the i = 2 repellor y2 (two positions
y
(1)
2 and y

(2)
2 ) or to its preimage −y2 (two positions −y

(1)
2

and −y
(2)
2 ) after which they perform a long quasi period-2

cycle around the two positions y
(1)
2 and y

(2)
2 before falling

into the period-4 attractor (see, for example, Fig. 12 in
Ref. [10]). Second, y

(1)
2 > 0 and y

(2)
2 < 0 . Therefore the

flow out of any of the preimages of ±y1 involves a large
amount of cancellations in the corresponding sums, more
than for any other initial x0, and this leads to the sharp
dips in Figures 2b and 3b. The exponential spacing of the
motifs just described in the plots for X(x0, N ; μ2) gener-
ates the regular seesaw shape in semi-logarithmic scales of
the corresponding histogram in Figure 4b. The fluctuat-
ing pattern consists of repetition of four oscillations that
are associated with the sinks just described in the sums
since there are four sets of them, two of which are shown
in Figure 3b and the other two are their mirror images
for x0 < 0. The smooth line of positive slope that creates
the tent shape of the histogram originates from the struc-
tures of X(x0, N ; μ2) around the 2nd generation repellor

positions and their preimages at ±y
(1)
2 and ±y

(2)
2 that have

a scaled, inverted, shape of the total sum X(x0, N ; μ1) in
Figure 2a (see the central region enclosed by dashed lines
in Fig. 2b).

The passage from period 4 to period 8 introduces an-
other level of complication to the dynamics towards the
attractor. Where there was before an infinite number of
preimages for the i = 1 repellor clustering exponentially
around it, there is now an infinite number of such clusters,
formed by preimages clustering exponentially around the
period 4 preimages with shifted locations from μ2 to μ3.
The clusters themselves cluster around the i = 1 repel-
lor, now located at y1 = fµ3

(y1). And likewise for its 1st
preimage −y1. Where there were before only two preim-
ages to the two positions of the i = 2 repellor, there
is now an infinite number of preimages clustering expo-
nentially around them, now located at the solutions of
y2 = f

(2)
µ3

(y2). And likewise for its two 1st preimages −y2.
Additionally, there are now four positions of the i = 3 re-
pellor, the solutions of y3 = f

(22)
µ3

(y3), that have each only

one preimage located symmetrically at x
(1)
3 = −y3 (for

more details see Figs. 6 and 7 in Ref. [10]). We observe now
in Figures 2c and 3c the appearance of new sets of spikes in
X(x0, N ; μ3), and the spikes within each set cluster expo-
nentially around each of the sharp dips that appeared 1st
in Figures 2b and 3b. These new sets of spikes correspond
to the clusters of repellor preimages that, like the clusters
themselves, cluster exponentially around the i = 1 repel-
lor and its 1st preimage; this because, as we have seen,
the sharp dips do likewise. The exponential spacing of the
clusters of preimages and of the exponential clustering of
the preimages themselves within clusters just described in
the plots for X(x0, N ; μ3) generate a more intricate see-
saw shape in semi-logarithmic scales of the corresponding
histogram in Figure 4c. The branch of positive slope that
creates the tent shape of the histogram originates from
the structures of X(x0, N ; μ3) around the 3rd generation
repellor positions and their preimages at ±y

(1)
3 and ±y

(2)
3 ,

±y
(3)
3 and ±y

(4)
3 , that have a scaled, inverted, shape of

the total sum X(x0, N ; μ2) in Figure 2b (see the central
region enclosed by dashed lines in Fig. 2c). For this rea-
son we observe that the seesaw pattern complexity of the
positive slope branch of the tent-like histogram for each
2n -supercycle, is equivalent to the negative slope branch
of the previous 2n−1-supercycle.

The alternation of upward and downward cusps in the
sums X(x0, N ; μn), n = 1, 2, 3, . . ., is due to the fact that
the repellor positions yn−1 and 1st preimages −yn−1 fall
within the bands of attractor positions shown in Figure 1b.
In this figure (from top to bottom) the 1st, 3rd, 5th, etc.,
bands contain all the positive positions, x > 0, while
the 2nd, 4th, 6th, etc., bands have all the negative po-
sitions, x < 0. As partly mentioned, trajectories at μn

initiated close to ±y1 flow towards the 22 positions ±y2,
to undergo a long quasi period-2 cycle around the two re-
pellor positions y

(1)
2 and y

(2)
2 . Then they proceed to flow

towards the 22 positions y3, to undergo a longer quasi
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period-22 cycle around the 22 repellor positions y
(1)
3 , y

(2)
3 ,

y
(3)
3 , and y

(4)
3 . This process continues until the yn−1 repel-

lor positions are reached and finally fall into the period-2n

attractor (see Fig. 12 in Ref. [10]). These generic flow out
of any of the preimages of ±y1 (or out of any of the preim-
ages of ±yi, i = 2, 3, . . . n − 1) involves a large amount
of cancellations in the corresponding sums (more than
for any other x0), and leads to sharp cusps. The small-
est cusps point upwards or downwards when n is odd
or even, respectively, as this condition places the yn−1

repellor positions within an odd or even band in Figure 1b.
Bearing in mind the basic property that trajectories at

μ∞ from t = 0 up to t → ∞ trace the period-doubling cas-
cade progression from μ = 0 up to μ∞, it is clear now how
to decode the structure of the sums in Figures 2d and 3d
and that of their histogram in Figure 4d. The arrange-
ment of the multiscale families of cusps of X(x0, N ; μ∞)
is the manifestation of the consecutive formation of phase
space gaps in an initially uniform distribution of posi-
tions x0, and the logarithmic oscillations at times tk,
k = 1, 2, 3, . . ., of the rate of convergence of trajectories
Wt to the Feigenbaum attractor. The mean time for the
opening a gaps of the same order is tk, k = 1, 2, 3, . . .,
and the signs and amplitudes of the cusps are the testi-
monies stamped in the sums of the main passages out of
the laberynths formed by the preimages of the repellor,
the transits of trajectories from one level of the hierar-
chy to the next. Visual representation of the stationary
distribution P (X, N → ∞; μ∞) associated with the sums
X(x0, N ; μ∞) is shown by the histogram in Figure 4d.
It has an asymmetrical double exponential backbone onto
which multiscale patterns are attached that originate from
the aforementioned sets of cusps in the sums. The neg-
ative slope (in semi-logarithmic scales) of the backbone
originates from the main k = 1 repellor core structure
shown for all supercycles while the steeper positive slope
originated form the replica structures of the former that
originate from the k = 2 repellor structures.

5 Summary and discussion

We have shown that the sums of iterated positions of an
ensemble of trajectories moving toward the Feigenbaum
attractor have a multiscale, hierarchical, structure that
exhibits the preimage organization of its corresponding re-
pellor. The building blocks of the hierarchy were identified
by looking at the analogous sets of sums obtained from the
dynamics of approach to the simpler supercycle attractors
along the period-doubling cascade. Figures 2a–2c, as well
as Figures 3a–3c, demonstrate clearly how the structure
shown in Figures 2d and 3d for the sums at the period-
doubling accumulation point develops.

This basic property suggests a narrow degree of uni-
versality for the sums of deterministic variables at the
transitions to chaos, limited to the universality class of
the route to chaos under consideration. Namely, the sums
of positions of memory-retaining trajectories evolving un-
der a vanishing Lyapunov exponent appear to preserve

the particular features of the multifractal critical attrac-
tor and repellor under examination. Thus we expect that
varying the degree of nonlinearity of a unimodal map
would affect the scaling properties of sums or time av-
erages of trajectory positions at the period-doubling tran-
sition to chaos, or alternatively, that the consideration of
a different route to chaos, such as any of the quasiperiodic
routes, would lead to a different structure of comparable
time averages.

As described above, the spiked functional dependence
of the sum X(x0, N ; μ∞) on x0 observable in Figures 2d
and 3d follows the characteristic hierarchical preimage
structure, with exponential clustering, around the posi-
tions of the major and other high-ranking elements of the
repellor and their first preimages [10]. This feature sug-
gests that large sums of positions are dominated by long
journeys toward the attractor that are particular to the
attractor under consideration at the transition to chaos.

The distributions associated with large sums of po-
sitions acquire also a multiscale, hierarchical, structure,
as the nature of X(x0, Nμ∞) is transferred, although in
a different setting shown in the histogram in Figure 4d,
to their distribution P (X, N ; μ∞). Again, the building
blocks of the hierarchy in the distribution are revealed
by determination of the analogous distributions of the
sums X(x0, N ; μn) associated with the supercycle attrac-
tors. Figures 4a–4c show plainly how the structure in Fig-
ure 4d for the histogram at the period-doubling accu-
mulation point builds up stage by stage. Parallel to the
period-doubling cascade that contains the supercycles at
μn < μ∞, there is a chaotic band-splitting cascade at
control parameter values μ̂n > μ∞ that converge also to
μ∞ [8]. The set of chaotic-band attractors at μ̂n (formed
by 2n bands) cannot be used as we have done here for the
supercycles at μn to determine the stationary distribution
P (X, N ; μ∞) because the width of the bands present at x0

is gradually increased as the number of terms in the sums
increases and they merge covering all the interval [−1, 1].
Because the intraband motion is chaotic the sums be-
come equivalent to sums of independent random variables
and a stationary Gaussian distribution is obtained when
N → ∞ [6,7].

The results presented here are valid for a finite but
large number of summands N ∼ O(106), i.e. long trajec-
tories, and the numerical results are dependent also on
the fine but finite subdivision of the phase space inter-
val [−1, 1], with a number of bins M ∼ O(106) each with
a trajectory initial condition x0. Moving towards the limit
M → ∞ places initial conditions x0 closer to the repellor
or their preimage positions enlarging the heights of the
spikes in the sums and this requires increasing N → ∞ to
observe them in Figures 2 and 3. On the other hand dump-
ing a number of initial terms in the sum X(x0, N ; μ∞) has
the effect of clipping the largest spikes in it and leading
to a smoother distribution. However X(x0, N ; μ∞) and
its distribution are never going to be even, differentiable
functions, for any number of discarded terms. Moreover,
the progress toward a limit distribution is not supposed
to involve selected removal of terms.

http://www.epj.org
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In the ordinary CLT the sum of independent random
variables is equivalent to the convolution of distributions
and as this operation is repeatedly applied one obtains a
Gaussian distribution independently of their initial (finite
variance) distribution. The summation process of trajec-
tory positions we have studied here can be seen as the
gradual transformation of an initial distribution, uniform
in our case, into a limiting form by the dynamical action of
the attractor and repellor under vanishing Lyapunov ex-
ponent. We have seen that the particular features of such
an attractor/repellor pair are imprinted in the resulting
stationary distribution. Ad hoc attractor/repellor pairs
could be used to construct specific limiting distributions.
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