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AV.1	 Introduction

A monsoon refers to a seasonal transition of regimes in atmospheric 
circulation and precipitation in response to the annual cycle of solar 
insolation and the distribution of moist static energy (Wang and Ding, 
2008; Wang et al., 2014; Biasutti et al., 2018). A global monsoon can 
be objectively identified based on precipitation contrasts in the solstice 
seasons to encompass all monsoon regions (Wang and Ding, 2008). 
In AR5, regional monsoon domains were identified starting from the 
definition of the global monsoon tailored over the continents and 
adjacent oceans, as in Kitoh et  al. (2013). This annex contains the 
definition of the global monsoon as used in the Sixth Assessment 
Report (AR6; see Section AV.2); it explains the rationale for the different 
definition of AR6 regional monsoons compared to Fifth Assessment 
Report (AR5; see Section AV.3), and provides the definition and basic 
characteristics of each regional monsoon assessed (Section AV.4).

AV.2	 Definition of the Global Monsoon

The concept of the global monsoon (GM) emerged during the second 
half of the 20th  century. The GM represents the leading empirical 
orthogonal function (EOF) mode of the annual variations of precipitation 
and circulation in the global tropics and subtropics as a forced response 
of the coupled climate system to the annual cycle of solar insolation 
(Wang and Ding, 2008; An et al., 2015; Wang et al., 2017). GM variability 
represents, to a large extent, changes in the Inter-tropical Convergence 
Zone (ITCZ) and associated Hadley circulation (Wang et  al., 2014). 
Changes in the GM have been attributed to both internal variability and 
external forcings, ranging from interannual to millennial and orbital 
time scales (Wang et al., 2014, 2017; An et al., 2015; Geen et al., 2020). 
In AR6, the global monsoon is defined as the area in which the annual 
range (local summer minus local winter) of precipitation is greater than 

2.5 mm day–1 (Kitoh et al., 2013), and the domain is represented by the 
black contour lines in Figure AV.1. Simulation of the global monsoon 
and its variability is the subject of coordinated modelling experiments 
in the Global Monsoon Model Intercomparison Project (GMMIP; Zhou 
et al., 2016). Past changes, simulation and attribution, and projections 
of the GM are assessed in Sections 2.3.1.4.2, 3.3.3.2 and 4.4.1.4, 
respectively.

AV.3	 Rationale for Regional Monsoon 
Definitions in AR6

The definition of the regional monsoons has been slightly modified 
in AR6 with respect to AR5, starting from the consideration that 
some of the continental areas identified using the global metric have 
a seasonality in precipitation that is not necessarily of monsoon origin. 
In particular, the dotted regions in Figure AV.1 located over South 
Africa, Central America and equatorial South America have a strong 
seasonality in precipitation but their qualification as monsoons is 
a subject of discussion. In the assessment of the regional monsoons 
in Sections 8.3.2.4 and 8.4.2.4, these regions are not considered as 
distinct regional monsoons, but they are discussed in Box 8.2, which 
is dedicated to changes in water cycle seasonality. The domains 
of the regional monsoons in AR6 are defined based on published 
literature and expert judgement, and accounting for the fact that 
the climatological summer monsoon rainy season varies across the 
individual monsoon regions. As shown in Figure AV.1, the AR6 regional 
monsoons are: South and South East Asian (Section AV.4.1), East 
Asian (Section AV.4.2), West African (Section AV.4.3), North American 
(Section AV.4.4), South American (Section AV.4.5) and Australian–
Maritime Continent (Section AV.4.6) monsoons. For each region, the 
definition, regional justification and key features are provided, along 
with cross references to the main areas of assessment in AR6.

NAmerM

EqAmer
WAfriM

SAfri

SAsiaM

EAsiaM

AusMCMSAmerM

2014

Global and regional monsoon domains

Figure AV.1 | Global and regional monsoon domains. The AR6 global monsoon area is represented by the black contour lines. The AR6 regional monsoons are: North 
American monsoon (NAmerM, shaded magenta), South American monsoon (SAmerM, shaded dark orange), West African monsoon (WAfriM, shaded grey), South and South 
East Asian monsoon (SAsiaM, shaded pink), East Asian monsoon (EAsiaM, shaded purple) and Australian–Maritime Continent monsoon (AusMCM, shaded yellow). Areas 
over Central America and equatorial South America and southern Africa (dotted red and dotted magenta, respectively) are highlighted but not identified as specific regional 
monsoons (see explanation in the main text). For each regional monsoon, the seasonal characteristics associated with each domain are specified in the main text.
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AV.4	 Definition of Regional Monsoons

AV.4.1	 The South and South East Asian Monsoon

The South and South East Asian monsoon (SAsiaM) is characterized 
by pronounced seasonal reversal of wind and precipitation. It covers 
vast geographical areas and several countries including India, 
Bangladesh, Nepal, Myanmar, Sri Lanka, Pakistan, Thailand, Laos, 
Cambodia, Vietnam and the Philippines (Pant and Rupa Kumar, 
1997; Goswami, 2006; Gadgil et al., 2010; Shige et al., 2017), with 
a  domain roughly extending across 60°E–110°E and 10°S–25°N 
as shown in Figure AV.1 (shaded pink). The SAsiaM is unique in 
its geographical features because of the orography surrounding 
the area (i.e., the Himalayas, Western Ghats and Arakan Yoma 
mountains, and the Tibetan Plateau to the north) and the adjacent 
Indian Ocean.

The SAsiaM rainy season from June to September contributes to more 
than 75% of the annual rainfall over much of the region, including the 
southern slopes of the central and eastern Himalayas (Krishnan et al., 
2019b). Considering the spatial domain of the SAsiaM, monsoon 
precipitation maxima are located over the west coast, north-east and 
central/north India as well as Myanmar and Bangladesh, whereas 
minima are located over north-west and south-eastern India, western 
Pakistan, and south-eastern and northern Sri Lanka (Pant and Rupa 
Kumar, 1997; Gadgil et al., 2010). Prior to the SAsiaM rainy season, 
areas in the north-western Himalaya receive precipitation during 
winter and early spring from so-called ‘western disturbances’, which 
are extratropical synoptic systems originating over the Mediterranean 
region and propagating eastward along the subtropical westerly jet 
(Madhura et al., 2014; Cannon et al., 2015; Dimri et al., 2015; Hunt 
et al., 2018; Krishnan et al., 2019a, b).

The climatological onset of the SAsiaM occurs around 20 May over 
the Andaman and Nicobar Islands and covers the central Bay  of 
Bengal around 25 May, while it simultaneously advances into 
mainland India from the south through Kerala (Pai et  al., 2020). 
The normal date of monsoon onset over Kerala is 1 June and the 
monsoon rains progress into India both from south to north and 
east to west, so as to cover the entire country by 15 July (Pai et al., 
2020), although with large interannual and inter-decadal variations 
(Ghanekar et al., 2019). Retreat of the SAsiaM typically begins from 
far north-west India around 1 September and withdraws completely 
from the country by 15 October; this is followed by the establishment 
of the north-east monsoon rainy season over south peninsular India 
from October through December (Pai et al., 2020).

The SAsiaM exhibits prominent rainfall variability on sub-seasonal, 
interannual and inter-decadal time scales with teleconnections 
to modes of climate variability (see Webster et  al., 1998; Turner 
and Annamalai, 2012). While the gross features of the SAsiaM 
are simulated in GCMs, there are several large biases that have 
persisted over generations of climate models, in CMIP3 and CMIP5, 
including a large dry bias over India coupled to a lower-tropospheric 
circulation that is too weak (Sperber et al., 2013) and a related wet 
bias over the western Equatorial Indian Ocean (Bollasina and Ming, 
2013). In CMIP5, cold Arabian Sea SST (sea surface temperature) 

biases in coupled GCMs were shown to worsen the monsoon dry 
bias by limiting the available moisture (Levine et al., 2013; Sandeep 
and Ajayamohan, 2015). Some improvements to the spatial pattern 
have been noted in CMIP6, particularly near orography (Gusain 
et al., 2020). The teleconnection to the El Niño–Southern Oscillation 
(ENSO) provides the main prospect for seasonal prediction 
and was too weak in CMIP5 (Sperber et  al., 2013). The boreal 
summer intra-seasonal oscillation (BSISO) controls the majority of 
sub-seasonal variations in SAsiaM rainfall, as well as affecting the 
East Asian monsoon region. While CMIP5 models represented the 
BSISO better than CMIP3 (especially its characteristic northward 
propagation), the spatial pattern is still poorly simulated in most 
models (Sabeerali et al., 2013). 

The SAsiaM is assessed in Sections 8.3.2.4.1, 8.4.2.4.1, Atlas.5.3.2 
and Atlas.5.3.4. One of its main components, the Indian summer 
monsoon, is assessed in Section  10.6.3 as a  case study on the 
construction of regional climate information from the distillation 
of multiple lines of evidence. Climate change over the Hindu Kush 
Himalaya is assessed in Cross-Chapter Box 10.4.

AV.4.2	 The East Asian Monsoon

The East Asian monsoon (EAsiaM) is the seasonal reversal in wind 
and precipitation occurring over East Asia, including eastern China, 
Japan and the Korean Peninsula. The continental area influenced by 
this monsoon is roughly bounded by 102.5°E–140°E and 20°N–40°N 
(e.g., Wen et al., 2000; Wang and LinHo, 2002; Wang et al., 2010), and 
is shaded purple in Figure AV.1. Unlike other monsoons, it extends 
quite far north, out of the tropical belt, and it is largely influenced 
by subtropical systems, such as the western North Pacific subtropical 
high, East Asian subtropical westerly jet, and by disturbances from 
the mid-latitudes (Chang et  al., 2000; Lee et  al., 2006; Yim et  al., 
2008; Zhou et al., 2009; S.-S. Lee et al., 2013).

The EAsiaM manifests during boreal summer with warm and wet 
southerly winds, but also during boreal winter with cold and dry 
northerly winds (Ha et  al., 2012). The winter component has been 
linked to the subsequent summer (e.g., Wen et  al., 2000, 2016; 
Ge et al., 2017; Yan et al., 2020). 

AV.4.2.1	 The East Asian Summer Monsoon

The East Asian summer monsoon is a subtropical monsoon system 
(e.g., Wang and LinHo, 2002; Ding et al., 2007). It is characterized 
by low-level southerly winds prevailing over eastern China, Korea 
and Japan in boreal summer. The monsoon flow brings abundant 
water vapour into East Asia that converges and forms the Meiyu/
Baiu/Changma rain belt over the region (Zhou et al., 2009; Jin et al., 
2013; Lee et al., 2017). Rainfall onset occurs in late April/early May 
in the central Indochina Peninsula, and in mid-June the rainy season 
arrives over East Asia with the formation of the Meiyu front along 
the Yangtze River valley, Changma in Korea, and Baiu in Japan. 
Later in July, the monsoon advances up to north China, the Korean 
Peninsula and central Japan (Zhang et  al., 2004; Yihui and Chan, 
2005; Zhou et al., 2009).
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Intra-seasonal variability of the EAsiaM has been mostly related to 
the Madden–Julian Oscillation (MJO) (Yasunari, 1979; Zhang et al., 
2009; Chen et  al., 2015), to the phase of the Pacific-Japan mode 
(Nitta, 1987) or the Indian summer monsoon (Li et al., 2018) and to 
the BSISO (Kikuchi et al., 2012; Chen et al., 2015), particularly for its 
onset (J.-Y. Lee et al., 2013). At interannual time scales, changes in 
East Asian summer monsoon intensity lead to a position shift of the 
monsoon rain belt under the influence of ENSO (Wang et al., 2000) 
and the western North Pacific subtropical high (Kosaka et al., 2013; 
Wang et al., 2013), Arctic sea ice (Guo et al., 2014), and solar and 
volcanic forcing (Peng et al., 2010; Man et al., 2012; Cui et al., 2014). 
Variability at inter-decadal time scales is more prominent in the 
second half of the 20th century (Jiang, 2005; Ding et al., 2008; Wang 
et al., 2018), and a specific assessment about this aspect is provided 
in Section 8.3.2.4.2.

The basic features and interannual variations of the East Asian 
summer monsoon are well reproduced in climate models. For 
example, the climatological circulation structure is well reproduced 
in both atmospheric and coupled GCMs (Song and Zhou, 2013; Song 
et al., 2013; Jiang et al., 2016, 2020), and the relationship between 
the monsoon and ENSO is well represented (Sperber et  al., 2013; 
Fu and Lu, 2017). In CMIP5 models, the main shortcomings relate 
to missing rainfall bands around 30°N and the northward shift of 
the western North Pacific subtropical high (Huang et al., 2013). Most 
coupled models show an inadequate strength of monsoon circulation 
over southern East Asia, and with little change in model performance 
from the Third Assessment Report (TAR) to AR6 (Jiang et al., 2016, 
2020). In coupled model simulations, air–sea coupling helps improve 
the climatology and interannual variability of rainfall over the East 
Asia monsoon region (Wang et al., 2005; Song and Zhou, 2014). 

The summer (June–July–August) component of the EAsiaM is assessed 
in Sections 8.3.2.4.2, 8.4.2.4.2, Atlas.5.1.2 and Atlas.5.1.4.

AV.4.2.2	 The East Asian Winter Monsoon

The East Asian winter monsoon (EAWM) is characterized by strong 
north-westerlies over north-east China, Korea and Japan, and by 
strong north-easterlies along the coast of East Asia (Huang et  al., 
2003). The northerly winds extend from mid-latitude East Asia 
to the equatorial South China Sea (Wen et  al., 2000; Wang et  al., 
2010). The EAWM has one component mostly linked to mid-to-high 
latitude circulation systems and another mostly linked to the tropical 
circulation and largely controlled by ENSO (Ge et al., 2012; Chen et al., 
2014a). The mid-latitude component has a  close relationship with 
autumn Arctic sea ice concentration changes (Chen et al., 2014b).

The EAWM exhibits significant variability ranging from intra-seasonal 
to inter-decadal time scales. Its intra-seasonal variability is suggested 
to be influenced by both high-latitude and subtropical Eurasian wave 
trains (Jiao et al., 2019). At the interannual time scale, ENSO is an 
important factor modulating the EAWM (Wang et al., 2000), while 
the relationship between them is not stable (Wang and He, 2012; Fan 
et al., 2020). In addition, Arctic Oscillation (Gong et al., 2001), Arctic 
sea ice (Ge et al., 2012), Eurasian snow (Luo and Wang, 2019), and 
strong volcanic eruptions (Miao et al., 2016) also play vital roles in 

changing the EAWM intensity. At the inter-decadal time scale, the 
EAWM weakened significantly in the mid-1980s, which resulted from 
atmospheric intrinsic quasi-stationary planetary waves (Wang et al., 
2009) and external forcings (Miao et  al., 2018). In the mid-2000s, 
the EAWM was observed to recover from its weak epoch (Wang and 
Chen, 2014).

The large-scale features of the EAWM are well reproduced by 
climate models, although the strength of monsoon circulation is 
underestimated. The ability of coupled models to simulate the EAWM 
shows little difference through the TAR to AR5, but has improved from 
AR5 to AR6 (Jiang et al., 2016, 2020). In CMIP5 models, reasonable 
simulations of the Siberian High and Aleutian Low intensities and the 
relationship with ENSO help improve the climatology and interannual 
variability of the EAWM (Gong et al., 2014). 

Model simulations of the winter component of the EAsiaM are 
assessed in chapter Atlas.5.1.3.

AV.4.3	 The West African Monsoon

The West African monsoon (WAfriM) is a seasonal reversal in wind 
and precipitation extending over a vast and contrasted geographical 
region, from the equator to the margins of the Sahara, and from the 
Atlantic coast inland. The WAfriM domain includes Togo, Guinea 
Bissau, Gambia, Senegal, Mauritania, Guinea, Sierra Leone, Liberia, 
Mali, Ivory Coast, Burkina Faso, Ghana, Benin, Chad, Cape Verde, 
northern Cameroon, Niger, Nigeria and the northern Central African 
Republic. It is roughly bounded by 18°W–30°E, 5°N–18°N, and is 
shaded grey in Figure AV.1 (e.g., Adedokun, 1978). The West African 
monsoon and Sahel are sometimes considered interchangeably. 
However, the Sahel lies in the northern part of the WAfriM region, 
often limited to the west and central north Africa (e.g.,  Nicholson 
et al. (2018) considered the domain to be 20°W–30°E, 10°N–20°N) 
or sometimes extended to the east (e.g.,  Giannini and Kaplan 
(2019) considered the domain to be 20°W–40°E, 10°N–20°N). The 
East African region with the Greater Horn of Africa, which includes 
Ethiopia, Sudan and South Sudan, lies on the fringes of both the West 
African and Indian monsoons (Nicholson, 2017).

The WAfriM is characterized by the northward progression from 
May to September of moist low-level south-westerlies from the Gulf 
of Guinea, meeting the dry north-easterlies (Harmattan) from the 
Saharan Heat Low at the inter-tropical discontinuity (e.g., Hamilton 
et  al., 1945; Omotosho, 1988). In May and June, rainfall remains 
essentially along the Guinean coast with a  maximum occurring 
near 5°N, then the rainfall maximum jumps suddenly over the 
Sudan–Sahel zone near 12°N, followed by a  ‘little dry season’ 
over the Guinea coast (Adejuwon and Odekunle, 2006). This 
apparent shift is known as the West African monsoon jump and it 
is concomitant with the monsoon onset over the Sahel (Sultan and 
Janicot, 2003; Cook, 2015). Rainfall continues to progress towards 
the north up to about 18°N–20°N. The rainfall maximum occurs in 
the Sahel in August/September, followed by a rapid retreat of rainfall 
to the Guinean coast and a second maximum occurs over this region 
in October/November.
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The WAfriM features variability at different time scales. Unprecedented 
droughts occurred in West Africa and particularly over the Sahel from 
the late 1960s to the mid-1990s, and a specific assessment of the 
understanding of mechanisms related to these changes is provided 
in Sections 8.3.2.4.3 and 10.4.2.1.

At interannual time scales, tropical oceans (Atlantic, Pacific and Indian) 
appear to be the major drivers with their SST anomalies leading to 
variations in the accumulated seasonal rainfall (e.g.,  Lamb, 1978; 
Diakhaté et al. 2019). At intra-seasonal time scales, equatorial waves 
(e.g., Mekonnen et  al., 2008; Janicot et  al., 2010) and interactions 
with mid-latitudes and the Mediterranean (e.g.,  Vizy and  Cook, 
2009; Roehrig et al., 2011) have an effect on WAfriM activity. African 
Easterly Waves (AEWs) and mesoscale convective systems (MCSs), 
including squall lines, are the prominent weather synoptic scale 
aspects of the WAfriM, supplying almost all rainfall in the Sahel. The 
strong coupling between AEWs and MCSs has been investigated 
in depth, as well as their interactions with the Saharan Heat Low, 
the moisture supply from East Africa and the Mediterranean region 
or from near the equator (e.g., Diongue et al., 2002; Brammer and 
Thorncroft, 2017; Lafore et  al., 2017). Land surface processes are 
known to influence WAfriM precipitation (Boone et al., 2016).

Simulation of West African climate, including the monsoon, has 
received specific attention under coordinated programmes in the 
recent past: the African Multidisciplinary Monsoon Analysis Model 
Intercomparison Project (AMMA-MIP), the AMMA Land-surface 
Model Intercomparison Project (ALMIP), the West African Monsoon 
Modelling and Evaluation (WAMME) project and the Coordinated 
Regional Downscaling Experiment (CORDEX; Raj et al., 2019). CMIP5 
and CMIP6 struggle to reproduce the amplitude of observed decadal 
variability in the 20th century and to represent the mean climatology 
including the northward propagation of the monsoon (Roehrig et al., 
2013; Monerie et  al., 2020; Sow et  al., 2020). A  higher horizontal 
resolution improves the representation of the intensity and spatial 
distribution of WAfriM rainfall and related circulation, because of the 
effects of vegetation, orography and coastlines (Hourdin et al., 2010; 
Sylla et al., 2010; Xue et al., 2010; Raj et al., 2019). 

The WAfriM is assessed in Sections 8.3.2.4.3 and 8.4.2.4.3. The 
observed Sahel and West African monsoon drought and recovery 
is assessed as a  regional climate change attribution example in 
Section 10.4.2.1.

AV.4.4	 The North American Monsoon

The North American monsoon (NAmerM) is a  regional-scale 
atmospheric circulation system dominated by boreal summer 
precipitation over north-western Mexico and south-west USA, 
where it contributes to almost 70% and 40% of the total annual 
precipitation, respectively (Douglas et al., 1993; Higgins et al., 1997). 
The NAmerM domain is shaded magenta in Figure AV.1, is roughly 
bounded by 15°N–35°N, 100°W–115°W and is defined where the 
July–August–September minus June mean precipitation exceeds 
25  mm month–1 (Douglas et  al., 1993; Adams and Comrie, 1997; 
Barlow et al., 1998; Cook and Seager, 2013).

The identification of a  regional monsoon regime in North America 
dates back to the 1990s (Douglas et al., 1993; Adams and Comrie, 
1997; Higgins et al., 1997; Barlow et al., 1998), although consideration 
of the monsoonal character of the south-western USA precipitation 
goes back considerably further (e.g., Bryson and Lowry, 1955). The 
monsoonal characteristics of the region include a pronounced annual 
maximum of precipitation in boreal summer (June–July–August) 
accompanied by a surface low-pressure system and an upper-level 
anticyclone, although the seasonal reversal of the surface winds 
is primarily limited to the northern Gulf of California. In particular, 
the summer precipitation in the NAmerM region is dictated by the 
location of the upper-level anticyclone (Reed, 1933; Castro et  al., 
2001). The decay phase of the NAmerM is typically observed during 
late September to October, when convection migrates from Central 
to South America (Vera et al., 2006).

Mesoscale variability of the NAmerM comes from the pulsing of 
the  Gulf of California low-level jet, the intensification/reduction 
of the land–sea contrast (Torres-Alavez et al., 2014) and moisture 
surges over the Gulf of California (Vera et  al., 2006). Synoptic 
variability of the NAmerM is mainly associated with the activity 
of tropical cyclones and of easterly waves (Stensrud et al., 1997; 
Fuller and Stensrud, 2000). In addition, the NAmerM is strongly 
influenced by ENSO variability at both interannual (Higgins et al., 
1999; Higgins and Shi, 2001) and decadal (e.g., Castro et al., 2001) 
time scales.

The region is challenging for climate modelling for several 
reasons, including complex topography, the importance of 
Mesoscale Convective Systems (MCSs), and sensitivity to SST bias 
(e.g.,  Pascale et al., 2019). Many CMIP3 and CMIP5 models with 
resolutions coarser than 100 km are unable to realistically resolve 
the topography of the NAmerM region, thus inducing biases in 
simulating the monsoon (Geil et  al., 2013). Among other factors, 
these biases are due to deficiencies in the simulation of the Gulf of 
California summer low-level flow (Kim et al., 2008; Pascale et al., 
2017) and to failures in representing properly the diurnal cycle 
(Risanto et al., 2019) and the decay (Bukovsky et al., 2015) of the 
NAmerM precipitation. Simulations at higher horizontal resolution 
(i.e., with at least 0.25° grid) exhibit an improved representation 
of the regional topography, which provides a better representation 
of the regional circulation and therefore of the NAmerM (Varuolo-
Clarke et al., 2019). 

The NAmerM is assessed in Sections 8.3.2.4.4, 8.4.2.4.4, Atlas.7.1.3 
and Atlas.9.1.

AV.4.5	 The South American Monsoon

The South American monsoon (SAmerM) is a  regional circulation 
system characterized by inflow of low-level winds from the 
Atlantic Ocean toward South America, involving Brazil, Peru, 
Bolivia and northern Argentina, associated with the development 
of surface pressure gradients (and intense precipitation) during 
austral summer (December–January–February; DJF). Based on 
climatological precipitation intensity, the SAmerM region is roughly 
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bounded by 5°S–25°S and 70°W–50°W (Zhou and Lau, 1998; Vera 
et al., 2006; Raia and Cavalcanti, 2008) and is shaded dark orange 
in Figure AV.1.

During austral spring (September–October–November; SON), areas 
of intense convection migrate from north-western South America to 
the south (Raia and Cavalcanti, 2008), forming the South Atlantic 
Convergence Zone (SACZ) during austral summer (Kodama, 1992; 
Jones and Carvalho, 2002; Vera et  al., 2006). Associated with this 
regime, an upper-tropospheric anticyclone (the Bolivian High) forms 
over the Altiplano region during the monsoon onset (Lenters and 
Cook, 1997). The establishment of this upper-level anticyclone has 
been related to the transition from southerly to northerly winds and 
the occurrence of strong convective heating over the Amazon (Lenters 
and Cook, 1997; Wang and Fu, 2002). The SAmerM then retreats 
during austral autumn (March–April–May) with a  north-eastward 
migration of the convection (e.g., Vera et al., 2006).

The SAmerM displays considerable variability on time scales raging 
from intra-seasonal to decadal (Vera et  al., 2006; Marengo et  al., 
2012; Vuille et  al., 2012; Novello et  al., 2017). The Madden-Julian 
Oscillation (MJO, Section AIV.2.8) influences the SACZ via changes 
in mid-latitude synoptic disturbances (Jones and Carvalho, 2002; 
Liebmann et  al., 2004). At interannual time scales, ENSO explains 
most of the SAmerM variability (e.g., Paegle and Mo, 2002; Marengo 
et al., 2012). Tropical Atlantic temperatures also affect the SAmerM, 
with reduced atmospheric moisture transport to feed the monsoon 
under warmer tropical North Atlantic conditions (e.g., Marengo et al., 
2008; Zeng et al., 2008). In addition to SSTs, interannual variability of 
the SAmerM is linked to changes in land surface processes, cold-air 
incursions, the latitudinal location of the subtropical jet, and the 
Southern Annular Mode (Section AIV.2.2; e.g., Silvestri and Vera, 2003; 
Li and Fu, 2004; Collini et al., 2008; Yin et al., 2014). At inter-decadal 
time scales, the SAmerM is influenced by important modes of climate 
variability (e.g., Robertson and Mechoso, 2000; Paegle and Mo, 2002; 
Chiessi et al., 2009; Silvestri and Vera, 2009).

The general large-scale features of the SAmerM are reasonably 
well simulated by coupled climate models although they do not 
adequately reproduce maximum precipitation over the core of the 
monsoon, even when considering simulations under past natural 
forcings, such as those during the last millennium (Rojas et al., 2016; 
Díaz and Vera, 2018). However, CMIP5 models featured an improved 
representation of the SAmerM with respect to CMIP3 (Joetzjer et al., 
2013; Jones and Carvalho, 2013; Gulizia and Camilloni, 2015; Díaz 
and Vera, 2017). 

The SAmerM is assessed in Sections 8.3.2.4.5 and 8.4.2.4.5.

AV.4.6	 The Australian-Maritime Continent Monsoon

The Australian-Maritime Continent monsoon (AusMCM) occurs during 
austral summer (December–January–February), with the large-scale 
shift of the ITCZ into the Southern Hemisphere. It  covers northern 
Australia and the Maritime Continent up to 10°N (e.g.,  McBride, 
1987; Suppiah, 1992; Robertson et  al., 2011), and it corresponds 

to the yellow shaded region in Figure AV.1. The identification of 
the Australian monsoon by meteorologists dates back to the early 
20th century (see review of Suppiah, 1992), with later studies providing 
classifications of monsoon circulation regimes (e.g.,  McBride, 1987) 
and definitions of monsoon onset (Troup, 1961; Holland, 1986; Hendon 
and Liebmann, 1990; Drosdowsky, 1996).

The AusMCM is characterized by the seasonal reversal of prevailing 
easterly winds to westerly winds and the onset of periods of active 
convection and heavy rainfall (Zhang and Moise, 2016). Over northern 
Australia, the monsoon season generally lasts from December to 
March and is associated with the west to north-westerly inflow of 
moist winds, producing convection and heavy precipitation. Over the 
Maritime Continent, the main rainy season south of the equator is 
centred on December to February with north-westerly monsoon flow 
at low levels.

Over Australia, the monsoon is strongly influenced by ENSO on 
interannual time scales: during El Niño years the monsoon onset 
tends to be delayed (Nicholls et  al., 1982; McBride and Nicholls, 
1983; Drosdowsky, 1996). This relationship breaks down after the 
onset of the wet season, leading to little correlation between ENSO 
phase and total monsoon rainfall or duration (e.g.,  Hendon et  al., 
2012). The Maritime Continent also experiences a delay in monsoon 
onset during El Niño years and monsoon rainfall is correlated with 
ENSO during the dry and transition seasons (Robertson et al., 2011). 
The AusMCM is also influenced by the Indian Ocean Dipole (peaking 
in September to November) that tends to weaken the following 
monsoon when in its positive phase (Cai et al., 2005).

The ability of climate models to simulate the Australian monsoon 
has improved in successive generations of coupled models (i.e., from 
CMIP3 to CMIP6, Moise et al., 2012; Brown et al., 2016; Narsey et al., 
2020), with sensitivity of monsoon rainfall to the magnitude of SST 
biases in the Equatorial Pacific (Brown et al., 2016). 

The AusMCM is assessed in Sections 8.3.2.4.6 and 8.4.2.4.6.
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