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Abstract. The vehicle routing problem (VRP) has
become a crucial industrial issue for its impact on
product distribution costs. Though quite important
in practice, the time-constrained version of the VRP
accounting for several types of vehicles and m-
depots, called the extended VRP with time windows
(m-VRPTW), has received less attention. Since it is
an NP-hard problem, most of the current
approaches to m-VRPTW are heuristic, thus
providing good but not necessarily optimal solutions.
This work presents a novel MILP mathematical
framework for the m-depot heterogeneous-fleet
VRPTW problem. The new optimization approach
permits to find both the optimal vehicle
route/schedule and the fleet size by choosing the best
set of preceding nodes for each pick-up point. To get
a significant reduction on the problem size to tackle
larger m-VRPTW problems, some elimination rules
have been embedded in the MILP framework. When
applied to a pair of examples, it was observed a
remarkable saving in computer costs with regards to
prior VRPTW optimization methods.
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I. INTRODUCTION
In recent years, vehicle routing problems (VRP) have
received much attention due to the importance of
selecting efficient distribution strategies. Surveys on
VRP problems can be found in Bodin et al. (1983) and
Desrosiers et al. (1995). Vehicle routing problems with
time windows (VRPTW) have recently become an area
of intensive research since time windows naturally arise
from realistic considerations and their impact on the
optimal solution must be taken into account. Similarly
to VRP, VRPTW problems are NP-hard too. Exact
algorithms developed for solving VRPTW are described
in Kolen et al. (1987), Desrochers et al. (1992) and
Fisher et al. (1997). Though heuristic techniques still
remain as the unique tool available for solving very
large-scale VRP, optimization methods are becoming
more effective to deal with problems of moderate size.
Nevertheless, traditional optimizing formulations still
require an exceptionally large number of variables and
constraints to represent real routing problems. In order

to widen the scope for optimizing approaches, this work
introduces a new MILP formulation for the m-depot
VRPTW problem, also called m-VRPTW, based on a
continuous time domain representation and a separate
handling of vehicle assignment and node sequencing
decisions.

II. PROBLEM FORMULATION
Let the road network be described by {I, P, A} with I =
{i1, i2, ..., in} denoting the set of nodes or customers, and
P = {p1, p2, ..., pl}representing the set of depots where
the vehicles V = {v1, v2, ..., vm} are housed. Nodes and
depots are connected through a network of minimum
cost arcs A = {dij / i,j ∈ (I ∪P)}. Each node represents a
client that has a non-negative commodity production pri
to be picked up and transported to a depot p∈P. There is
a matrix of unit routing costs C = {cij

v} and a matrix of
vehicle speeds Γ = {γij

v} associated to the set A. Each
node has its time window [ai, bi], where ai is the earliest
arrival time and bi is the latest visiting time. The service
time on node i by vehicle v is (tfi + pri  / rv), where tfi is
the fixed stop time on node i and rv is the loading rate of
goods on vehicle v. The solution to the problem must
comply the following constraints: (i) each route starts
and ends on the same depot; (ii) each node belongs to
exactly one route; (iii) the total amount of commodity
assigned to vehicle v must never exceed its capacity qv ;
(iv) the duration of the trip for any vehicle v should be
shorter than the maximum allowed routing time tvv

max;
(v) the node i should be serviced within the time
window [ai, bi]. The problem goal is to minimize the
total cost of providing pickup service to every node.
Three types of costs are considered in the objective
function: fixed costs for using vehicles, traveling costs
along the selected routes and penalty costs fining soft
time-window and maximum routing time constraints
violations.

III. THE MATHEMATICAL MODEL
Assignment of nodes to vehicles
Each node must belong to exactly one tour.

I          1 ∈∀=∑
∈

iY
Vv

iv
(1)
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Assignment of vehicles to depots
Each vehicle can at most be assigned to a single depot.

V          1 ∈∀≤∑
∈

vX
Pp

pv
(2)

Capacity constraints
The total amount of commodity to be picked up by
vehicle v must not exceed its capacity qv.

Vv         XqYpr
Pp

pvv
Ii

iv i ∈∀≤ ∑
∈∈

∑ (3)

Minimum routing cost for visiting node i
The routing cost from the starting depot p to node i by
the assigned vehicle v takes a minimum value if one
makes the trip all the way through the least cost route dpi
connecting depot p to node i.
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Relationship between visiting costs for nodes (i,j)

The routing cost from the starting depot to node j by the
assigned vehicle v must never be lower than the cost of
visiting node i if both nodes are on the same tour (Yiv =
Yjv = 1) and node i is visited earlier (Sij = 1). Otherwise,
the reverse statement will be true. A value of MC equal
to 1.2-1.3 times the maximum routing time tvv

max

multiplied by both the average vehicle speed and the
average unit traveling cost is adopted.
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Overall routing cost for used vehicle v
The overall traveling cost for the tour assigned to the
used vehicle v must never be lower than the cost of
visiting any particular node i on the tour plus the cost of
returning from i to the starting depot p through the
minimum cost route dip.
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Minimum visiting time for node i
The visiting time for node i by the assigned vehicle v
takes a minimum value if one makes the trip all the way
through the least cost route dpi connecting depot p to
node i.
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Relationship between visiting times for nodes (i,j)
The time at which node j is visited by the assigned
vehicle v must never be lower than the visiting time for
node i if both nodes are on the same tour (Yiv = Yjv = 1)
and node i is visited earlier (Sij = 1). Otherwise, the
reverse statement will be true. A value for the parameter
MT equal to the maximum routing time tvv

max multiplied
by a factor close to 1 (≈ 1.1 to1.2) is adopted.
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Overall routing time for used vehicle v
The overall routing time for the used vehicle v must
never be lower than the visiting time for a particular
node i on the tour plus both the loading time and the
return time from i to the starting depot p through the
minimum cost route dip.
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Time constraint violations due to early arrivals

IiTaa iii ∈∀−≥∆           
(10)

Time constraint violation due to late arrivals

IibTb iii ∈∀−≥∆           
(11)

Routing time constraint violation

VvtvTVT vv ∈∀−≥∆          max
v

(12)

Objective function
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Assignment constraints (1) and (2) together with
routing constraints (4)-(6) define the feasible space for
the traditional VRP. Timing constraints are considered
through visiting time constraints (7)-(9) and the time
constraint violations (10)-(12). No sub-tour breaking
constraints are necessary. The major features of the
proposed mathematical formulation are: (i) the use of a
continuous representation for both the time domain and
the routing cost domain; (ii) the separate handling of
vehicle assignment and node sequencing decisions
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through different sets of binary variables; (iii) the
definition of 0-1 sequencing variables based on the
concept of generalized predecessor. A comparative
analysis of computational requirements for solving
Example 1 using either the proposed model or the
classical slot-based m-VRPTW formulation (Bodin et
al., 1983) is made in the next Section.

IV. EXAMPLE 1
Production at 10 nodes must be picked-up and
transported to a processing plant P, with a fleet of at
most 2 vehicles housed on P. Problem data are
summarized  in  Table  1.  Maximum  routing  time  and

time windows are all considered as hard constraints by
setting ∆a, ∆b and ∆Tv all equal to zero in eqns. (10) to
(12) .

Only traveling costs were included in the objective
function. Fixed costs are also considered in Example 2.
The best solution for Example 1 is shown in Table 2.
Model sizes and computational requirements for this
approach and the traditional m-VRPTW formulation
(Bodin et al., 1983) are compared in Table 3. It can be
noted that the number of binary variables in the
proposed MILP approach is reduced by more than three
times and, consequently, the required CPU time
decreases by a factor of 7.5.

Table 1. Data for Example 1
Nodes parameters

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
pri (lt) 440 580 1370 820 2850 750 520 1480 2500 1940
ai (h) 0 0 0 0 1 1 1 2 2 2
bi(h) 1 1 1 1 2 2 2 3 3 3

Distance matrix  dij [km]
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 --- 3.4 6.7 9.2 7.6 6.4 3.4 4.6 8.3 5.5
T2 --- 3.3 4.8 4.2 4.7 4 6.2 9.5 8
T3 --- 1.5 6.3 8.4 7.3 9.6 13.2 12.3
T4 --- 5.5 8.6 8.8 11.1 14.8 13.8
T5 --- 3.4 6.5 8.7 9.4 11.5
T6 --- 3.1 5.3 6 8.1
T7 --- 2.3 5.9 5
T8 --- 3.7 2.9
T9 --- 3.2
T10 ---

P 6.2 9.5 8.2 9.7 14.8 12.7 9.6 8.6 12 10.7
Other problem parameters

Vehicle parameters Route parameters
qV (lt)
cfV ($)

7500
30

rv (lt/h)
tvv

max (h)
12000

4.0
tf i (h)

γij (km/h)
0.15
30

cij ($/km) 0.5

Table 2. Optimal solution for Example 1
Vehicle Node Arrival time

(h)
Departure

time
(h)

Node
production

(lt)

Utilized capacity
(lt)

Vehicle routing
time (h)

V1

V2

T1
T7
T8
T9
T10
T4
T3
T2
T5
T6

0.21
1.00
2.00
2.40
3.00
0.32
0.59
0.97
1.30
1.80

0.39
1.19
2.27
2.75
3.23
0.54
0.86
1.16
1.69
2.02

440
520

1480
2500
1940
820
580

1370
2850
750

6880

6370

3.66

2.44
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V. ELIMINATION RULES FOR DISCARDING
NON-OPTIMAL ROUTES

Though the proposed approach sharply reduces the
problem size, VRP type problems are combinatorial.
Nevertheless, problem data can be used to cut down the
problem size. To this purpose, exact time window-based
elimination rules and distance-based heuristic rules are
presented.
A. Time window-based elimination rules
• If one vehicle cannot service a pair of nodes
without violating time windows constraints, then two
different vehicles must be assigned to service such
nodes. Mathematically this condition is expressed as
follows:
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Therefore (Yjv + Yiv ≤ 1) and the vehicle v can service the
node i or the node j but not both. Thus, for any pair of
nodes {i,j} satisfying condition (14), constraints (5.a)-
(5.b) and (8.a)-(8.b) can be eliminated. Moreover, the
sequencing variable Sij is no longer needed.

• Let us suppose that nodes i and j are assigned to the
same vehicle v and the sum of the earliest arrival time to
node i (ai) plus the travel time between such nodes,
including the service time at node i, is higher than the
latest arrival time to node j. Then, node i cannot be
visited before node j and Sij = 0 if both nodes are on the
same tour. Consequently, the sequencing variable Sij can
be eliminated from the problem formulation.
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Thus, inequalities (5.a) and (8.a) can be dropped from
the model while constraints (5.b) and (8.b) reduce
themselves to eqns. (16) and (17), respectively.
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• Let us now suppose that the sum of the earliest
arrival time to node j plus both the service time at node j
and the travel time to node i,  is higher than the latest
arrival time to node i. Then, node j cannot be a

predecessor of node i and Sij = 1 only if both nodes are
on the same tour.
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Thus, constraints (5.b) and (8.b) can be dropped from
the model and inequalities (5.a) and (8.a) reduce to:
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B. Distance-based heuristic rules
• Two far away nodes cannot be assigned to the same
vehicle because it would lead to very high travelling
costs, and possible violations of the routing time
constraint. This condition can be stated as follows:

1:,, max ≤+⇒≥∧<∈∈∀ ivjvij YYddjiVvIji (21)

where dmax is a model parameter selected by the user.
Since (Yjv + Yiv ≤ 1), then constraints (5.a)-(5.b) and
(8.a)-(8.b) can be eliminated. The value of dmax should
be carefully chosen in such a way that a significant
number of non-optimal routes could be eliminated
without removing the optimum from the problem
feasible region.
• A node i cannot be assigned to a far away depot.
Then, the vehicle assigned to node i cannot be allocated
to a depot that is far away from node i. This heuristic
conditionally restricts the set of potential depots for a
vehicle accounting for the route assigned to it. This
condition can be so written:

1:, , max ≤+⇒≥∈∈∈∀ ivpvip YXddVvPpIi (22)

Then, constraints (4), (6), (7) and (9) can be eliminated.
C. The multi-heuristic case
Since the simultaneous use of several rules can either
eliminate the problem optimal solution or generate
redundant constraints of the type Yiv + Yjv ≤ 1, the
heuristics must sequentially be applied in a hierarchical
way. Distance-based heuristics must first be enforced
before using the exact time window-based elimination
rules, since the former ones remove routes from the
problem formulation while the others just take away
and/or simplify sequencing constraints.

VI. EXAMPLE 2
Example 1 is revisited to now regard time-windows and
maximum routing time as soft constraints that may be
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violated. Such violations will be penalized and,
consequently, the objective function (13) is being
adopted. In order to generate routing time constraint
violations, the maximum allowed routing time was
reduced to tvv

max = 3.0. Table 4 presents the new optimal
solution. In turn, Table 3 shows the problem size and
the computational requirement with/without applying
distance-based and time window-based elimination
rules.

It can be observed a significant reduction in the CPU
time with regards to the classical formulation by a factor
larger than 500 without using elimination rules and by
10,000 times with elimination rules. Savings in 0-1
variables and in CPU time are mostly brought about by
the exact TW-based elimination rules. The distance-
based heuristic rules cut the CPU time down by half but
the optimal solution is still found (see Table 4).

Table 3. Computational requirements and models sizes for Examples 1 & 2
Formulation Binary

variables
Cont.

Variables
Constraints Objective

function
CPU time

(s)**
Example 1 Traditional MILP approach 220 10 326 30.50 17.03

This MILP approach 65 24 474 30.50 2.26
Example 2 Traditional MILP approach

This MILP approach
This approach with rule V.1

This approach with rules V.1&V.2*

220
65
37
37

32
46
46
46

326
474
354
345

94.62
94.62
94.62
94.62

9432
6.78
2.31
1.20

*dmax = 13.00               ** Seconds on Pentium III PC (733 MHz) with ILOG/CPLEX (Script mode)

Table 4. Optimal solution for Example 2
Vehicle Node Arrival

time
(h)

Departure
time
(h)

Earliness
(h)

Lateness
(h)

Node
production

(lt)

Utilized
capacity (lt)

Vehicle routing
time (h)

V1

V2

T3
T4
T5
T6
T8
T1
T2
T7
T9
T10

0.69
1.00
1.50
2.00
2.39
0.70
1.00
1.48
1.87
2.33

0.95
1.22
1.89
2.21
2.66
0.89
1.20
1.67
2.22
2.64

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.13
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

1370
820

2850
750

1480
440
580
520

2500
1940

7270

5980

2.95

3.00

VII. CONCLUSIONS
A novel continuous-time MILP formulation for the
VRPTW problem based on the generalized precedence
notion has been developed. In the proposed approach, a
node precedes another one on the route if it is visited
earlier by the same vehicle, but not necessarily
immediately before. This allows to separately treating
assignment and sequencin decisions through different
sets of 0-1 variables. By so doing, a remarkable saving
in binary variables is obtained. The proposed model is
also capable of handling hard and soft time window
constraints. The use of exact time window-based
elimination permits to get an important additional
reduction in the number of sequencing variables and
constraints. Numerical experiments show very
encouraging results.

NOMENCLATURE
Sets
I
V
P

Set of nodes
Set of vehicles
Set of depots

Parameters
qv
cfv
pri
ai
bi
tvv

max

dij

dip

cij
v

cip
v

γij
v

γip
v

Capacity of vehicle v
Fixed cost for using vehicle v
Production to be picked up at node i
Earliest arrival time in node i
Latest arrival time in node i
Maximum routing time for vehicle v
Length of minimum cost arc between nodes i
and j
Length of minimum cost arc between node i
and depot p
Unit routing cost for arc i-j and vehicle v
Unit routing cost for arc i-p and vehicle v
Vehicle speed for arc i-j and vehicle v
Vehicle speed for arc i-p and vehicle v
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Loading rate for vehicle v
Fixed stop time on node i
Unit penalty cost due to violations on time
windows constraints for node i
Unit penalty cost due to violations on the
routing time constraint for vehicle v

rv
tfi
ρI

ρv

Variables
Xpv

Yiv

Sij

Binary variable denoting that vehicle v is
assigned to depot p
Binary variable denoting that node i is visited
by vehicle v
Binary variable denoting that node i is visited
before node j (Sij=1) or after node j (Sij=0)
when both are on the same tour

Ci
CVv
Ti
TVv
∆ai

∆bi

∆Tv

Visiting cost at node i
Traveling cost associated to vehicle v
Visiting time at node i
Routing time for vehicle v
Time window constraint violation due to
arrivals before ai
Time window constraint violation due to
arrivals after bi
Positive variable denoting routing time
constraint violation for vehicle v
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