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SUMMARY

This paper deals with the use of the local optimal point interpolating (LOPI) formula in solving partial
di�erential equations (PDEs) with a collocation method. LOPI is an interpolating formula constructed
by localization of optimal point interpolation formulas that reproduces polynomials and veri�es the delta
Kronecker property. This scheme results in a truly meshless method that produces high quality output
and accurate solutions. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Meshless, or meshfree, methods have been widely studied in recent years and the amount of
literature on them is vast: e.g. we refer to the reviews by Belytschko et al. [1], Liu et al.
[2] and Li and Liu [3]. They have advantages over the popular �nite element method, which
makes them appealing in many situations. We mention, for instance, problems involving large
deformations where a �nite element mesh could become severely and unacceptably distorted.
Meshless methods do not need a mesh for interpolation like �nite elements do, and for this
reason they can be very easily linked to a CAD system. Adaptation to increase computation
accuracy is very easily implemented, and also, they can handle components damage and cracks
without any problem.
Meshless methods can be classi�ed into those approximating the PDEs in weak form, and

those directly approximating the partial di�erential equations in strong form. In the former
category, some means to perform integration are required. Examples of this class are di�use
elements [4], element free Galerkin [5], reproducing kernel particle method [6], h-p clouds [7],
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510 C. ZUPPA AND A. CARDONA

�nite spheres [8], partition of unity [9], etc. In the latter category, PDEs are usually discretized
by collocation. Smooth particle hydrodynamics [10], the �nite point method [11, 12] and the
reproducing kernel particle method proposed by Aluru [13, 14] are all examples of meshless
methods in strong form.
In order to perform integration, many methods that approximate PDEs in weak form do

need an auxiliary or background mesh, which complicates implementation. On the other hand,
the strong form of solution gains particular interest because it leads to truly meshless methods
that do not make use of any kind of mesh.
The concept of solving PDEs using radial basis functions (RBFs) was introduced by Kansa

in 1990 [15, 16]. He implemented this approach using the multiquadrics radial basis function
(MQ RBF) proposed by Hardy [17, 18] for interpolation of scattered data. Franke [19] com-
pared global RBFs against many popular compactly supported schemes for 2D interpolation
and concluded that global RBF schemes were superior in several aspects.
Kansa’s MQ method for solving PDEs is a meshless collocation method with global basis

functions, which leads to �nite-dimensional problems with full matrices. Numerical experi-
ments for parabolic and elliptic PDEs performed by Kansa [15, 16, 20] and Golberg and Chen
[21] show high accuracy and e�ciency of the MQ scheme. Since the coe�cients matrix is
full, Kansa [22] suggested using domain decomposition and blending. Foley [23] presented
a general formulation of the map and blend technique and Duval [24] showed that domain
decomposition can be implemented straightforwardly, the computational e�ort is consider-
able decreased, and problems of ill-conditioning are alleviated. However, the global char-
acter of this interpolation scheme makes it di�cult to apply it in large-scale engineering
problems.
Zuppa [25] introduced a meshless local interpolation scheme (LOPI) that compares favor-

ably with Hardy’s interpolation. LOPI is r-reproducing and has a compactly supported basis.
It is worth mentioning that it also veri�es the delta-Kronecker property, greatly simplifying
the introduction of essential boundary conditions. Roughly speaking, the scheme consists of
local interpolation based in Optimal Point interpolants [26]. The main objective of this work
is to investigate the use of LOPI in solving PDEs by collocation method.
The paper is organized as follows. In Section 2 we describe the formulation of LOPI and

some of its mathematical properties. In Section 3, we give estimates for the interpolation
error in LOPI. Section 4 describes the collocation method to discretize elliptic PDEs. In
Section 5 we present results of numerical experiments with 2D elliptic problems, some of
them of high complexity. Finally, in Section 6 we discuss our results and summarize some
conclusions.

2. SCATTERED DATA INTERPOLATION WITH LOPI

The class of interpolants we shall describe was introduced by Zuppa [25] with some slight
modi�cations. We denote ‖ · ‖ the Euclidean norm in n-dimensional space Rn and B(y; r) the
open ball {x=(x1; : : : ; xn)∈Rn: ‖x−y‖¡r} with centre y and radius r. Also, we use standard
multi-index notation: in particular, given any multi-index �=(�1; : : : ; �n)∈Nn, |�| denotes the
sum �1 + · · ·+ �n, and D�f the partial derivative @|�|=@x�11 · · · @x�nn f for any su�ciently smooth
function f.
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LOCAL OPTIMAL POINT INTERPOLATION 511

2.1. Multiquadrics interpolation

Let f =(f�), �=1; : : : ; K , be a set of given values at distinct points X= {x1; : : : ;xK}, and g
the multiquadrics (MQ) radial C∞ function:

g(x) :=
√
1 + cq ‖x‖2; x∈Rn

for a given constant cq¿0. We may construct an exact interpolant of data f as the linear com-
bination

∑K
�=1 a�g(x− x�) of translates of the basic function g by computing the coe�cients

a� using

a=V−1f

where the Vandermondian (or Grammian) V is given:

V =



g(x1 − x1) · · · g(xK − x1)

...
. . .

...

g(x1 − xK) · · · g(xK − xK)




and it is assumed to be invertible.

Remark 1
An interpolant O is r-reproducing i� O[p]=P ∀P polynomial of degree r and p=(P(xi)),
i=0; : : : ; r is a vector of values of P at r + 1 distinct points xi.

MQ interpolants constructed as above are not reproducing. This property, which is essential
for convergence of the numerical method for PDEs solution, can be retrieved by augmentation
using a Boolean sum of operators. In order to do this, we must build a projector Q onto the
space of polynomials we wish to preserve.

2.2. Least-squares polynomial approximation

For the sake of simplicity, we describe only the case r=1. Nevertheless, in the examples
we used also r=2 for solving elliptic PDEs. Therefore, from now on we consider the linear
space of polynomials P1.
Let x1 be the centre node, with nodes x2; : : : ;xK sprinkled around. We think of P1 as

generated by a basis of monomials centred at x1; i.e. P1 is generated by

{b0 = 1; b1; : : : ; bp}= {1; x1 − x1;1; : : : ; xn − x1; n}
Note that p ≡ n since the degree of polynomials is limited to r=1.
We will search for a least-squares approximation to data f , using a (‘Taylor’ expansion)

linear polynomial of the form

P1(x)=
∑

06|k|61
ak (x − x1)k

where k ∈Nn.
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512 C. ZUPPA AND A. CARDONA

It is easy to show that coe�cients ak in P1 are given by

a=QX f

where

QX=(BTXBX)−1BTX (1)

and where matrix BX is written

BX=




1 0 : : : 0

1 x2;1 − x1;1 : : : x2; n − x1; n
...

...
...

1 xK;1 − x1;1 : : : xK; n − x1; n




Remark 2
In order to verify the r-reproducing property, the rank of BX should be equal to dim(Pr) to
assure that polynomials of degree r are univocally determined by values in the set X [27].
We take it for granted.

2.3. The LOPI interpolant

By setting now

PX=V−1(I − BXQX) (2)

together with vector functions

v(x)= (g(x − x1); : : : ; g(x − xK))
and

b(x)= (1; b1(x); : : : ; bp(x))

then, an LOPI operator is de�ned as follows:

T̃X[f](x)= 〈v(x); PXf〉+ 〈b(x); QXf〉; x∈Rn (3)

where 〈·; ·〉 is the Euclidean scalar product of vectors.
Remark 3
We remark that T̃X consists on a least-squares approximation of data f corrected by a mul-
tiquadrics to make the approximation interpolant. Clearly, if f�=P(x�), for P(x)∈P1, the
interpolant will exactly reproduce P(x).

Remark 4
The form in which LOPI makes the MQ interpolation r-reproductive is algebraically more
complicated than the approach proposed by Micchelli [28], who proposed the interpolant:

MX[f](x)= 〈v(x); cv〉+ 〈b(x); cb〉; x∈Rn
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LOCAL OPTIMAL POINT INTERPOLATION 513

where coe�cients cb; cv are obtained by solving the linear system
V BX

BTX 0


(cv

cb

)
=

(
f

0

)

Numerical experiences show that this coe�cients matrix is worse conditioned than the system
to be solved in LOPI. Also, the dimension of the linear system is larger than in LOPI.

Remark 5
Another way to write (3) is as follows. Let {e�}K�=1 be the canonical basis of F, that is,
e�=(0; : : : ; 0; 1; 0; : : : ; 0) with 1 in the �-component, and ’� := T̃X[e�], �=1; : : : ; K . By linear-
ity, (3) is equal to

T̃X[f]=
K∑

�=1
f� ’� (4)

The latter expression has the standard form of an interpolant written as a linear combination
of basis functions {’�}. It is easy to see that ’�(x�)= ���.

3. APPROXIMATING POWER OF THE LOCAL OPTIMAL POINT INTERPOLATOR

The rate of convergence of the interpolation formula (3) is investigated below. Again, for
easiness of presentation, we shall be concerned only with the 1-reproduction case.
Let us consider a �xed node x� which is centre of a cloud !� of diameter d�. The

cloud has a set of nodes S(�) (its star), with cardinality K�. In order to simplify notation
we shall omit the subscripts S(�); � in all involved terms. Therefore, Q=QS(�), P=PS(�),
d=d�, K =K�, etc.
We describe next the fundamental result which leads directly to the error estimates.

Theorem 1
There exist a number CN (S(�)), which is a computable measure of the quality of the star
S(�), and a constant CQ(�)=C�(n; K; CN (S(�))), such that

|a�|6CQ(�)d−|�| ‖f‖; 06|�|61; f ∈RK (5)

where a=(a�)06|�|61 is given by

a=Qf (6)

Proof
We will write Equation (6) as

A a=F f (7)

with A=BTB and F =BT. Next, we introduce the change of co-ordinates y=x − x�.
Let us make �rst the change of co-ordinates:

yj=�jd�j; j=1; : : : ; K
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514 C. ZUPPA AND A. CARDONA

where �j is the vector of cosine directors, such that ‖�j‖=1, and where 06�j61. Then, we
may write:

A=

(
K d

∑
�i�Ti

d
∑

�i�i d2
∑

�2i�i�Ti

)
=

(
A00 dA01

dA10 d2A11

)

F =

(
1 : : : 1

d�1�1 : : : d�K�K

)
=

(
F0

dF1

)

with A00 a 1× 1-matrix, A01 a 1× n-matrix, etc. Also, F0 is the 1×K-matrix (1; 1; : : : ; 1) and
F1 is an n×K-matrix.
Following this partition, system (6) is written as(

A00 dA01

dA10 d2A11

)(
�a0

�a1

)
=

(
F0

dF1

)
f

where �ai is the vector of components (a�)|�|= i. The solution to this system of equations can
be written

�a0 =
1
��
(F0 − A01A−1

11 F1)f

�a1 =
1
��d

A−1
11 (−A10F0 + ( ��I + A10A01A−1

11 )F1)f =
1
d
A−1
11 (F1f − A10 �a0)

with

��=A00 − A01A−1
11 A10

Note that matrices Aij; Fi verify the following bounds:

‖F0‖=K; ‖F1‖6Kn

‖A00‖=K; ‖A01‖6Kn; ‖A11‖6Kn2

By de�ning the number CN (S(�)) in the form

CN (S(�)) := max
(∣∣∣∣1��

∣∣∣∣ ; ‖A−1
11 ‖
)

the proof of the theorem follows easily.

Several interesting remarks related to CN (S(�)) is as follow:

Remark 6
CN (S(�)) depends only on (�i;�i). Then, it is invariant by translations and dilations x→ �(x−
c) + c, �∈R. I.e., CN (S(�)) is really a measure of the geometrical quality of the stars,
independently of their size.

Remark 7
In general, CN (S(�)) has a very stable behaviour, even in border nodes. In several numer-
ical experiments with random points distributions (obtained by perturbing randomly uniform
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LOCAL OPTIMAL POINT INTERPOLATION 515

distributions) a mean of 1.28 has been obtained for cond(A11). Also, note that |1= ��|=1 for a
perfectly centred and symmetric star, and that its value grows with loss of symmetry, e.g. at
border stars.

Remark 8
Result (5) can be generalized for higher reproducibility conditions [29]. However, condition
numbers tend to be higher in these cases, especially at border nodes.

Remark 9
We will consider coe�cient cq appearing in the radial function g, as a function of the cloud
diameter d�. More precisely, we de�ne

cq(�)= c̃q=d2� (8)

for a given constant c̃q¿0. In order to get acceptable results in the approximating power of
the interpolant, it is important to keep controlled similarly both matrix norms ‖PS(�)‖ and
‖QS(�)‖ (see next section). Proposal (8) appears to be a good choice in this direction.
After recalling the expression of the operator P, Equation (2), it is not di�cult to demon-

strate the following:

Corollary 1
There exists a constant CP(�)=C ′

�(n; K; CN (S(�))), such that

‖P‖6CP(�)‖V−1‖
Proof
Given f ∈RK , using (2) we have

‖Pf‖6‖V−1‖ (‖f‖+ ‖Ba‖)

where a=Qf . Each component (Ba)j, j=1; : : : ; K , of Ba has the form

(Ba)j= a0 +
∑
|�|=1

a�(x�j − x�)�

Using (5) and the fact that ‖x�j −x�‖6d, we get |(Ba)j|6(n+1)CQ(�)‖f‖, j=1; : : : ; K , and
‖Ba‖6√

K(n+ 1)CQ(�)‖f‖. The proof is �nished by setting

CP(�)=1 +
√
K(n+ 1)CQ(�)

We are now ready for obtaining estimates for the operator T̃S(�).

Corollary 2
There exists a constant C0(�)=C0(c̃q; CP(�); CQ(�)) such that

|T̃S(�)[f](x)
∣∣6C0(�)‖f‖ (9)

for every x∈!� and f ∈RK .
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Proof
We have

T̃S(�)[f](x)= 〈v(x); Pf〉+ 〈b(x); Qf〉
where

v(x)= (g(x − x�1); : : : ; g(x − x�K )); �j ∈S(�)

and

〈b(x); Qf〉= a0 +
∑
|�|=1

a�(x − x�1)�

where we note �1 ≡ � for convenience. Since

g(x − x�j)=

√
1 +

(
c̃q
d2

)
‖x − x�j‖26

√
1 + c̃q; j=1; : : : ; K

it follows that ‖v(x)‖6√K(1 + c̃q) and

|〈v(x); P f〉|6
√

K(1 + c̃q)CP(�)‖V−1‖ ‖f‖

By applying a similar reasoning to the second term, we get

|〈b(x); Q f〉|6(n+ 1)CQ(�)‖f‖
Summing up the latter two inequalities, we have

|T̃S(�)[f](x)|6(
√

K(1 + c̃q)CP(�)‖V−1‖+ (n+ 1)CQ(�))‖f‖

We also need estimates for the derivatives of T̃S(�)[f].

Corollary 3
There exists a constant C1(�)=C1(c̃q; CP(�); CQ(�)) such that, for every multi-index �, |�|=1.
we have

|D�T̃S(�)[f](x)|6C1(�)d−1‖f‖ (10)

for every x∈!� and f ∈RK .

Proof
The proof follows easily proceeding as above and taking into account that

D�T̃S(�)[f](x)= 〈D�v(x); P f〉+ 〈i�; Qf〉
where i�=(0; �) and

D�g(x − x�j)=
(
c̃q
d2

)
(g(x − x�j))

−1(x − x�j)
�; j=1; : : : ; K
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LOCAL OPTIMAL POINT INTERPOLATION 517

A function f is said to be of class Cq;1 in !� if and only if f is of class Cq in !� and
the partial derivatives Dkf of order q (|k|= q) are Lipschitz continuous in !�. The seminorm
|:|q;1 is de�ned as

|f|q;1 = sup
{ |Dkf(x1)−Dkf(x2)|

‖x1 − x2‖ : x1;x2 ∈!�;x1 	= x2; |k|= q
}

The following error estimates will be stated without proof (a demonstration is given in [25]).

Theorem 2
If f∈Cq;1(!�) and T̃S(�) is q-reproducing, then there exist constants C̃0; : : : ; C̃q¿0 such that

‖D�(f − T̃S(�)[f])‖L∞6C̃‘dq+1−‘|f|q;1; |�|= ‘; ‘=0; : : : ; q (11)

with f =(f(x�)K�=1).

Remark 10
The estimates above tell us that the interpolation formula approximates the function itself
with O(dq+1) accuracy, its �rst order derivatives with accuracy O(dq), and so on. Note that
in order to approximate derivatives of order q, we need to use a q-reproducing interpolant.
Nevertheless, note also that the experiences shown in the examples section indicate that better
approximation properties are being obtained, and that this estimation may be non-optimal.

4. APPROXIMATE SOLUTION TO PDES BY COLLOCATION

The procedure will be illustrated with elliptic PDEs. For the sake of simplicity, we assume
the interior and boundary (Neumann and Dirichlet) operators to be linear and de�ning a
well-posed elliptic boundary-value problem:

Pu(x) =f(x); x∈�
BNu(x)|	N = sN(x) (12)

BDu(x)|	D = sD(x)

Here, � is an open bounded domain in Rn, BD is a pure Dirichlet operator and BN either a
Neumann or a mixed operator.
Let QN denote an arbitrarily chosen set of N points x� ∈ �� referred to as nodes:

QN = {x1;x2; : : : ;xN}; x� ∈ ��
Let IN := {!�}N�=1 denote a �nite open covering of �� consisting of N clouds !� such that
x� ∈!�, �=1; : : : ; N constitutes the centre of the star, and

�� ⊂
N⋃

�=1
!�

After reordering, we can partition the set of nodes QN in the form

QN = {(x�)|�= 1;:::; M1 ⊂ �; (x�)|�=M1+1;:::;M2 ⊂ 	N; (x�)|�=M2+1;:::; N ⊂ 	D}
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Let F :=RN be the set of function values f =(f�)N�=1 evaluated at nodes {x�}. If G is a
subset of QN , FG is the subspace {(f�): x� ∈G} and pG :F→FG is the canonical linear
projection.
For every node x�, �=1; : : : ; N , let S(�) be the subset of nodes in !� (the star), and

T� :F→C∞(Rn) the linear interpolating operator de�ned by

T� := T̃S(�) ◦ pS(�)

At each cloud !�, we will approximate the solution of (12) in the form

uh(x)=T�[u](x)=
M2∑
i=1

ui · ’�
i (x) + S�

D(x); x∈!�; �=1; : : : ; N (13)

where S�
D(x)=

∑N
i=M2+1 sD(xi) · ’�

i (x).
Substituting uh(x) into (12) and using collocation at the nodes of QN , we obtain the linear

algebraic system

M2∑
i=1

ui · P’�
i (x�) =f(x�)− PS�

D(x�); �=1; : : : ; M1

M2∑
i=1

ui · BN’�
i (x�) = sN(x�)− BNS�

D(x�); � = M1 + 1; : : : ; M2

(14)

4.1. Computational cost of the method

The computational cost of the LOPI discretization method is evaluated next, for the case of
solving a scalar PDE (e.g. the Laplace equation).
In order to minimize cost, computations at each node x� of the discretization, are organized

in the following form:

P’�(x�)= 〈V−1Pv(x�); (I − BXQX)〉+ 〈Pb(x�); QX〉 (15)

Then, the following operations must be performed per node:

1. Computation of the Vandermondian V has a cost of O(nK2), with n the dimension of
the space, and K the number of points inside the cloud.

2. The evaluation of matrices QX and (I −BXQX) has a cost of O(LK2), where L=(
k=1; n

(r + k))=(
k = 1; nk) is the number of terms in the Pascal triangle. It is a function of r,
the reproducing order of the approximation, and of the dimension of the space n.

3. Evaluation of V−1 Pv(x�) involves an order of O(K3) operations.
4. Finally, the internal products 〈V−1Pv(x�); (I − BXQX)〉 and 〈Pb(x�); QX〉 require O(K2)
and O(LK) operations, respectively.

Therefore, the total number of operations per node of the discretization can be estimated
as O([L+ K + n+ 2]K2) operations. Then, the evaluation of the coe�cients matrix requires
O([L+ n+ K + 2]NK2) operations. This matrix has N rows, and a semibandwidth equal to
K , thus requiring O(NK2) operations to solve the system of equations.
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LOCAL OPTIMAL POINT INTERPOLATION 519

We see that the cost of computations is directly in�uenced by parameter K , which is the
number of nodes entering in the cloud. This parameter is a function of the cloud radius r!.
This characteristic is common to most meshless methods, which have a larger overlapping
between coe�cients than in �nite element methods. For this reason, meshless methods are
inherently more expensive than the latter.

4.2. Neumann or mixed problems

Although formally straightforward, the direct implementation of this kind of boundary con-
ditions as in Equation (14) creates some side e�ects that may reduce the accuracy of the
collocation method. This is mainly because:

1. The discretization of the boundary condition at the boundary node precludes discretization
of the principal governing equation at this node (one equation is generated per degree
of freedom). Thus, only internal nodes support the governing equation.

2. The boundary star S tends to be of strongly unsymmetrical shape, with the centre of
mass shifted towards the domain interior.

Two di�erent techniques are described below to avoid this drawback.

4.2.1. Additional nodes placement. As long as the contour does not present singular points,
the following strategy may be employed to handle the Neumann boundary condition. At each
node x∈	N, we add an associated external node in the direction of the outward normal of
	N, at a distance that agrees with a local measure of the grid-size (and, of course, with the
geometry of @�).
Thus we increase the number of nodes, one for every node x∈	N. Then, we follow the

customary algorithm in classical FDM: two equations are imposed at each boundary node in
	N, the �rst equation resulting from the boundary condition, and a second one from the PDE.
This strategy was followed successfully in all our numerical experiments.

4.2.2. Additional basis function. The procedure outlined in the previous section complicates
the implementation of the method, especially in complex geometries. An alternative technique
consists into augmenting the number of basis functions at every Neumann node as follows:
At every node x� ∈ S� ∩ 	N, we de�ne a basis function  �

� (x) using:

 �
� (x)= 〈n(x�);x − x�〉’�

�(x)

where n(x�) is the normal vector in x� ∈	N. It can be observed that  �
� (x�)=0 for all x� ∈QN

and that @=@n  �
� (x�)= n · ∇ �

� (x�)=1.
If S� ∩ 	N 	= ∅, we may improve approximation (13) by

uh(x)=
M2∑
i=1

ui · ’�
i (x) +

M2∑
i=M1+1

gi ·  �
i (x) + S�

D(x); x∈!�; �=1; : : : ; N (16)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:509–536
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where S�
D(x)=

∑N
i=M2+1 sD(xi)·’�

i (x). Again, two equations are imposed at every node x� ∈	N.
M2∑
i=1

ui · P’�
i (x�) +

M2∑
i=M1+1

gi · P �
i (x�) =f(x�)− PS�

D(x�); �=1; : : : ; M2

M2∑
i=1

ui · BN’�
i (x�) +

M2∑
i=M1+1

gi · BN �
i (x�) = sN(x�)− BNS�

D(x�); �=M1 + 1; : : : ; M2

(17)

This technique is somehow similar to a p-re�nement at the Neumann nodes.
In Section 5.3.2 we present a comparison of numerical results obtained for an example

consisting on a Poisson equation with mixed boundary conditions on a unit square domain.
We computed the error of the solution when using the three mentioned techniques. The error
computed with the technique of additional nodes placement is almost the same as that obtained
with the additional basis function. On the other hand, when using a standard discretization
(Equations (14)), the error is evidently larger.

5. NUMERICAL EXPERIMENTS

We shall now perform several numerical tests to investigate the approximating properties of
the collocation method (14). We �rst make all settings in our experiments explicit.

5.1. Cloud !� and constant c̃q

Let (QN ; h) be a uniform mesh over ��. The shape of the cloud !� can be quite arbitrary.
However, in this work, !� will always be an open ball Br�(x�; r�), r�¿0. A number r!¿1 is
selected such that

!�=B(x�; r!h) (18)

In our tests r!=2:2 always. This selection assures that clouds !� tie together and there are
enough nodes in S(�). Constant c̃q in Equation (8) was taken equal to 0.08. These choices
were adopted after experimentation on several test cases. For instance, Figure 1 displays the
variation of error when varying parameter c̃q, for an example in which a Poisson equation
with mixed boundary conditions is solved on a unit square domain (see Section 5.3.2 for
a full description of the problem). We may appreciate that c̃q=0:08 is here an appropriate
value for computations, value which was observed in most performed tests. Similar tests were
conducted to determine an optimum value of r!.

5.2. Error measures

Errors have been computed at the discretization points. Since our examples are all two-
dimensional, we have measured errors not only in function u but also in the derivatives ux

and uy. The di�erent error measures evaluated in all tests are summarized below:

eu∞ =
1

max�=1;:::; M2 |u(x�)|
max

�=1;:::; M2

|(u− uh)(x�)|
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Figure 1. Variation of error for di�erent values of parameter c̃q, for the model problem of Section 5.3.2,
with uniform point spacing and quadratic polynomial reproduction.

eux∞ =
1

max�=1;:::; M2 |ux(x�)| max�=1;:::; M2

|(ux − uh; x)(x�)|

euy∞ =
1

max�=1;:::; M2 |uy(x�)| max
�=1;:::; M2

|(uy − uh;y)(x�)|

eu‘2 =
1

max�=1;:::; M2 |u(x�)|

√
1
M2

∑
�=1;:::; M2

|(u− uh)(x�)|2

eux‘2 =
1

max�=1;:::; M2 |ux(x�)|

√
1
M2

∑
�=1;:::; M2

|(ux − uh; x)(x�)|2

euy‘2 =
1

max�=1;:::; M2 |uy(x�)|

√
1
M2

∑
�=1;:::; M2

|(uy − uh;y)(x�)|2

where M2 is the number of unknowns in the discretization (see Equation (13)).

5.3. Model problems and results

Several elliptic two-dimensional problems have been solved to illustrate the performance of
the method. Tests with both random and on uniformly spaced nodes were performed. In
the former case, nodes were generated by adding a random perturbation of value 0:25h to
a uniform grid with h-spacing. Errors displayed in tables in the randomly distributed points
case, correspond to averages over ten runs. The measure h of random grids on the unit square
is de�ned as

h=
length(side)√

N − 1 =
1√

N − 1 (19)
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Table I. Model 1. Random grids.

h eu∞ eux∞ euy∞ eu‘2 eux‘2 euy‘2

1=8 6:267e− 4 7:305e− 3 6:551e− 3 2:364e− 4 1:767e− 3 1:596e− 3
R1 1=16 2:164e− 4 3:659e− 3 3:127e− 3 7:823e− 5 6:082e− 4 5:730e− 4

1=32 1:078e− 4 1:773e− 3 1:780e− 3 3:782e− 5 2:583e− 4 2:576e− 4

1=8 3:133e− 4 3:246e− 3 5:310e− 3 1:364e− 4 7:858e− 4 1:121e− 3
R2 1=16 7:831e− 5 1:320e− 3 1:406e− 3 2:422e− 5 1:928e− 4 1:967e− 4

1=32 1:602e− 5 3:205e− 4 2:707e− 4 5:732e− 6 3:995e− 5 3:873e− 5
Note: Mean values of errors over 10 runs. Errors from computations with 1-reproducing interpolants (R1)
and 2-reproducing interpolants (R2) are displayed.

Table II. Model 1. Uniform square grid.

h eu∞ eux∞ euy∞ eu‘2 eux‘2 euy‘2

1=8 3:016e− 4 3:667e− 3 3:667e− 3 2:080e− 4 1:106e− 3 1:106e− 3
R1 1=16 9:098e− 5 1:854e− 3 1:854e− 3 5:040e− 5 3:348e− 4 3:348e− 4

1=32 2:617e− 5 9:282e− 4 9:282e− 4 1:250e− 5 1:019e− 4 1:019e− 4

1=8 1:503e− 4 5:956e− 4 5:956e− 4 9:900e− 5 3:237e− 4 3:237e− 4
R2 1=16 1:831e− 5 1:296e− 4 1:296e− 4 1:176e− 5 8:528e− 5 8:528e− 5

1=32 2:204e− 6 3:033e− 5 3:033e− 5 1:427e− 6 2:258e− 5 2:258e− 5
Note: Computed errors. Errors from computations with 1-reproducing interpolants (R1) and 2-reproducing
interpolants (R2) are displayed.

5.3.1. Model 1: Laplace equation with Dirichlet boundary condition. This test is a very
well-behaved elliptic problem. Most methods work �ne in this case.

uxx + uyy=0; �= {(x; y)| 0¡x; y¡1}
u|@� = g(x; y)

where the exact solution is u(x; y)= g(x; y)= − x3 − y3 + 3x2y + 3xy2.
Errors for computations with random and uniform points distributions (9× 9, 17× 17 and

33× 33) are summarized in Tables I and II, respectively. In both cases, computations with
1-reproducing interpolants (R1) and 2-reproducing interpolants (R2) were performed.
Figure 2 displays three samples of random grids used in computations. Convergence loga-

rithmic plots for the solution and its x-derivative are shown in Figure 3. In the 1-reproduction
case, the convergence rate for the solution u is 2.02 with uniformly spaced points, and 1.32
with randomly spaced ones. Solution derivatives converge at a rate equal to 1.72 and 1.38,
in the uniform and random spacing, respectively. When passing to the 2-reproduction case,
the convergence rate increased to 3.05 when computing the solution with uniformly spaced
points, and 2.29 with randomly spaced ones (mean value over ten runs). Derivatives con-
verge at a rate equal to 1.92 and 2.27 with uniformly spaced and randomly spaced points,
respectively.
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Figure 2. Model 1. Random grids. Points distribution samples for di�erent point densities.
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Figure 3. Model 1. Convergence of LOPI method for random grids (continuous line) and uniform grids
(dashed line). Top plots: 1-reproduction case; bottom plots: 2-reproduction case. Plot on the left: u
error; plots on the right: ux error. Vertical bars show min/max regions for ten di�erent random grids.

This example has been treated by Aluru, with a modi�ed Reproducing Kernel Particle
Method (RKPM) of his own [13]. Table III compares errors from computations with Aluru
scheme and ours on uniformly spaced points grids. We may appreciate that LOPI with
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Table III. Model 1.

Function Derivatives

LOPI LOPI

h ln(h) R1 R2 RKPM R1 R2 RPKM

1=8 −2:08 −8:48 −9:22 −8:06 −6:81 −8:04 −5:58
1=16 −2:77 −9:90 −11:35 −9:71 −8:00 −9:37 −7:11
1=32 −3:46 −11:29 −13:45 −11:80 −9:19 −10:70 −8:82
Note: Comparison of errors obtained by LOPI method with those obtained by RKPM of Aluru [13].

Table IV. Model 3. Random grid.

h eu∞ eux∞ euy∞ eu‘2 eux‘2 euy‘2

1=8 1:398e− 1 6:1e− 2 1:150e− 1 3:884e− 2 1:796e− 2 2:841e− 2
R1 1=16 7:887e− 3 7:841e− 3 9:788e− 3 2:144e− 3 1:614e− 3 2:174e− 3

1=32 7:111e− 3 8:964e− 3 2:013e− 2 1:417e− 3 1:097e− 3 1:662e− 3

1=8 1:839e− 1 7:124e− 2 1:555e− 1 4:500e− 2 1:974e− 2 3:783e− 2
R2 1=16 1:791e− 2 1:255e− 2 2:137e− 2 3:635e− 3 2:462e− 3 3:364e− 3

1=32 4:600e− 3 5:407e− 3 7:499e− 3 9:892e− 4 6:861e− 4 9:281e− 4
Note: Mean values of errors over 10 runs. Errors from computations with 1-reproducing interpolants (R1)
and 2-reproducing interpolants (R2) are displayed.

1-reproduction interpolants gives very similar convergence rates as Aluru scheme, while the
convergence rate for the 2-reproduction case is considerably better than that of Aluru for this
test problem.

5.3.2. Model 2: Poisson equation with mixed boundary conditions. This test example is a
Poisson equation with a harmonic source on a unit square domain. Mixed boundary condi-
tions are imposed: on two sides of the square we impose homogeneous Dirichlet boundary
conditions while on the other sides we impose homogeneous Neumann boundary conditions.

uxx + uyy= − 8	2 cos(2	x) sin(2	y); �= {(x; y)| 0¡x; y¡1}
u = 0 on y=0; 1

ux = 0 on x=0; 1

The exact solution is written

u(x; y)= cos(2	x) sin(2	y)

Results for random and uniform points distributions (9× 9, 17× 17 and 33× 33) are sum-
marized in Tables IV and V, respectively. Convergence logarithmic plots for the solution and
its x-derivative are shown in Figure 4.
Figure 5 displays a series of approximated solutions computed with uniformly spaced points

for the 1-reproduction case. Figures 6 and 7 give the distribution of errors for the 1- and
2-reproduction cases, respectively.
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Table V. Model 3. Uniform grid.

h eu∞ eux∞ euy∞ eu‘2 eux‘2 euy‘2

1=8 3:700e− 3 4:148e− 3 1:039e− 2 1:966e− 3 2:285e− 3 3:613e− 3
R1 1=16 2:021e− 3 2:072e− 3 3:811e− 3 6:764e− 4 1:095e− 3 1:375e− 3

1=32 1:660e− 3 1:512e− 3 2:247e− 3 5:872e− 4 8:161e− 4 8:622e− 4

1=8 2:612e− 3 4:449e− 3 2:035e− 2 1:314e− 3 2:207e− 3 5:437e− 3
R2 1=16 1:288e− 3 8:818e− 4 2:871e− 3 5:341e− 4 4:016e− 4 5:205e− 4

1=32 3:740e− 4 2:503e− 4 6:050e− 4 1:702e− 4 1:352e− 4 1:240e− 4
Note: Computed errors. Errors from computations with 1-reproducing interpolants (R1) and 2-reproducing
interpolants (R2) are displayed.
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Figure 4. Model 2. Convergence of LOPI method for random grids (continuous line) and uniform grids
(dashed line). Top plots: 1-reproduction case; bottom plots: 2-reproduction case. Plot on the left: u
error; plots on the right: ux error. Vertical bars show min/max regions for ten di�erent random grids.

The convergence rate in the 1-reproduction case is somehow deteriorated with respect to
that obtained in cases with Dirichlet boundary conditions. We may note that results for the
17× 17 and 33× 33 cases have almost the same accuracy. Errors at the Neumann boundaries
seem to be responsible for such behaviour. (However, we should point out that the error value
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Figure 5. Model 2. Approximate solutions computed with the LOPI scheme with three di�erent levels
of points spacing. Points are distributed uniformly on the square.

for the 17× 17 points grid is already quite small, and of the same order we got with element
free Galerkin methods for this same problem [31].)
When we impose the 2-reproduction property, this anomaly disappears, as seen in Figure 7.

In this case, the Neumann boundary condition is correctly represented.
We �nally performed analysis of this model problem using the three techniques presented

for evaluation of the Neumann boundary condition. Figure 8 displays convergence logarithmic
plots for the solution and its x-derivative, when computing the Neumann boundary condition
using the standard implementation (Equation (14)), the additional nodes technique, and the
additional basis function technique (Equation (17)). Displayed error values are eu‘2 and eux‘2 .
We may appreciate that the standard technique gives much larger error values than the two
other techniques.

5.3.3. Model 3: Poisson equation with exponential source. In this case, we put a source term
that produces a high gradient at the centre of the domain. Homogeneous Dirichlet boundary
conditions are imposed.

uxx + uyy=f(x; y); �= {(x; y)| 0¡x; y¡1}

u|@� =0
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Figure 6. Model 2. Plots of errors computed with the LOPI scheme, 1-reproduction case, with three
di�erent levels of points spacing. Points are distributed uniformly on the square. Errors tend to

concentrate at the Neumann boundaries as seen.

where

f(x; y) = (−2ky(1− y) + (ky(1− x)(1− y)− kxy(1− y))2

− 2kx(1− x) + (kx(1− y)(1− x)− kxy(1− x))2)
ekxy(1−x)(1−y)

1− ek=16

and k=200 in the tested example. The exact solution to this equation is written

u(x; y)=
ekxy(1−x)(1−y)

1− ek=16
Errors for computations with random and uniform points distributions (9 ;×9, 17×17 and

33×33) are summarized in Tables VI and VII, respectively. In both cases, computations
with 1-reproducing interpolants (R1) and 2-reproducing interpolants (R2) were performed.
We note that, in this example, using 2-reproducing interpolants did not improve the accuracy
of computations.
Convergence logarithmic plots for the solution and its x-derivative are shown in Figure 9,

for both 1- and 2-reproducing interpolants. With the 1-reproducing interpolant, the convergence
rate for the solution u is 3.44 with uniformly spaced points, and 3.71 with randomly spaced
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Figure 7. Model 2. Plots of errors computed with the LOPI scheme, 2-reproduction case, with three
di�erent levels of points spacing. Points are distributed uniformly on the square. Contrary to the

1-reproduction case, errors are uniformly distributed in the square.
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Figure 8. Convergence of LOPI method for di�erent techniques of handling the Neumann bound-
ary condition, 2-reproduction case. Continuous line: additional basis function technique; dashed
line: additional nodes technique; dash and points: standard technique. Plot on the left: u

error; plots on the right: ux error.
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Table VI. Model 2. Random grid.

h eu∞ eux∞ euy∞ eu‘2 eux‘2 euy‘2

1=8 1:845e− 1 2:512e− 1 2:221e− 1 5:544e− 2 6:474e− 2 6:238e− 2
R1 1=16 2:754e− 2 5:883e− 2 5:067e− 2 6:949e− 3 9:532e− 3 9:165e− 3

1=32 2:079e− 3 5:2e− 3 6:090e− 3 5:312e− 4 8:240e− 4 8:344e− 4
1=8 1:844e− 1 2:804e− 1 2:433e− 1 6:161e− 2 7:512e− 2 7:003e− 2

R2 1=16 2:220e− 2 5:804e− 2 6:069e− 2 5:936e− 3 8:230e− 3 8:950e− 3
1=32 3:432e− 3 1:030e− 2 1:123e− 2 7:375e− 4 1:228e− 3 1:241e− 3

Note: Mean values of errors over 10 runs. Errors from computations with 1-reproducing interpolants (R1)
and 2-reproducing interpolants (R2) are displayed.

Table VII. Model 2. Uniform grid.

h eu∞ eux∞ euy∞ eu‘2 eux‘2 euy‘2

1=8 9:872e− 2 9:091e− 2 9:091e− 2 1:794e− 2 3:148e− 2 3:148e− 2
R1 1=16 2:383e− 3 2:206e− 2 2:206e− 2 5:084e− 4 4:063e− 3 4:063e− 3

1=32 4:082e− 4 1:343e− 3 1:343e− 3 1:508e− 4 3:260e− 4 3:260e− 4
1=8 9:698e− 2 9:103e− 2 9:103e− 2 1:740e− 2 3:133e− 2 3:133e− 2

R2 1=16 1:457e− 3 2:272e− 2 2:272e− 2 5:283e− 4 4:120e− 3 4:120e− 3
1=32 1:209e− 3 6:389e− 4 6:389e− 4 1:855e− 4 1:923e− 4 1:923e− 4

Note: Computed errors. Errors from computations with 1-reproducing interpolants (R1) and 2-reproducing
interpolants (R2) are displayed.

ones. Solution derivatives converge at a rate equal to 3.64 and 3.53, in the uniform and random
spacing, respectively. Similar convergence rates are obtained with 2-reproducing interpolants in
this test case. Figures 10 and 11 display the computed approximate solutions and the error dis-
tribution, respectively, both of them for the uniform grids case and 1-reproducing interpolants.
Del Pin et al. [30] used this example to assess the performance of various meshless meth-

ods. Figure 12 compares convergence curves for the various methods implemented by Del Pin
et al. together with the LOPI method, 1-reproducing case. In particular, results from linear
triangular �nite elements, element free Galerkin (with the implementation given in Reference
[31]), �xed least squares [12], smooth particle hydrodynamics [32], natural element method
[33] and meshless �nite element method (a new method proposed in Reference [30]) are
displayed. We may observe the better convergence rate exhibited by the LOPI method both
in the evaluation of the function itself as well as in the evaluation of its derivatives.

5.3.4. Model 4: Poisson equation with mixed boundary conditions and high local gradi-
ent. This test example is a Poisson equation with an exponential source on a unit square
domain. Mixed boundary conditions are imposed: on two sides of the square we impose
non-homogeneous Dirichlet boundary conditions while on the other sides we impose non-
homogeneous Neumann boundary conditions.
The governing equation and imposed boundary conditions may be written:

uxx + uyy=f(x; y); �= {(x; y)| 0¡x; y¡1}
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Figure 9. Model 3. Convergence of LOPI method for random grids (continuous line) and uniform grids
(dashed line). Top plots: 1-reproduction case; bottom plots: 2-reproduction case. Plot on the left: u
error; plots on the right: ux error. Vertical bars show min/max regions for ten di�erent random grids.
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−
(
x − �
�

)2
−
(
1− �
�

)2]
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Figure 10. Model 3. Approximate solutions computed with the LOPI scheme (1-reproduction case) with
three di�erent levels of points spacing. Points are distributed randomly on the square.

and �=0:5; �=0:05 in the tested example. The exact solution to this equation is written

u(x; y)= − x3 − y3 + exp

[
−
(
x − �
�

)2
−
(
y − �

�

)2]

This example was proposed by Aluru [14] to test performance of the methods in presence of
both high local gradients and mixed non-homogeneous boundary conditions.
Figure 13 displays two computed solutions for grids with uniform point spacing of h=1=32

and 1/64. We may see the local high gradients produced at the centre of the square. Figure 14
gives the distribution of computation errors on the domain. We may see that for h=1=32, the
maximum errors are located at the high gradients zone. When the points spacing is reduced
to h=1=64, errors induced by the Neumann boundary condition become noteable.
Finally, Figure 15 shows the convergence curve computed from LOPI scheme compared to

results obtained by Aluru for this same problem. We may appreciate that the LOPI scheme
displays a slightly better convergence rate than Aluru’s in this case.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:509–536



532 C. ZUPPA AND A. CARDONA

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.1

0.2

0.3

0.4

xy

u 
ap

p_
u 

ex

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-5

0

5

10

15

20

x 10
-3

x
y

u 
ap

p_
u 

ex

0
0.2

0.4
0.6

0.8
1

0

0.5

1
-1

-0.5

0

0.5

1

1.5

x 10
-3

x
y

u 
ap

p_
u 

ex

Figure 11. Model 3. Plots of errors computed with the LOPI scheme (1-reproduction case) with three
di�erent levels points spacing. Points are distributed randomly on the square.

6. CONCLUSIONS

Several computational features of the local optimal point interpolator for solving PDEs by
collocation are demonstrated in this paper:

• The numerical experiments performed show that the LOPI scheme is a very e�cient
method. The method is highly �exible and produces accurate results. We have demon-
strated that even a reduced number of nodes is enough to obtain an accurate solution in
simple cases.

• The method is truly meshless, without requiring any kind of grid. We have tested it with
reasonable random points distributions.

• Unlike many other particle methods, the proposed scheme is able to handle Dirichlet
boundary conditions without trouble. The interpolation functions satisfy the delta Kro-
necker property.

• The examples have shown computations with both 1- and 2-reproducing interpolants.
When using collocation with 2-reproducing interpolation, results evidenced an O(h3)
accuracy, in accordance with predictions of the theory. Nevertheless, it should be pointed
out that in most cases, the 1-reproducing interpolants gave accurate results.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 57:509–536



LOCAL OPTIMAL POINT INTERPOLATION 533

-3.5 -3 -2.5 - 2
-8

-7

-6

-5

-4

-3

-2

-1

log h

lo
g 

er
ro

r

lopi
fem
mfem
mlsq
flsq
nni
sph

-3.5 -3 -2.5 -2
-8

-7

-6

-5

-4

-3

-2

-1

log h

lo
g 

er
ro

r

lopi
fem
mfem
mlsq
flsq
nni
sph

Figure 12. Model 3. Convergence of the LOPI method, 1-reproduction case, for random grids (continu-
ous line) compared to results from other discretization methods. Lopi: this method; fem: linear triangular
�nite elements; mfem: meshless �nite element method [30]; mlsq: element free Galerkin [31]; �sq: �xed
least squares [12]; nni: natural element method [33]; sph: smooth particle hydrodynamics [32]. Top �g-
ure: convergence curves for function values; bottom �gure: convergence curves for derivatives. Curves
represent the mean of ten computations on random points distributions, with a 0:25h perturbation. Tests

were taken from the work of Del Pin et al. [30].

• The displayed examples treated only square domains. However, it is clear that the
methodology may be applied to general domains without losing its local character, at
least when their geometry is not too complicate.

The high �exibility and accuracy of this method also presents some challenging problems.
One issue in need of further study is the e�ect of constant c̃q in (8) and constant r! in (18)
on the convergence rate of the method. Changing these values can sometimes drastically alter
the accuracy of the solutions. Kansa [15] introduced the concept of variable shape parameters
in the global MQ scheme. Also, a strategy for selecting the shape parameter based upon the
local radius of curvature of the solution surface was found to give good results [34]. The
approach adopted here appears naturally when studying the convergence rate of the local
optimal interpolation formula, as we shall show in a forthcoming paper.
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Figure 13. Model 4. Approximate solutions computed with the LOPI scheme, 1-reproduction case, with
two di�erent levels of points spacing. Points are distributed uniformly in the square.
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Figure 14. Model 4. Plots of errors computed with the LOPI scheme with two di�erent levels of points
spacing. Points are distributed uniformly in the square. Figures on top display the 1-reproduction case,
while on bottom display the 2-reproduction case. We note that in the latter case, errors on the Neumann

boundaries are smaller than in the former one.
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Figure 15. Model 4. Convergence of the LOPI method for uniform grids (continuous line)
compared to results from RPKM scheme by Aluru [14]. Top plot: 1-reproduction case;

bottom plot: 2-reproduction case.

Much additional work remains to be done. Nevertheless, the results presented in this paper
are quite encouraging and show that the LOPI scheme has a great potential to become a very
competitive method for the solution of a broad class of boundary-value problems.
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