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Abstract

Given a 3D point set, the problem of defining the volume associated, dividing it into a set of regions (elements) and

defining a boundary surface is tackled.

Several physical problems need to define volume domains, boundary surfaces and approximating functions from a

given point distribution. This is for instance the case of particle methods, in which all the information is the particle

positions and there are not boundary surfaces definition.

Until recently, all the FEM mesh generators were limited to the generation of simple elements as tetrahedral or

hexahedral elements (or triangular and quadrangular in 2D problems). The reason of this limitation was the lack of any

acceptable shape function to be used in other kind of geometrical elements. Nowadays, there are several acceptable

shape functions for a very large class of polyhedra. These new shape functions, together with a generalization of the

Delaunay tessellation presented in this paper, gives an optimal marriage and a powerful tool to solve a large variety of

physical problems by numerical methods.

The domain partition into polyhedra presented here is not a standard mesh generation. The problem here is: for a

given node distribution to find a suitable boundary surface and a suitable mesh to be used in the solution of a physical

problem by a numerical method. To include new nodes or change their positions is not allowed.
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1. Introduction

Several numerical methods in computational mechanics, as well as other volume integration methods

need to subdivide the total domain in subdomains called ‘‘elements’’. This is the case for the finite element
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method (FEM) and the finite volume method. This subdivision is called ‘‘the mesh’’ and, in order to be used
in a numerical solution of a physical problem, it must satisfy several constraints.

The standard mesh generation problem starts defining the domain by means of the boundary surface

(usually a CAD definition) and then:

(a) Divide the total domain into elements by an advancing front technique (AFT) [1], or

(b) Introduce a point distribution in the domain and then perform the partition via a Delaunay tessellation

(DT) [2].

Mesh generators have an optimization stage (sometimes called smoothing or cosmetic process), which is

an iterative algorithm designed to improve element shapes until an acceptable partition is reached [3,4].

Both methods have advantages and disadvantages, which may be summarized as:

(a) In the AFT, the boundary surface elements are easily defined, but the method is more expensive com-

pared with the DT. For this reason in problems with permanent mesh update is not recommended.

(b) The big advantage of the DT is its low computational cost. Unfortunately a cosmetic process is neces-

sary in order to use the mesh in a numerical method. Furthermore, the original boundary (CAD) must
be recovered [5].

In this paper, the starting problem is quite different from the standard mesh generation one. The difficulty

of generating a mesh with a perfect match to the given CAD surface is not an issue here. In this paper, the

problem is: Given a node distribution, find an acceptable mesh and acceptable boundary surface in order to

solve some differential equation with some appropriate boundary conditions.

This is the permanent problem found in particle methods [6–9] or in any fluid mechanics problem solved

using a Lagrangian formulation [10,11]. In these problems, at each time step a new node distribution is
found and the boundary surfaces and the mesh must be updated or re-generated in order to solve again the

equations.

Several other problems as volume identification or image recognition from scanned points may also be

solved by the method proposed in this paper [12]. This method can also be used as a tool in any meshless

method, where the local cloud identification is a permanent source of trouble [13–17].

The goal of this paper is to obtain from an arbitrary node distribution a partition of the total domain.

This partition will be optimal in order to be used in a numerical method as the FEM and the number of

operations to obtain this partition must be bounded with nb, where n is the total number of nodes and b
must be near the unity. Furthermore, the partition will be unique.

2. The Delaunay tessellation

In order to better understand the new procedure, classical definitions will be introduced for some entities:

Vorono€ıı diagrams, DTs, Vorono€ıı spheres, and natural neighborhood
Let a set of distinct nodes be: N ¼ fn1; n2; n3; . . . ; nng in R3.

(a) The Vorono€ii diagram of the set N is a partition of R3 into convex regions Vi (closed or unbounded),
where each region Vi is associated with a node ni, such that any point in Vi is closer to ni (nearest neigh-
bor) than to any other node nk. See Fig. 1 for a 2D representation. There is a single Vorono€ıı diagram
for each set N.

(b) A Vorono€ii sphere within the set N is any sphere, defined by four or more nodes without any node inside.
Such spheres are also known as empty circumspheres.
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(c) The DT within the set N is a partition of the convex hull X of all the nodes into regions Xi such that

X ¼ [Xi, where each Xi is a tetrahedron defined by four nodes of the same Vorono€ıı sphere. DTs of a set
N are not unique, but each tessellation is dual to the single Vorono€ıı diagram of the set.

(d) The natural neighborhood of any point x is the region made by the union of the tetrahedra defined by

the Vorono€ıı spheres containing the node, its limiting nodes are referred as the natural neighbors of the
point. These nodes have positive weights on some interpolants over the point x [18].

The computing time required for the evaluation of all these three entities, by using the Bowyer/Watson
algorithm [19,20] with randomized insertion is Oðn1þ1=DÞ and by means of an octree organization it is
bounded by Oðn logðnÞÞ [21,22]. In practice the cost is very close to OðnÞ.
So defined, the DT of a set of nodes is non-unique. For the same node distribution, different tetra-

hedrations are possible. This means that a partition based on the DT is very sensitive to small perturbations

of the node positions (see Fig. 2). On the other hand, its dual, the Vorono€ıı diagram and also the Vorono€ıı
spheres and natural neighborhoods are unique. Thus, it makes more sense to define a partition based on the

unique Vorono€ıı spheres instead of the DT. In Fig. 2, two critical cases of Delaunay instabilities are rep-
resented. One is the case of four nodes on the same circle and the other is the case of a node close to a
boundary. In both cases, the Vorono€ıı diagram and the Vorono€ıı spheres remains almost unchanged.
Furthermore, in 3D problems the DT may generate several tetrahedra of zero or almost zero volume [23],

introducing large inaccuracies into the shape function derivatives. This is the reason why a DT must be

iteratively improved in order to obtain an acceptable partition to be used in a numerical method. This

(a)

(b)

Fig. 2. Instabilities on the DT. (a) Four nodes on the same circle; (b) node close to a boundary.

Fig. 1. Vorono€ıı diagram, Vorono€ıı circle and Delaunay triangulation in 2D.
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iterative process is expensive when the tessellation must be permanently updated. The extended Delaunay
tessellation (EDT) described below will solve this handicap.

3. The extended Delaunay tessellation

From the point of view of the application of a domain partition to the solution of a numerical method,

the best partition is that which the elements have:

(a) all its nodes on the same empty sphere (related to the concept of natural neighbor nodes), and

(b) the polyhedral elements fill the sphere as much as possible (related to the concept of optimal angle be-

tween faces).

The standard DT satisfies both previous statements only for 2D problems. Unfortunately, the second

statement is not necessarily satisfied in a 3D partition.

The drawbacks appear in the so-called ‘‘degenerated case’’, which is the case where more than four nodes

(or more than three nodes in a 2D problem) are on the same empty sphere. For instance, in 2D, when four
nodes are on the same circumference, two different triangulations satisfy the Delaunay criterion. However,

the most dangerous case appears only in 3D. For instance, when five nodes are on the same sphere, five

tetrahedra may be defined satisfying the Delaunay criterion, but some of them may have zero or almost

zero volumes, called slivers (see Fig. 3).

In order to overcome the drawbacks referred to in the above paragraphs, a generalization of the DT will

be defined and termed EDT.

Definition. The EDT within the node set N is the unique partition of the convex hull of all the nodes into
regions Xi such that X ¼ [Xi, where each Xi is the polyhedron defined by all the nodes laying on nearby

Vorono€ıı spheres. Any two spheres will be considered as ‘‘nearby’’ if their centers are closer than a pre-
defined threshold value d (see Appendix A).

The main difference between the traditional DT and the EDT is that, in the latter, all the nodes belonging

to the same and nearby Vorono€ıı sphere define a unique polyhedron. With this definition, the domain will be
divided into tetrahedra and other polyhedra, which are unique for a given d parameter, satisfying then one
of the goals required in Section 1.
Fig. 4 for instance, is a 2D polygon partition with a triangle, a quadrangle and a pentagon. Fig. 5 is a

polyhedron with all the nodes on the same sphere, which may appear in a 3D problem.

Fig. 3. Five nodes on the same sphere and possible partition with a zero volume sliver on the right.
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When d grows, the number of polyhedra with more than four nodes will increase, and the number of
tetrahedra with near-zero volume will decrease, and vice versa.

Then, the idea of the EDT is to avoid the tetrahedral partition when more than four nodes are in the

same empty sphere (or near the same). When this is the case, the best element to be used in a numerical

method is the polyhedron formed with all these nodes.

The implementation was made starting with a standard DT using the Bowyer/Watson algorithm men-
tioned above. Then the similar spheres were joined (Appendix A) in a node-wise search guaranteeing the

OðnÞ of the algorithm.
The Bowyer/Watson algorithm was chosen for its easy implementation with the same structure both in

2D and 3D and mainly due to its rely on the Vorono€ıı spheres. However, some care must be taken with
numerical precision problems when there are more than four cospherical nodes [21,24,25]. Nevertheless, the

joining similar spheres has no such problems. When the d value used is far greater than the numerical
precision, each sphere captures all the cospherical and nearby nodes.

The EDT allows the existence of a domain partition which: (a) is unique for a given d, (b) does not have
polyhedra with near-zero volume, and (c) is obtained in a bounded time of the same order as the DT

(order � n). Then, it satisfies all the goals stated previously.
It must be noted that until quite recently, all the mesh generators were limited to the generation of very

simple shapes, mainly tetrahedral [12] or hexahedral [26]. The reason of this limitation was the lack of any

acceptable shape function to be used in other kind of geometrical elements. Nowadays, several acceptable

shape functions for a larger family of polyhedra are easily generated, particularly for polyhedra having its

vertices on a spherical surface (see for instance Refs. [27,28] or Appendix B). These new shape functions,

together with the EDT gives an optimal marriage and a powerful tool to solve a large variety of physical
problems by numerical methods.

Fig. 4. Two-dimensional partition in polygons. The triangle, the quadrangle and the pentagon are each inscribed on a circle.

Fig. 5. Eight-node polyhedron. All nodes are on the same sphere.
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4. The boundary surface

As stated before one of the problems in standard Delaunay mesh generation is the correct match of the

mesh boundary with the previously defined surfaces. The problem here is quite easier. There are not

previously defined surfaces, there are only node positions and then, the definition of the boundary surface is

not unique.

Sometimes, boundary nodes are explicitly defined as special nodes, which are different from internal

nodes. In other cases, the total set of nodes is the only information available and the algorithm must
recognize the boundaries. Such is the case for instance, for the Lagrangian formulation in fluid mechanics

problems [10,11] in which, at each time step, a new node distribution is obtained and the free surface must

be recognized from the node positions.

The use of Vorono€ıı spheres may make it easier to recognize boundary nodes. By considering an arbitrary
node distribution, with hðxÞ as the typical distance between neighboring nodes, the following criterion will
be used:

All nodes defining an empty sphere with a radius rðxÞ larger than ahðxÞ, are considered as boundary
nodes.

In this criterion, a is a parameter close to, but greater than one. Note that this criterion is coincident with
the alpha shape concept [29,30].

Once a decision has been made concerning which of the nodes are on the boundaries, and which

polyhedra are in the domain, the boundary surface must be defined. It is well known that, in 3D problems,

the surface fitting a number of nodes is not unique. For instance, four boundary nodes on the same sphere

may define two different boundary surfaces, one concave and the other convex.
In order to avoid this undefined boundary, the boundary surfaces will be defined with:

All the polyhedral surfaces having all their nodes on the boundary and belonging to just one polyhe-

dron are boundary surfaces.

The boundary surface is necessary when the normals are needed in order to impose some boundary

conditions. Furthermore, in weak formulations, the boundary surface is also important for a correct

evaluation of the domain volume.
Nevertheless, it must be noted that in the criterion proposed above, the error in the boundary surface

definition is proportional to h. This is the error order accepted in a numerical method for a given node
distribution. The only way to obtain more accurate boundary surface definition is by decreasing h.

5. Element quality indicator

A polyhedron quality indicator will be defined in order to evaluate the partition obtained with the EDT
compared with other methods.

A wrong mesh is a mesh which is not acceptable to be used in a numerical method. The main drawback of

a Delaunay mesh is the presence of tiny volume polyhedra. In fact, the problem of tiny volumes is the ex-

istence of shape functions with very large gradients. These large gradients deteriorate the numerical solution.

Classical definition of mesh quality [3] will not be used here. The reason is that in this paper a node

distribution is considered for which an optimal partition must be found without moving or removing nodes.

The presence of nodes very close to each other in the node distribution is considered as a necessity of the

physical problem to represent correctly a gradient in the solution and not as a wrong partition.
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For instance, tetrahedra named spires and wedges in Fig. 6 will be considered elements of good quality
because they are the best elements for a node distribution with the nearest nodes along one direction and

more separated nodes in the other. These elements represent correctly the gradient ‘‘expected’’ in each

direction to solve a particular physical problem. On the other hand, slivers or splinters as well as caps, will

be considered wrong elements because they introduce shape functions with infinite or almost infinite

gradients, which are not in agreement with the gradients expected for this node distribution.

In order to obtain a parameter to define which is a good or a wrong element to be used in a numerical

method, but taking into account that the node distribution is fixed and introduced for physical needs, the

gradient ratio c will be defined as:

c ¼ maximum gradient expected

maximum gradient of the shape functions
: ð1Þ

The maximum gradient expected for the node distribution will be defined in each polyhedron as 1=hmin,
where hmin is the shortest distance between two nodes belonging to the polyhedron.
The maximum gradient of the shape functions may be evaluated directly using the largest gradient

modulus from the shape functions of the polyhedron jrNpjmax at the geometrical center. (See Appendix B
for the definition of the shape functions Np).
The quality of a polyhedron from a fixed node distribution is then numerically defined as:

c ¼ h�1min
jrNpjmax

: ð2Þ

It must be noted that in the EDT algorithm there is not any smoothing process in which element qualities

must be evaluated many times. The gradient ratio c is defined here in order to verify the quality of the
resulting mesh, only for the sake of this paper. It is by no means used in the normal operation of the

program.
The ideal element will therefore have a large gradient ratio. This element will have its nodes near the same

Vorono€ıı sphere and an acceptable shape function for numerical computations as previously required. On
the other hand, bad elements have all their nodes near the same empty sphere, but the small c value will
indicate high shape function gradients capable to destroy the numerical solution.

Fig. 6. Perspective, unfolding and naming of some bad-shaped tetrahedra.
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Taking into account that the computer precision nowadays is of order 10�16, and also the results from the
numerical test performed in the next section, a gradient ratio c > 10�3 is recommended in order to accept a
mesh for numerical computations.

6. Numerical tests

6.1. Solution of the Poisson equation on a cube

In order to check whether or not a mesh is acceptable to be used in a numerical method, a physical

problem must be solved using that partition.

A cube of unit side, with an internal exponential source, has been used to validate the EDT.

The problem to be solved is the classical Poisson equation:

r2u ¼ f ðx; y; zÞ ð3Þ

with the internal source:

f ðx; y; zÞ ¼ ð�2kyzð1� yÞð1� zÞ þ ðkyzð1� yÞð1� zÞð1� 2xÞ2Þ2

� 2kzxð1� zÞð1� xÞ þ ðkzxð1� zÞð1� xÞð1� 2yÞ2Þ2

� 2kxyð1� xÞð1� yÞ þ ðkxyð1� xÞð1� yÞð1� 2zÞ2Þ2Þ
� ð�ekxyzð1�xÞð1�yÞð1�zÞ=ð1� ek=64ÞÞ: ð4Þ

The boundary condition is the unknown function u set equal to zero on all the boundaries.
This problem has the following analytical solution:

uðx; y; zÞ ¼ ð1� ekxyzð1�xÞð1�yÞð1�zÞÞ=ð1� ek=64Þ: ð5Þ

Several node distributions have been tested with 125 (53), 729 (93), 4913 (173), and 35,937 (333) nodes, with

structured and non-structured node distributions. In all cases, the numerical solution was obtained using

linear finite element shape functions for tetrahedral elements and polyhedral shape functions (as defined in

Appendix B) for polyhedral elements.

The following procedure was used to generate the structured node distributions: initially all the nodes
were in a regular cubic array with a constant edge length h. Then, each internal node has been randomly
displaced a distance qh (with q 
 1) in order to have an arbitrary, but structured, node distribution.

Surface and edge nodes are perturbed but remaining in the surface or the edge. Corner nodes were not

perturbed. In this paper, the parameter q was fixed to 10�6.
The 3D non-structured node distribution was generated using the GID pre/post-processing code [31] with

a constant h distribution. GID generates the nodes using an AFT, which guarantees that the minimal

distance between two nearby nodes lies between 0:707h and 1:414h.

6.1.1. Extended Delaunay tessellation vs. standard Delaunay tessellation

It must be noted that in 2D problems, both node distributions generated as described before, struc-

tured and non-structured, will give a Delaunay partition with near-constant area triangles, which is

optimal for a numerical solution. Nevertheless, this is not the case in 3D problems in which, even for a

constant h node distribution, many zero or near-zero volume tetrahedra (slivers) will be obtained on a
standard Delaunay partition. Fig. 7 shows, for instance, the presence of slivers on a structured eight-node

distribution. The eight nodes have been randomly displaced a small distance from the regular cubic array

in order to force the generation of wrong tetrahedra. Slivers may introduce large numerical errors in the
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solution of the unknown functions and their derivatives, which may completely destroy the solution. In

standard DT, slivers are eliminated by means of a cosmetic algorithm, like edge-face swapping or moving

the nodes.

In order to show this behavior and to show that the EDT eliminates slivers automatically from the mesh,

without any cosmetic algorithm, the following tests were performed:

For a fixed-node set (e.g. 173 nodes), d was swept from 0 to 10�1. Extremely low values of d results in
meshes equal or similar to the DT. Large values of d allow more spheres to be joined, giving well-shaped
polyhedra displaying the full power of the EDT.

Fig. 8 shows the error in L2 norm for the derivative of the solution of the 3D problem stated in Eqs. (3)
and (4). This has been done both for structured and non-structured distributions against the d parameter. It
can be shown that in both cases the errors are very large (�101) for d < 10�6 and very small (�10�2) for
d > 10�5. Larger values of d do not change the results.
This example is very important because it is showing that, for a given node distribution, the standard

Delaunay concept without cosmetic does not work. Mesh generators currently use edge-face swapping or
another algorithms to overcome the presence of wrong elements. All those operations are iterative. The idea

of joining similar spheres, solves this problem on a very simple way. The wrong tetrahedra are automat-

ically joined to form polyhedra with optimal shapes.

The results of Fig. 8 show also that dmust be large compared with the computer precision (e.g. �10�5 for
a computer precision of order 10�16) but also means that d is not a parameter to be adjusted in each ex-
ample because the results do not change by setting d larger than 10�4.

Fig. 7. Presence of slivers in a Delaunay partition of a perturbed cube. Left: tetrahedra produced by the Delaunay partition. Right:

slivers isolated.

Fig. 8. Cube with exponential source. Error of the derivative in L2. Left: structured node distribution. Right: non-structured node
distribution.
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6.1.2. Good and wrong elements

In order to show the performance of the EDT to generate good elements, the gradient ratios of the node

distribution of the previous example was evaluated.

In Fig. 9, for each d value, the heights of the columns represent the number of elements having their
gradient ratios c in the indicated range.
The importance of Fig. 9 is to show that, by joining similar spheres, the best polyhedra are automatically

built. For the standard DT (and also for small d values), there are bad tetrahedra (extremely low c) for both
the structured and the non-structured node distribution. By increasing d the wrong elements disappear.
For the structured case, with an adequate d value all the elements become ‘‘automatically’’ hexahedra

(cubes). Note that the hexahedra are the best elements for this node distribution.

For the non-structured case, when d is set to any value larger than 10�6, EDT ensures a mesh without any
element with c lower than 10�3 (slivers). Note that values of d greater than 10�1 gives the better elements,
whose qualities c are over 10�1.

Fig. 9. Number of polyhedra vs. gradient ratio c for different d. Top: structured node distribution. Bottom: non-structured distribution
made by GID.
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All the examples shown in this paper were carried out with a fixed d ¼ 10�2. With that value, the resulting
polyhedra have qualities c > 10�2.

6.1.3. Convergence rate

Fig. 10 shows the convergence of the above-defined example, when the number of nodes is increased from

53 to 333. The upper plots show the error in L2-norm, both for the function and its derivatives. All the
graphics show an excellent convergence rate. It must be noted that for all the non-structured node dis-

tributions tested (and also the structured ones for q ¼ 10�6), the FEM with elements generated using a DT

gave totally wrong results, and even ill-conditioned matrices were frequently found during the stiffness
matrix evaluation.

6.1.4. Computing times

In order to validate that the number of operation in the evaluation of the EDT partition is order near n,
the computing time in a standard PC (Intel PIII 800 MHz) was analyzed. Fig. 11 shows the time in seconds

for both the structured and non-structured cases.

A regression of the obtained results shows that the computing time is approximately:

tðsÞ ¼ 0:000325n1:08 for structured meshes and

tðsÞ ¼ 0:000283n1:10 for non-structured;

showing that the convergence exponent is close to 1 as expected in a DT.

Fig. 10. Cube with exponential source. Convergence of the numerical solution and its gradient for different partitions. Upper left:

structured node distribution. Upper right: non-structured node distribution. Below: centerline solutions obtained with structured node

distribution (the same results were obtained using non-structured node distribution).

S.R. Idelsohn et al. / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2649–2667 2659



6.2. Three-dimensional arbitrary geometry mesh

In order to show the performance of the method with in an arbitrary 3D geometry, a volume representing

the vocal A was generated with distributions of n ffi 103 and 105 nodes, using the GID node generator with
constant h. Fig. 12 left shows, for instance, the boundary node distribution for n ¼ 8452 nodes.
Using the EDT algorithm described in Section 3 with the boundary surface definition described in

Section 4 and an alpha shape parameter a ¼ 1:3, polyhedral partitions were found with external boundary
surfaces represented in Fig. 12.
It must be noted the accurate definition of the boundary surface representing the letter A by the alpha

shape method. The errors in the concavities are the intrinsic error for the h node distribution.
Table 1 summarizes the main characteristics of the polyhedral mesh made for the larger node set,

compared with the tetrahedral mesh obtained via the standard DT.

From a total of 106,947 nodes, the standard DT generates 599,934 tetrahedra, but 349 of them are slivers.

On the other hand, EDT generates 430,262 tetrahedra and 67,162 polyhedra with more than four nodes.

None of them have gradient ratio smaller than 10�2. Another interesting conclusion to take out from this

example is that in the EDT mesh, 86.5% of the elements are tetrahedral and then, in these elements the
definition of the shape functions (Appendix B) will be coincident with classical linear shape functions of the

FEMs.

t = 3.25E-04n 1.08
t = 2.83E-04n

1.10

10

100

1000

1.E+04 1.E+05 1.E+06

Nodes

T
im

e
 [

se
c]

Cubic array (structured)

Random nodes in a cube (non-structured)

Fig. 11. Time vs. number of nodes in a standard PC.

Fig. 12. Three-dimensional arbitrary geometry. Left: boundary nodes from the point distribution generated by GID with constant h
and 8452 nodes. Center: boundary surface for 8452 nodes. Right: boundary surface for 106,947 nodes.
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Finally, Fig. 13 shows the slivers distribution in the mesh. Elements having quality c smaller than 10�2

have been plotted in black. Zero bad polyhedra have been found in the partition given by the EDT.

6.3. Meshing tomographic data

The next example shows the problem of meshing the cranial bone of a Carnotaurus Sastrei dinosaur (Fig.

14).

Fig. 14. Cranial bone of a Carnotaurus Sastrei dinosaur.

Table 1

Three-dimensional arbitrary geometry: comparison between EDT and DT

EDT DT

Nodes 106,947 106,947

Elements 497,424 599,934

Tetrahedra 430,262 599,934

Non-tetrahedra 67,162 0

Slivers 0 349

cmin 1.84e)2 2.34e)16

Fig. 13. Wrong elements in the 106,947 nodes tessellation. Left: 349 bad tetrahedral (slivers) in the DT. Right: zero wrong polyhedra in

the EDT.
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The node set was made starting with a stack of 2D tomographic images and then superimposing a regular
array of points on each image and discarding the external nodes, resulting in a total of 110,676 nodes.

Fig. 15 shows the boundary surface obtained using a ¼ 1:07. The surface displays a great level of detail
respecting the large variety of shapes present, with holes, cavities, and sharp concavities.

In order to show the advantages of the EDT over the standard DT, both meshes were generated. The

standard DT gives a large amount of slivers whereas all the EDT elements are well shaped.

It must be noted that the node set is very structured, causing the presence of a lot of slivers in the

standard DT. Fig. 16 shows, in the left, the DT slivers (the dark spots) positioned into the domain, at the

right is shown that the EDT produces no slivers at all.
Table 2 summarizes the main characteristics of both meshes obtained.

In order remark the ability of the method for recognizing surfaces, a smooth-rendered image of the

complete skull was performed using the obtained boundary surface (Fig. 17). The mandible has received the

same processing as the cranial bone, and both pieces were mirrored to produce the displayed image.

Fig. 16. Cranial bone. Left: sliver identification in the DT. Right: none sliver in the EDT.

Fig. 15. Cranial bone: boundary surface.
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6.4. Solution of a fluid mechanic transient problem with free surface and breaking waves

The main motivation behind the development of the EDT method was to solve fluid mechanical prob-

lems using particle methods and Lagrangian formulations where a permanent mesh update and free-surface

recognition are needed after each time step. In fact, the method has been successfully used in a large variety

of such problems, both in 2D as well as in 3D domains [11].

The next example presents one of such problems solved: the collapse of a water column in a recipient.

This problem was experimentally and numerically solved in Ref. [6], and became a classical example for
validating Lagrangian formulations.

Initially the column is located on one side of the recipient, supported by a removable board. The collapse

starts when the board is slipped-up. The water suddenly falls running by the bottom until it impinges the

opposite wall. The water goes up and then come down making a breaking wave and a set of minor

travelling waves. The recipient walls were modeled by means of a set of fixed points and the initial water

column by using a regular array.

Fig. 18 shows six time steps along with their corresponding meshes. Small circles represent boundary

nodes recognized by the method.

Table 2

Cranial dinosaur bone: comparison between EDT and DT

EDT DT

Nodes 110,676 110,676

Elements 392,593 529,808

Tetrahedra 430,262 529,808

Non-tetrahedra 67,162 0

Slivers 0 1653

cmin 2.55e)2 2.38e)7

Fig. 17. Dinosaur skull: smooth-rendered image.
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At time t ¼ 0, almost all the elements were recognized as squares. Although on the following snapshots
most of the elements are triangular, several non-triangular polygons were also found inside the domain.

There are also some internal boundaries representing voids, which are related with the alpha shape rec-

ognition (see for instance t ¼ 0:86).
Isolated nodes and small groups of isolated elements were found as disjoint pieces by the alpha-shape

boundary-surface recognition. They represent small flying drops detached from the fluid.

The numerical results obtained, both in the timing (velocity of waves) and in the shape of the free surface,

are in excellent agreement with the experimental result presented in Ref. [6].

7. Conclusions

For a given set of nodes with arbitrary 3D distribution and non-structured and variable distance between
nodes, the method proposed gives a polyhedral mesh and a boundary surface with the following charac-

teristics:

Fig. 18. Fluid mechanic transient problem: meshes and boundary nodes.
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(a) The solution is unique for a given set of parameters d and a. The solution is not sensitive to small vari-
ations of those parameters.

(b) Each polyhedron has all its nodes very close to the same empty sphere (optimal distance between

nodes).

(c) Each polyhedron has an acceptable positive volume to be used in a numerical method. (The maximum

gradient of the shape functions is not very large compared with the expected gradient for a given node

distribution.)

(d) The correct definition of the boundary surface obtained depends on the local node distance between
nodes hðxÞ.

(e) The computing time to achieve the mesh is of order near n, the same as the standard DT without further
cosmetics.

(f) The large majority of the polyhedral elements generated are tetrahedra (around 85% in an arbitrary

node distribution). This allows the use of standard linear finite element shape functions in all of them.
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Appendix A. Criterion to join polyhedra

Consider two Vorono€ıı spheres having nearby centers. See Fig. 19 for a two-dimensional reference.
As both Vorono€ıı spheres are empty, they must satisfy the following relationship:

jr2 � r1j6 kc1 � c2k; ðA:1Þ

where r are the radii and c the centers of the spheres.

Thus, two spheres are similar when their centers satisfy:

kc1 � c2k < drrms; ðA:2Þ

where d is a small non-dimensional value and rrms is the root-mean-square radius.
Two polyhedra will be joined if they belong to similar spheres. When all the nodes of a polyhedron

belongs to another polyhedron, only the last one is considered.

Fig. 19. Four nodes in near-degenerate position showing the empty circumcircles, the Vorono€ıı diagram and the corresponding dis-

continuous Delaunay triangulation.
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Then, the algorithm consist in

(1) Find all the four-node empty spheres (DT).

(2) Join successively all the polyhedra using the above criterion.

(3) Delete all the polyhedra whose nodes belongs to another polyhedra.

Appendix B. Shape functions for arbitrary 3D polyhedra

For any point within a polyhedron P, there is a Vorono€ıı cell VðxÞ associated to the variable point x in the
Vorono€ıı tessellation of the set P [ fxg.
Fig. 20 shows that every node np 2 P has a corresponding face Fp of V, which is normal to the segment

fx; npg by its midpoint. This is because V is the set of points closer than x than any other point.
Defining the functions:

/pðxÞ ¼ sp=knp � xk ¼ sp=hp; ðB:1Þ

as the quotient of the Lebesgue measure sp of Fp and the distance hp between the point x and the node np.
The shape functions are:

Np ¼ /p=Rq/q; ðB:2Þ

All the properties of this shape function can be found in Ref. [28].
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