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Abstract The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial 
role in human health. A disruption in this evolutive balance, particularly during early life, can lead 
to immune dysregulation and inflammatory disorders. ‘Biome repletion’ has emerged as a potential 
therapeutic approach, introducing live microbes or helminth-derived products to restore immune 
balance. While helminth therapy has shown some promise, significant challenges remain in opti-
mizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the 
optimal timing and dosage of their products or metabolites must be carefully considered to train 
the immune system effectively. We aim to discuss how helminths and their products induce trained 
immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire 
of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-
carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and 
hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes 
could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial 
for their translation into clinical applications. By deciphering and harnessing helminth-derived prod-
ucts’ diverse modes of action, we can unleash their full therapeutic potential and pave the way for 
innovative treatments.

Trained immunity
Trained immunity describes the long-term functional reprogramming of innate host defense mech-
anisms or a de facto innate immune memory, where environmental stimuli, such as the commensal 
host biome, their products, or even endogenous molecules, can alter a second immune response by 
metabolic or epigenetic reprogramming (Netea et al., 2020).

Immunological memory has been traditionally associated with the adaptive arm of the immune 
response in vertebrates. However, unlike vertebrates, most species rely exclusively on innate immunity 
for host defense. Therefore, a critical evolutionary attribute like immunological memory is unlikely to 
be limited to adaptive immunity and absent in the innate response in the whole spectrum of living 
organisms (Divangahi et al., 2021).

In the last decades, this understanding that only adaptive immunity can shape immunological 
memory has been increasingly challenged. After facing a primary stimulus, epigenetic and metabolic 
alterations of bone marrow progenitor cells and functional changes of tissue immune cell populations 
result in enhanced immune responses against a secondary encounter. This long-term reprogramming 
process has been named ‘innate immune memory’ or ‘trained immunity’ (Netea et al., 2011), adding 
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new complexity to our previous knowledge of immunological memory, an attribute limited to antigen-
specific responses of the adaptive compartment of the immune system (Netea et al., 2016).

The specificity of adaptive immune memory in vertebrates is ensured through immunoglobulin 
gene recombination and clonal expansion, while nonspecific trained innate immune response relies 
on still not fully understood mechanisms closely intertwined epigenetic, transcriptional, and metabolic 
pathways (Vuscan et al., 2024).

In animals, evidence comes from studies showing that vaccination with the tuberculosis vaccine 
Bacillus Calmette-Guérin (BCG) - the most commonly used vaccine worldwide - induces T cell-
independent protection against secondary infections with Candida albicans, Schistosoma mansoni, 
or influenza (Spencer et al., 1977; Tribouley et al., 1978; van ’t Wout et al., 1992). In human volun-
teers, BCG vaccination protects against an experimental infection with the yellow fever vaccine virus 
(Arts et al., 2018). Moreover, extensive epidemiological studies have reported protective heterolo-
gous effects of both BCG and measles vaccination (Arts et al., 2018; Benn et al., 2013; Goodridge 
et al., 2016).

In addition, herpesvirus latency increases resistance to the bacterial pathogens Listeria monocyto-
genes and Yersinia pestis (Barton et al., 2007), with protection achieved through enhanced produc-
tion of IFNγ and systemic activation of macrophages. Similarly, infection with the helminthic parasite 
Nippostrongylus brasiliensis induces a long-term macrophage phenotype that damages the parasite 
and induces protection from reinfection independently of T and B lymphocytes (Chen et al., 2014).

It is also significant to emphasize that while trained immunity is an evolutionary trait that increases 
fitness against pathogenic microbes, it may also be maladaptive in the context of chronic inflamma-
tory diseases. Thus, trained immunity may conversely contribute to the pathophysiology of cardiovas-
cular, autoinflammatory, and neurodegenerative diseases. Indeed, in addition to microbial exposure 
and products, endogenous molecules can induce trained immunity. For instance, a Western-type diet 
prompts trained immunity in animal models of atherosclerosis, which perseveres even after a switch to 
a healthy chow diet (Christ et al., 2018).

In addition, it is notable that trained immunity induced by BCG vaccination was associated in the 
enhanced induction of immune self-tolerance in models of autoimmunity such as type 1 diabetes 
and multiple sclerosis (Ristori et al., 2018). At least in some autoimmune conditions, the advanta-
geous effects of BCG vaccination, denote an interesting aspect of the host-microbe interaction in 
the pathophysiology and treatment of immune-mediated diseases. Although the precise molecular 
mechanisms are not entirely understood, this data supports the idea that exposure to microbes may 
relieve conditions characterized by chronic inflammation and injury of tissues, such as inflammatory 
and autoimmune diseases.

The gut biome and chronic inflammatory diseases
The gut biome is the ecosystem composed of bacteria, viruses, fungi, archaea, and helminths that 
inhabit our gastrointestinal tract. After millennia of coevolution, humans have established a symbiotic 
relationship with their commensal biome, in particular, as an essential contributor to the development 
and training of the host immune system (Belkaid and Hand, 2014; Ley et al., 2006; Zheng et al., 
2020). Dysbiosis, defined as an imbalance in the microbiome composition or function due to loss of 
beneficial microorganisms, overgrowth of pathogens or loss of overall diversity, has gained attention 
in recent years, as evidence suggests it could play a crucial role in the development of inflammatory 
diseases (Petersen and Round, 2014; Hand et al., 2016; Alagiakrishnan et al., 2024).

Research suggests that a disturbance in the interaction between host microbes early in life could 
leave an imprint on the immune system, leading to excessive reactivity later on, predisposing the indi-
vidual to inflammatory disorders (Al Nabhani and Eberl, 2020). Furthermore, studies demonstrate 
that the mode of delivery significantly impacts microbiome composition during the first years of life; 
for example, a caesarian section leads to delayed colonization by the phylum Bacteroidetes, which 
is associated with reduced T helper 1 cells (Th1) responses during infancy and a higher incidence of 
allergies (Jakobsson et al., 2014). In adulthood, the microbiome becomes relatively stable, and it is 
generally considered healthy when characterized by high diversity (large number of species) and high 
evenness (high abundance of numerous species) (Bradley and Haran, 2024; Odamaki et al., 2016; 
Jeffery et al., 2016). The reason appears to be that a more diverse microbiome covers a more signif-
icant number of functional niches, with different species supporting different aspects of the host’s 
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health and homeostasis, including nutrition, protection against pathogens, immune system regula-
tion, maintenance of gut barrier integrity, xenobiotic and drug metabolism, among others (Sommer 
et al., 2017; Shepherd et al., 2018; Gibbons, 2019).

The last century has witnessed a rise in allergies and inflammatory and autoimmune diseases, with 
a higher prevalence in industrialized societies. This was also supported by the observation that people 
migrating from an area with a low incidence of immune-mediated diseases to an area with a higher 
one increases the likelihood of acquiring such disorders (Bach, 2002; Alter et al., 1978; Bodansky 
et al., 1992; Hammond, 2000). The first postulate to explain these observations was the ‘hygiene 
hypothesis’, coined in 1988 by David Barker and supported later by David Strachan in 1989 (Barker 
et al., 1988; Strachan, 1989; Perkin and Strachan, 2022). Nonetheless, a more comprehensive and 
evolutionary explanation emerged in 2003 with the ‘old friends hypothesis’, proposed by Graham 
A. W. Rook, which states that a lack of exposure to certain host evolved-dependent organisms that 
stimulate immunoregulatory pathways results in an overreactive immune system that targets autoanti-
gens and harmless allergens (Yazdanbakhsh et al., 2002; Rook, 2023; Rook et al., 2004; Scudellari, 
2017).

Helminths play a central role in the ‘old friends hypothesis’ because, until the onset of industrial-
ization, our immune system had to evolve alongside the presence of chronic parasitic infections within 
the host, as happens in wild animals. The depletion of helminths and other microorganisms from our 
biome (see Box 1), coupled with different environmental factors like reduced vitamin D levels and 
increased psychological stress, has potentially led to an ‘evolutionary mismatch,’ a condition in which 
an organism becomes maladapted to a rapidly changing environment. (Parker and Ollerton, 2013; 
McSorley and Maizels, 2012; Panelli et al., 2020).

Autoimmune diseases have a multifactorial origin, with genetics playing an important role in deter-
mining predisposition (Patsopoulos et al., 2019; Harroud and Hafler, 2023); however, what some 
have termed as an ‘autoimmune epidemic’ can’t be solely attributed to gradual genetic changes, 
which means that environmental factors play a decisive role. Several environmental agents have been 
implicated, including dietary factors, plant, animal, and house environment, vitamin D levels, viral 
infections, and the gut biome, among others, (Zhao et al., 2019; Sundaresan et al., 2023; Sîrbe 
et al., 2022; Zhang et al., 2020); see Figure 1.

The microbiota maintains gut and systemic immune homeostasis by modulating its innate and 
adaptive branches. It achieves this through two main pathways: the production of metabolites and 
the release of bacterial-derived factors that directly interact with the host’s immune system (Zheng 
et al., 2020). There are three major classes of microbiota-derived metabolites: short-chain fatty acids 
(SCFAs), tryptophan (Trp), and bile acid (BA) metabolites (Wang et al., 2023b). SCFAs, carboxylic acids 
with less than six carbon atoms, are produced by bacteria as a result of carbohydrate fermentation. 
The most common SCFAs are acetate, propionate, and butyrate. Through regulation of epigenetics 
and binding to membrane receptors, they have been shown to modulate the immune system and 
inflammation by reducing the recruitment of innate immune cells and the differentiation of lympho-
cytes (Yao et al., 2022), see Figure 1. Trp derives from ingested proteins and is transformed into 
different metabolites by the gut microbiota, including indole, indole-3-acid-acetic, indole-3-propionic 
acid, indoleacrylic acid, and tryptamine. Several of these metabolites contribute to gut homeostasis 

Box 1. 

The Biome Depletion Theory states that the loss of species diversity from the human 
body’s ecosystem in modern industrialized countries leads to immune dysregulation and 
a subsequent increase in the prevalence of chronic inflammatory-associated diseases. This 
paradigm appreciates the importance of an array of microbes and helminths as essential for 
immune system development and regulation (Parker and Ollerton, 2013, von Hertzen et al., 
2011).

The Gut-Brain Axis proposed the gut microbiota as a central environmental contributor to 
immune-mediated diseases such as multiple sclerosis (MS) (Correale et al., 2022).
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and exert anti-inflammatory functions through binding to nuclear receptors: the aryl hydrocarbon 
receptor (AhR) and the pregnane X receptor (PXP) (Su et al., 2022). BA is synthesized in the liver 
and transported to the intestine, where they are transformed by bacteria, generating BA metabolites 
that regulate metabolic and immunological function (Cai et al., 2022). An imbalance in the levels of 
microbiota-derived metabolites due to dysbiosis has been associated with a wide range of metabolic 
and inflammatory diseases (Hand et al., 2016; Parada Venegas et al., 2019; Ma et al., 2024). As 
a result, in recent years, there has been a considerable focus on the development of microbiome-
targeted interventions to restore eubiosis through various approaches, including prebiotics, probi-
otics, dietary modifications, and fecal matter transplants.

In addition to dietary patterns, physical activity, and antibiotics, helminth infection is another 
factor that could induce a shift in microbiome composition (Figure 1). Findings on this topic have 
been somewhat inconsistent, with some studies reporting changes in microbial diversity and others 
indicating no significant effects. A study conducted in a rural village in the Philippines found that 
helminth-positive individuals increased Faecalibacterium abundance and that the increase was more 
pronounced in subjects co-infected with several helminth species (Gordon et al., 2020). Notably, it 
has been reported that Faecalibacterium species have anti-inflammatory properties, promoting the 
induction of regulatory T cells (Treg), and are decreased in patients with inflammatory bowel diseases 
(Touch et al., 2022). Another study compared the microbiome of indigenous Malaysians from five 
villages with different prevalences of helminth infections and found that those living in villages with 
a higher rate of helminth infections had more diverse microbiomes and more uncharacterized bacte-
rial species, and in the different villages, the helminth infection was associated with the differential 
abundance of distinct bacterial taxa; interestingly, after deworming with albendazole there were no 
significant changes in species richness (Tee et al., 2022).

The variability in the results obtained so far could be due to differences in helminth species and 
their anatomical site of infection, stage of infection, geographic location, host genetics, lifestyle, and 
methodological approaches. Given the implication of the gut biome in the development of chronic 
inflammatory diseases and the ability of helminths to induce a state of immune hyporesponsiveness 
and regulatory networks in the host to benefit themselves, it’s crucial to deepen our understanding of 
the complex interactions of parasites, host and the microbiome (Figure 1).

Figure 1. The interplay between gut microbiota, immune system, and environmental factors. Our immune system’s development, maturation, and 
response to challenges are significantly influenced by the composition of our gut biome. This complex ecosystem is shaped not only by host genetics 
but also by critical environmental factors such as diet, lifestyle, and exposure to animals, plants, and other individuals. The micro- and macro-biota play a 
vital role in maintaining both gut and systemic immune homeostasis by modulating both innate and adaptive immune responses. Helminths can directly 
or through the microbiota or metabolic changes educate or train our immune system to promote regulatory networks that benefit from a less aggressive 
inflammatory response. A deeper understanding of the intricate interactions between parasites, hosts, and the microbiome is essential to develop 
effective strategies for preventing and treating chronic inflammatory diseases. SCFA, a short-chain fatty acid metabolite. This figure was created using 
BioRender.com. 
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Helminths and immune regulation
Helminths are organisms with complex life cycles, living up to decades within their hosts. Their life 
cycle usually involves migratory phases during the different stages of infection, resulting in damage to 
several host tissues. The prototypical immune response to a helminth infection is characterized by type 
2 immunity, involving T helper 2 cells (Th2), IgE production, eosinophils, mast cells, basophils, alterna-
tively activated macrophages, type 2 innate lymphoid cells (ILC2) and the cytokines IL-4, IL-5, IL-9 and 
IL-13, among others. This response promotes the expulsion of the parasite and tissue repair pathways 
(Maizels and Gause, 2023; Smallwood et al., 2017). To be able to establish chronic infections and 
promote their survival within the host, helminths have developed an array of immunoregulatory path-
ways, characterized by an expansion of Treg, elevated levels of IL-10 and TGFβ, immunoregulatory 
monocytes and B-cell class switch to IgG4, associated with immune tolerance (Maizels et al., 2018; 
Gazzinelli-Guimaraes and Nutman, 2018). A balance between the Th2 and the Treg responses is 
likely to be essential to allow the survival of both host and parasite since an excess of either would 
damage the host due to pathological fibrosis or severe parasite burden (Harris and Loke, 2017; 
Everts et al., 2010). Considering also that helminth infections are associated with changes in the 
microbiome and that its composition plays a significant role in the development and progression of 
inflammatory diseases, as discussed earlier, it is plausible that helminths also induce immunomodu-
lation in the host by altering microbial diversity (Llinas-Caballero et al., 2022; Kupritz et al., 2021). 
For example, it was recently demonstrated that infection with an extra-intestinal helminth, Echino-
coccus multilocularis, attenuates colitis in mice through the expansion of colonic Tregs. This effect was 
partially mediated by a shift in microbiome composition, resulting in elevated levels of SCFAs (Wang 
et al., 2023a).

Helminths have evolved sophisticated mechanisms to modulate the host’s immune system, with ESP 
being the primary one. These ESP comprise all the molecules that are actively released or produced as 
waste throughout their life cycle, including proteins, small peptides, enzymes, lipids, and glycans, and 
they are specific in species and stage (Maizels et al., 2018; van der Zande et al., 2019; Sobotková 
et al., 2019). In the last decades, scientists have invested significant effort in identifying and isolating 
bioactive molecules released by helminths due to their potential to be developed as therapeutic 
agents. A promising candidate for an ESP-based therapeutic is the TGF-β mimic from the murine 
helminth parasite Heligmosomoides polygyrus (Hp-TGM). This molecule, which mimics endogenous 
proteins, exhibits potent immunoregulatory properties, including the expansion of Tregs (Johnston 
et al., 2017). Interestingly, intranasal and parenteral administration of Hp-TGM has successfully alle-
viated allergic airway inflammation in mice, demonstrating its capacity to control lung inflammation 
and allergic pathology (Chauché et al., 2022). More recently, a paradigm shift occurred after discov-
ering that ESP contains EVs, allowing the helminth to deliver fragile cargo, like RNA, to distant cells 
(Marcilla et al., 2012).

The concept of ‘biome repletion’ arose as a potential strategy to address the rising prevalence 
of inflammatory, allergic, and autoimmune diseases and advocate for the integration of live micro-
biota into standard clinical approaches, including the exploration of helminth administration in clinical 
trials (Rook, 2023; Bilbo et al., 2011) or the development of helminth-derived products that target 
specific immune response (Maizels et al., 2018; Ditgen et al., 2014). Several studies in mice with 
experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), have 
explored the effects of helminth therapy. Preimmunization with eggs of the trematode Schistosoma 
mansoni decreased immune cell infiltration into the central nervous system and improved clinical 
scores, with these effects being dependent on STAT6, a key mediator in Th2 differentiation (Sewell 
et al., 2003). EAE disease severity was also ameliorated by H. polygyrus, in an IL-4Rα-dependent 
manner, and that protection requires live helminth infection. It is essential to note that Hp-TGM does 
not fully replicate the suppressive effects of live H. polygyrus infection indicating that additional regu-
latory pathways are activated by infection, which could be crucial for EAE (White et al., 2020). In 
this model, disease protection is associated with increased Tregs, GATA3 +, and ST2 + cells, reduced 
RORγt+and IL-17A cell responses, and a lower level of myeloid cell infiltration into the CNS (White 
et al., 2020).

In contrast, another study analyzed the effects of infection with the nematode Strongyloides vene-
zuelensis on the development of EAE in mice and found no alterations in clinical score or inflam-
mation in the central nervous system (Chiuso-Minicucci et  al., 2011), whereas infection with the 
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nematode Toxocara canis worsened the course of the disease, resulting in higher clinical scores and 
increased weight loss (Novák et  al., 2022). These studies demonstrate the complex interactions 
between different helminths and the host in the context of inflammatory diseases and highlight the 
importance of certain helminth species for potential therapeutic applications, as well as the dosage, 
timing of inoculation, and life stage of the parasite. Despite the variation of protocols, most of the 
research has shown a protective effect of helminths in the context of EAE, especially when adminis-
tered before the onset of disease (Charabati et al., 2020). Further research is needed to elucidate the 
specific regulatory pathways underlying each disease and to identify appropriate ESP candidates for 
the development of more specific treatment strategies.

Previously, pioneer work in the field studied a cohort of patients with MS in Argentina with 
naturally-acquired gastrointestinal helminth infections were followed for 5 y and showed a significantly 
lower number of relapses, reduced disability scores, and lower Magnetic Resonance Imaging (MRI) 
activity compared to uninfected MS patients. Notably, when four of these patients received anthel-
mintic treatment, their disability scores and their exacerbations significantly increased, providing a 
direct role of the helminths in the modulation of this autoimmune disease (Correale and Farez, 2007; 
Correale and Farez, 2011). Furthermore, our group demonstrated that these natural helminth infec-
tions enhanced a negative regulatory axis, as the tyrosine kinase TYRO3, AXL, and MERTK (TAM) 
receptors and their ligands (PROS1 and GAS6), contributing to the dampening of the inflammatory 
response in patients with MS (Ortiz Wilczyñski et al., 2020). In this study, we found first a reduced 
levels of TYRO3 in circulating monocytes, dendritic cells, and CD4 lymphocytes in patients with only 
MS, compared to healthy donors, denoting a strong influence of the disease condition. Remarkably, 
this scenario is reversed in patients with MS who have naturally acquired gastrointestinal helminth 
infections, increasing the expression of three TAM receptors in antigen-presenting cells and their 
agonist GAS6 in circulating monocytes and CD4 + T cells compared to uninfected MS counterparts. 
PROS1 expression was also enhanced on circulating monocytes under the Th2-helminth environ-
ment. Interestingly, CD4 + IL-10+-producing cells from MS patients with helminthic infection showed 
higher levels of GAS6 expression than Th17 cells, and GAS6 blockade induced an expansion of Th17 
effector genes. Furthermore, adding recombinant GAS6 into activated CD4 + T cells from MS patients 
restrains the Th17 gene expression signature. This cohort of patients with naturally occurring helmin-
thic infection unravels a promising regulatory mechanism to control the Th17 inflammatory response 
in autoimmunity (Ortiz Wilczyñski et al., 2020; Carrera Silva et al., 2025). Altogether, we can specu-
late here that the helminth-type 2 environment along with parasite-derived products, may be training 
innate and adaptive immune cells as well as bone marrow precursors.

Almost 20 y of human clinical trials have explored the use of experimental helminth infections to 
treat inflammatory and autoimmune diseases, including celiac disease, inflammatory bowel disease 
(IBD), MS, rheumatoid arthritis (RA), and psoriasis, based on their masterful skill to modulate immune 
responses. Thus far, some of these trials have established that therapy is safe with some evidence of 
therapeutic effect (Ryan et al., 2020). However, discordance in mouse-to-human translation is a well-
known challenge in various research fields. Of note, clinical trials in this area have been hindered by 
limitations such as small sample sizes, lack of some control groups, and the use of few species as well 
non-human-tropic helminths. We will discuss in more detail some specific cases of helminth impact on 
human inflammatory diseases in a specific section below.

Trained immunity by helminths
The remarkable ability of parasites to subvert host immunity stems from their manipulation of key 
immune components: CD4 + T cell differentiation, Treg cell induction, B switching, and Breg cells 
(Smallwood et al., 2017; Maizels et al., 2018). This intricate interplay between host and parasite 
drives a complex immune response. However, despite its potential significance, the nature and mech-
anisms of helminth-trained immunity remain relatively unexplored. This phenomenon may be funda-
mental to understanding regulatory mechanisms and tissue repair pathways that do not compromise 
acquired immunity while preventing excessive inflammation and autoimmune diseases. Trained immu-
nity can influence T cell fate and function, which in turn can modulate innate cell activity. The initial 
insult determines the balance between pro- and anti-inflammatory responses within this bidirectional 
synapse, the cytokine microenvironment, and the specific cellular functions induced by trained immu-
nity (Murphy et al., 2021).

https://doi.org/10.7554/eLife.105393
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While most studies have described trained immunity as enhancing pro-inflammatory responses, 
recent findings indicate that myeloid cells can be trained towards an anti-inflammatory phenotype 
following exposure to helminth products. Macrophages trained in vitro with Fasciola hepatica total 
extract (FHTE) exhibited increased production of the anti-inflammatory cytokines IL-10 and IL-1RA 
while concomitantly decreasing the production of the pro-inflammatory cytokines TNF and IL-12p40 
(Murphy et al., 2021; Quinn et al., 2019). The increased IL-10 could be promoting Tregs differentia-
tion, while IL-1RA suppresses the Th17 response. The reduced production of IL-12p40 and TNF may 
also dampen the Th1 cell response Figure 2.

Zakeri et al., 2022 demonstrated that soluble products from the nematode Trichuris suis (TSP) 
induce a trained phenotype on bone marrow-derived macrophages (BMDM) that restrains inflammatory 

Figure 2. Helminth-induced trained immunity. Early life immune education is crucial for developing a robust and well-regulated immune system. 
Humans have evolved a symbiotic relationship with commensal microbiota, and disruptions to this balance can lead to immune dysregulation. 
Helminths, with their complex life cycles and prolonged host interactions, can significantly influence host immunity. During infection, tissue damage 
caused by migrating helminths triggers the release of alarmins like TSLP, IL-25, and IL-33. These alarmins recruit monocytes and DC, and the Th2 
environment promotes the differentiation of anti-inflammatory and tissue repair macrophages. These trained macrophages produce higher levels of IL-
10, IL-4, or TGFβ promoting the differentiation of regulatory T cells (Tregs) and suppressing pro-inflammatory Th1 and Th17 responses. Helminth-derived 
products, including small peptides, enzymes, lipids, and EVs carrying various molecules like RNA and proteins, can induce central anti-inflammatory 
trained immunity. This leads to the generation of long-lasting anti-inflammatory myeloid cells, suggesting a potential impact on bone marrow 
hematopoietic progenitors. TSLP, thymic stromal lymphopoietin; DC, dendritic cells; Mac, macrophages; Treg, regulatory T cells; EVs, extracellular 
vesicles. This figure was created using BioRender.com. 

https://doi.org/10.7554/eLife.105393
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responses. Treatment of BMDMs with TSP for 24 hr and subsequent stimulation with TLR agonists 
after 72 hr increased IL-10 secretion compared with untreated BMDMs. In contrast, IL-6 secretion 
was decreased in response to all TLR agonists except one, while TNF secretion yielded mixed results 
depending on the agonist used. Metabolic flux analyses revealed that TSP-treated BMDMs had a 
higher mitochondrial oxygen consumption rate, indicating increased oxidative phosphorylation than 
untreated BMDMs. These results indicate that TSP has the ability to reprogram macrophage metabo-
lism and induce anti-inflammatory trained immunity (Zakeri et al., 2022).

Interestingly, Quinteros et al. demonstrated that a peptide derived from the trematode Fasciola 
hepatica, FhHDM-1, could reverse the inflammatory trained phenotype of BMDMs from non-obese 
diabetic (NOD) mice (Quinteros et al., 2024). BMDMs from NOD mice showed epigenetic signa-
tures of trained immunity, as well as high glycolytic activity and enhanced secretion of IL-6 and TNF 
in response to LPS when compared to BMDMs from control mice, suggesting that progenitor cells in 
the bone marrow of NOD mice had immune training. Administration of intraperitoneal injections of 
FhHDM-1 and posterior analysis of BMDMs revealed a reduction in glycolytic activity in response to 
LPS in contrast to NOD mice not treated with the helminth product. The secretion of IL-6 and TNF 
was reduced to the levels observed in control mice, as well as the epigenetic modifications previ-
ously mentioned. This emerging understanding of regulating inflammatory responses through trained 
immunity induced by helminths or their products has significant potential for therapeutic strategies in 
treating inflammatory and autoimmune disorders Figure 2.

In this regard, Mills and colleagues have made significant discoveries in this field (Quinn et al., 
2019; Cunningham et al., 2021). Their research demonstrated that treating mice with F. hepatica 
ESP induces an anti-inflammatory phenotype in bone marrow hematopoietic stem cells (HSC). This, 
in turn, leads to an expansion of the peripheral population of Ly6Clow monocytes, associated with 
anti-inflammatory activity, and the generation of BMDMs that secrete more anti-inflammatory cyto-
kines and less pro-inflammatory cytokines after stimulation with various TLR agonists. This confirms 
the capacity of helminths ESP to induce central anti-inflammatory trained immunity that gives rise 
to anti-inflammatory circulating myeloid cells. More importantly, this mechanism provides protection 
against EAE through the generation of anti-inflammatory monocytes that suppress T-cell mediated 
autoimmunity, and this effect persists for at least 8 mo (Cunningham et al., 2021), see also Figure 2.

Trained immunity in Th2 responses has also been studied, and Yasuda et al. found that infection by 
the nematode Strongyloides venezuelensis induced resistance to a subsequent infection by Nippos-
trongylus brasiliensis, an unrelated nematode, through innate cell-dependent mechanisms in mice 
(Yasuda et al., 2018). This effect lasted at least 3 mo and was mediated by training ILC2s in the lung, 
a tissue through which the larvae migrate. In vitro stimulation of these cells with PMA and ionomycin, 
two potent cell activators, led to enhanced production of the cytokines IL-5 and IL-13 in ILC2s derived 
from mice that had been infected with S. venezuelensis. After the infection with N. brasiliensis, the 
expression of Il13 and Irf4 mRNAs was significantly higher in ILC2s from mice that had been previously 
infected with S. venezuelensis compared to uninfected mice. These findings suggest that ILC2s have 
the capacity to acquire a trained phenotype that persists over time in response to helminth infection 
and contributes to the host’s resistance in an antigen-independent manner.

Furthermore, helminths induce a systemic innate mucin response that primes peripheral barrier sites 
for protection against subsequent secondary helminth infections. Mechanistically, a cross-mucosal 
immune mechanism by which intestinal helminths (Trichinella spiralis or Heligmosomoides polygyrus) 
may protect their hosts against co-infection by a different parasite (N. brasiliensis) at a distal site via 
ILC2s in the gut and circulation of activated CD4 + T cells that can be triggered to release effector 
cytokines and mount inflammatory responses by tissue damage-associated alarmins, such as IL-33 
priming (Campbell et al., 2019; Filbey et al., 2019; Löser et al., 2019).

Helminth-derived products, such as EVs, may play a pivotal role in training immune cells. However, 
the cellular source of EVs, and their route of secretion from the helminth is still not fully character-
ized. While understanding the source and biosynthesis of helminth EVs is crucial, a more pressing 
question is their physiological function. Are these EVs released incidentally as a byproduct of parasite 
processes, or do they serve a specific purpose in manipulating the host immune response? (Drurey 
and Maizels, 2021; Sotillo et al., 2020; Coakley et al., 2016). EVs influence a wide range of biolog-
ical systems, including mammalian immunity, and emerging evidence suggests they play a role in 
immune regulation (Kalluri and LeBleu, 2020; Zhou et al., 2020). EVs serve as a crucial mode of 

https://doi.org/10.7554/eLife.105393
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communication between innate and adaptive immune cells. Given their role in immune signaling, it is 
not surprising that pathogens have evolved to exploit EVs for immunosuppression. The malaria para-
site, Plasmodium berghei, secretes EVs that can inhibit T-cell responses (Demarta-Gatsi et al., 2019). 
Leishmania donovani exosomes have been found to push monocytes and dendritic cells towards 
anti-inflammatory phenotypes, increasing Th2 polarisation and thereby contributing to the disease 
(Silverman et al., 2010).

The composition of helminth-derived EVs varies depending on the gender and life cycle stage of 
the parasite. While the primary cargo typically includes lipids, nucleic acids, and proteins, the potential 
role of these EVs in host immune regulation suggests the presence of some components beyond the 
standard EV repertoire. Most analyses of helminth EV content have focused on the proteome (Sotillo 
et al., 2020). However, helminth EVs also contain various small RNA species, particularly microRNAs 
(miRNAs), which have been implicated in host-helminth interactions and provide some of the most 
significant clues for immunomodulation (Sotillo et al., 2020; Wu et al., 2018; Fromm et al., 2017; 
Hansen et  al., 2019; Yang et  al., 2020). Lipids represent another significant component of EVs, 
although they are less well-characterized than proteins and small RNAs. Lipids can possess bioactivity, 
directly influencing cell uptake and modulating immune responses (Assunção et al., 2017; Magalhães 
et al., 2018). Glycans are another neglected group within helminth EV biology. Both EV proteins and 
lipids can be post-translationally glycosylated, which is known to be essential for the regulation of 
protein function. Glycans have been identified as key players in the regulation of EV uptake, affecting 
the cell tropism of EVs. Glycans may even play a role in the biodistribution of helminth EVs (Drurey 
and Maizels, 2021; Whitehead et al., 2020; de la Torre-Escudero et al., 2019).

Most helminth-derived EVs are collected from parasites cultured in vitro and purified from condi-
tioned media. Only some exception involves harvesting EVs from the hydatid cyst fluid of E. gran-
ulosus and comparing them with those generated by the protoscolex stage of the parasite in vitro 
(Zhou et al., 2019; Chop et al., 2024; Rodriguez Rodrigues et al., 2021).

Phagocytes, particularly macrophages, have been central to helminth EV research due to their 
plasticity in transitioning from a pro-inflammatory to an anti-inflammatory and tissue repair pheno-
type. Similarly, circulating myeloid cells, such as monocytes and adaptive lymphocytes, can be repro-
grammed by EVs at distant sites (Drurey and Maizels, 2021). Intriguingly, recent studies suggest 
that trained immunity may even originate at the hematopoietic stem cell stage, (Quinn et al., 2019; 
Cunningham et al., 2021), see also Figure 2.

Helminth-derived EVs can also exert a localized immune impact, such as influencing intestinal 
epithelial cells as Tuft cells by regulating the release of alarmins like thymic stromal lymphopoietin 
(TSLP), IL-25, and IL-33. Additionally, helminths can promote tissue infiltration by releasing cathepsins 
and other proteases. Similarly, the migration of hookworm larvae through the lung causes significant 
mechanical and enzymatic damage, but rapid tissue repair is observed, potentially facilitated by EVs 
to restore homeostasis (Drurey and Maizels, 2021).

Tuft cells have been identified in intestinal and lung tissues (Haber et al., 2017) as rare chemo-
sensory epithelial cells that monitor their environment and relay messages to the surrounding tissue 
via secretion of neuro- and immunomodulatory molecules (Strine and Wilen, 2022). These cells have 
evolved to perform critical functions in modulating host-microbe interactions, but a critical question 
is whether tuft cells can be trained (Chen et al., 2024). Based on their known signaling pathways, 
tuft cells have been linked to a wide variety of bodily functions, such as the establishment of T cell 
tolerance (Miller et al., 2018), cross-talk with the nervous system (Matsumoto et al., 2011), and 
epithelial repair and remodeling (Huang et al., 2024). Given these roles, it is unsurprising that tuft 
cells have been implicated in IBD as well as contributing to helminth clearance by activation of the 
tuft-ILC2 circuit that results in rapid remodeling of the intestinal epithelium, and protective functions 
of IBD manifestations (Yi et al., 2019; Kjærgaard et al., 2021; Qu et al., 2015; Banerjee et al., 
2020). The specific mechanisms by which tuft cells mitigate IBD have not been elucidated, but this 
may be microbiome dependent, increased expression of genes that regulate the tricarboxylic acid 
cycle, which resulted from microbe production of the metabolite succinate Figure 3. Finally, while 
intestinal tuft cells are recognized for their crucial roles in the host defense against intestinal patho-
gens, there remains uncertainty regarding their trainability. In this sense, an interesting work by Chen 
et al., 2024 showed that trained immunity of intestinal tuft cells during infancy enhances host defense 
against enteroviral infections in mice. The authors showed that tuft cells can be trained by IL-25, which 

https://doi.org/10.7554/eLife.105393
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supports faster and higher levels of IL-25 production in response to enteroviral infection and further 
exhibits an anti-enteroviral effect (Chen et al., 2024).

Research on helminth-induced trained immunity in humans is limited. However, evidence suggests 
certain stimuli can induce centrally trained immunity in humans. For example, BCG vaccination has 
been shown to reprogram hematopoietic stem cells (HSCs) at the transcriptomic, epigenetic, and 
functional levels, generating trained monocytes for at least 3 mo (Cirovic et al., 2020; Sun et al., 
2024). Despite this progress, our understanding of how specific drivers of trained immunity differen-
tially affect human T cell subsets and disrupt the delicate balance between Treg/Th17 or Th1/Th2 cells 
remains limited.

We certainly need to move forward in how helminth-derived products as EVs interact with the 
human immune system, particularly considering the long-lasting and often asymptomatic nature of 
helminth infections, which are associated with widespread immune downregulation.

Impact on human inflammatory diseases
Chronic inflammatory and autoimmune disorders are characterized by the immune system’s assault on 
its own tissues, affecting millions worldwide. With over 80 recognized autoimmune diseases, including 
IBD, MS, RA, and type 1 diabetes (T1D), the global health (10%) and economic burden is immense. 
Addressing this growing epidemic requires innovative approaches to prevent and treat autoim-
mune diseases (Smallwood et al., 2017; Gutierrez-Arcelus et al., 2016; Hayter and Cook, 2012). 
Although genetic predisposition influences susceptibility, some environmental and lifestyle factors 

Figure 3. Therapeutic potential of helminths and their products. The therapeutic potential of helminths and their products depends on various 
factors, including the specific helminth species, the dosage, timing of inoculation, and the parasite’s life stage. Helminths have evolved sophisticated 
mechanisms to modulate the host immune system. Their products (ESPs) contain a diverse range of molecules, including proteins, peptides, enzymes, 
lipids, glycans, and EVs. These EVs can deliver fragile cargo, like RNA, to distant cells. Identifying and characterizing these molecules and their target 
pathways presents a unique opportunity to develop novel, safe, and effective therapeutic strategies inspired by nature. Recent research suggests that 
the adaptation of the developing immune system to helminths involves epigenetic and metabolic changes. These adaptations may be lost after a few 
generations without helminth exposure. The goal is to identify the optimal combination of patient, genetic factors, disease, and helminth products or 
their metabolic byproducts to train the immune system both locally and at the stem cell level. ESPs, excretory/secretory products; EVs, extracellular 
vesicles. This figure was created using BioRender.com. 
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are likely crucial in triggering or exacerbating these conditions as dysbiosis and loss of helminths 
interaction, which promote immunoregulatory mechanisms that could benefit the host by protecting 
them from severe inflammatory pathologies (Rook, 2023; Scudellari, 2017; Smallwood et al., 2017). 
Many micro and macro organisms responsible for regulating the immune system are derived from our 
mothers, families, and the natural environment (including animals), see Figure 1. These organisms, 
often symbiotic members of a healthy host biome, contribute to a balanced immune response (Rook, 
2023; Scudellari, 2017).

Type 2 immune responses, rooted in ancient defense mechanisms, play a crucial role in protecting 
against metazoan endo- and ectoparasites, regulating metabolism, and promoting tissue repair. While 
these responses are essential for health, dysregulation can lead to allergic disorders, impaired tissue 
healing, and metabolic disturbances (Maizels and Gause, 2023; Gause et al., 2013). The diversity 
of these macroparasites and their manifold evasion strategies has demanded a corresponding diver-
sification of defense mechanisms for host survival that are fine-tuned to each threat (Maizels and 
Gause, 2023). Most attention in recent years has been given to the pathways of type 2 induction 
and its regulation in immunological disorders (Gause et al., 2020; Hammad and Lambrecht, 2015; 
McDaniel et al., 2023).

It was once logical to postulate evolved dependence on helminths in the past (Bilbo et al., 2011; 
Maizels, 2020); however, it now seems more likely that the adaptation of the developing immune 
system to the presence of helminths was largely epigenetic and was lost after a few generations 
without them. These reversible epigenetic mechanisms help us to understand the conflicting and 
disappointing results of helminth therapy trials. Clinical trials may not yield helpful results, and face 
significant challenges until we can precisely identify the optimal combination of patient character-
istics, genetic factors, disease stage, and specific helminth species, ESPs, or metabolic byproducts 
for effectively train immune system (Rook, 2023; Smallwood et al., 2017; Ryan et al., 2020; Loke 
et al., 2022). To mitigate risks associated with live parasite infections, exploring helminth-derived anti-
inflammatory molecules or ESPs delivered through EVs offers a promising avenue for developing safer 
and more controlled therapeutics for chronic inflammatory diseases.

Completed and ongoing therapeutic clinical trials using helminth products in various human disease 
contexts are summarized by Ryan et al in their Table 1 (Ryan et al., 2020), focusing on safety, toler-
ability, and efficacy. Some examples of the therapeutic potential of helminth exposure or helminth-
derived products for conditions like IBD, MS, and asthma are discussed below.

Inflammatory bowel diseases (IBD), comprising Crohn’s disease (CD) and ulcerative colitis (UC), 
are chronic, progressive, inflammatory conditions of the gastrointestinal tract. Nowadays, it is clear 
that an imbalance in the gut microbial community, or dysbiosis, represents a critical environment 
factors, that results in IBD. Several animal models have shown the beneficial effect of helminth infec-
tions or their products on the microbiota and the immune regulation of IBD (Atagozli et al., 2023; 
Shi et al., 2022; Ryan et al., 2022; Rapin et al., 2020). Thus, IBD-associated dysbiosis, marked by 
a loss of beneficial Bacteroides and Firmicutes and an increase in pro-inflammatory Enterobacteria-
ceae, is a key feature of the disease. Within this IBD-microbiota-dysbiosis framework, helminths are 
of increasing interest due to their capacity to modulate gut microbiota composition, enhance cecal 
bacterial diversity, and ameliorate IBD in animal models. A novel discovery and validation pipeline, 
detailed by Ryan et al., 2022, led to the identification of numerous anti-inflammatory biologics from 
the recombinant secretome of gut-dwelling hookworms. These proteins, representing distinct fami-
lies, demonstrated protective effects against inducible colitis in mice, suggesting they are safe and 
promising drug candidates.

Deworming trials have revealed an increased likelihood of developing various autoimmune and 
metabolic diseases with the use of antihelminthic drugs. This underscores the importance of consid-
ering the evolutionary context of human-parasite interactions and the potential risks of disrupting 
these ancient relationships (Tahapary et al., 2017; Sanya et al., 2020; Flohr et al., 2010; Shute 
et al., 2021). In this sense, Shute et al., 2021 demonstrates the critical role of bacterial SCFAs via 
free fatty-acid receptor-2 (ffar2) in H. diminuta-induced colitis improvement, the necessity of IL-10 in 
upregulating SCFA transporters/receptors, and butyrate’s regulation of IL-10 receptor expression. The 
findings suggest that the failure of helminth therapy in some IBD trials may be due to patient-specific 
deficiencies in SCFA production, transport, or IL-10 signaling.

https://doi.org/10.7554/eLife.105393
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Several clinical trials have been run for over 15 y and have yielded early promising results but also 
some disappointing outcomes (Ryan et al., 2020; Atagozli et al., 2023). Furthermore, recent system-
atic reviews summarized the results of these studies into two categories: (a) the efficacy of helminth 
therapy and (b) the safety of helminth therapy. Results regarding the efficacy were mixed, and a 
conclusive answer could not be reached, as there was not enough evidence to rule out a placebo 
effect. Despite this, helminth therapy was safe and tolerable (Ryan et al., 2020; Alghanmi et al., 
2024; Shields and Cooper, 2022; Axelrad et al., 2021). Nonetheless, epidemiological explorations, 
basic science studies, and clinical research on helminths can lead to the development of safe, potent, 
and novel therapeutic approaches to prevent or treat IBD (Ryan et al., 2020; Ryan et al., 2022; Shute 
et al., 2021; Maruszewska-Cheruiyot et al., 2023).

Multiple sclerosis (MS) is a highly disabling neurodegenerative autoimmune condition in which 
an unbalanced immune response plays a critical role. The etiology of MS remains elusive, but it is 
now known that environmental and patient-specific factors and susceptible genes (more than 200 
autosomal vulnerability variants) were associated with disease pathogenesis. Accumulating evidence 
suggests that the clinical course of multiple sclerosis is better considered as a continuum, where both 
inflammatory and neurodegenerative processes occur in all disease courses and cannot be clearly 
assigned to separate, sequential disease stages (Kuhlmann et al., 2023; Correale et al., 2017). Accu-
rate diagnosis of MS can be complex in populations from Latin America, Africa, the Middle East, 
eastern Europe, southeast Asia, and the Western Pacific. Unique environmental exposures, genetic 
predispositions, and varying healthcare access in these regions can significantly influence disease 
presentation and diagnostic criteria (Correale et al., 2024). One of the most striking illustrations of 
the importance of the environment in MS pathogenesis is its geographic distribution; prevalence rates 
are increased in high-latitude regions yet uncommon near the equator (Melcon et al., 2014). The 
gut biome is recognized as a critical regulator of immune and nervous system function, significantly 
impacting both the onset and progression of MS. It may contribute to and influence the production 
of soluble metabolites and immune and neuroendocrine factors (Correale et al., 2022). The potential 
role of epigenetics may explain the inconsistent outcomes of helminth therapy trials in MS (Charabati 
et al., 2020; Ryan et al., 2020). While natural helminth infections in childhood, more frequent in 
South American regions like Argentina (Correale and Farez, 2007; Correale and Farez, 2011), can 
halt disease progression, therapeutic helminth administration in populations without a history of such 
infections has yielded disappointing results (Ryan et al., 2020; Tanasescu et al., 2020). The treat-
ment of relapsing MS patients with larvae of the nematode Necator americanus was proved to be 
safe and well tolerated and induced a significant increase in peripheral blood Tregs. Still, the number 
of new/enlarged brain lesions was not different from the placebo group (Tanasescu et al., 2020). 
Similarly, results were obtained using eggs from the nematode Trichuris suis, where MS patients toler-
ated the helminth infection, but it didn’t show beneficial effects (Voldsgaard et al., 2015). In other 
recent study, MS patients receiving TSO treatment established a T. suis-specific T- and B-cell response; 
however, with varying degrees of T cell responses and cellular functionality across individuals, which 
might account for the overall miscellaneous clinical efficacy in the studied patients (Yordanova et al., 
2021).

Asthma and allergic airway inflammation are described as IgE-mediated diseases, character-
ized by a Th2-driven inflammation where environmental exposures and host factors synergistically 
contribute to its pathogenesis. The escalating global prevalence of these conditions (20%) is a 
consequence of complex gene-environment interactions that modulate the immune system, and 
are strongly linked to modern westernized lifestyles (Murrison et al., 2019). A substantial body 
of evidence obtained from experimental studies in mice points towards a protective role due to 
the regulatory pathways induced by the parasites that help counteract the immune hyperrespon-
siveness present in allergy and asthma (Smits et al., 2010). Moreover, several ESP derived from 
different helminth species have been shown to reduce or suppress allergic airway eosinophilia and 
inflammation in mice (Chauché et al., 2022; Zhang et al., 2019; Pitrez et al., 2015; Xu et al., 
2025). However, other studies have shown an exacerbation of allergic asthma in response to the 
administration of helminth antigens, unveiling the complexity of the interaction between these type 
2 immunity inducers (Ghabdian et al., 2022). On the other hand, the evidence on humans remains 
more conflicting. As seen with autoimmune diseases, epidemiological data suggests an inverse 
correlation between helminth infections and those of asthma and allergy (Logan et  al., 2018); 
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however, when considering the parasite species, some like A. lumbricoides have been associated 
with an increased risk of asthma and disease severity (Cruz et al., 2017; Arrais et al., 2022). Clinical 
trials have been conducted to assess the efficacy of helminth therapy for asthma and allergic rhinitis, 
using N. americanus and T. suis ova, respectively. Even though they were proven to be safe and well 
tolerated, clinical benefits were minimal. It is speculated that the discrepancy between human and 
animal studies could be explained by the fact that helminths are effective at preventing the devel-
opment of allergy, not treating it (Evans and Mitre, 2015). Despite the lack of positive results in 
humans thus far, further investigations with improved approaches and protocols are necessary for 
the treatment of type 2 inflammatory diseases.

Several inflammatory diseases are associated with the biome depletion theory, and increased 
inflammatory diseases and helminth-mediated protection are not restricted to autoimmune and 
allergic diseases (Smallwood et al., 2017; Maizels, 2020). There is an inverse relationship observed 
between human helminth infection, insulin resistance, and type 2 diabetes, and it has been proposed 
that chronic helminth infection results in long-term beneficial effects on host metabolism, especially 
on white adipose tissue, intestines, and liver (van der Zande et al., 2019; Wiria et al., 2014).

In developed countries, the successful application of helminth therapy may ultimately depend on 
precise patient selection and the careful matching of specific helminth species (Rook, 2023; Small-
wood et al., 2017). Furthermore, the identification and characterization of helminth molecules and 
vesicles and the molecular pathways they target in the host represent the most valuable opportunity 
to develop tailored drugs inspired by nature that are efficacious, safe, and have minimal immunoge-
nicity (Maizels and Gause, 2023; Maizels et al., 2018; Ryan et al., 2020; Drurey and Maizels, 2021), 
Figure 3.

The impressive molecular diversity of helminth excretory/secretory products, including a wide range 
of proteins and miRNAs, underscores their potential as therapeutic agents. While the development 
of recombinant expression systems for these molecules is crucial, challenges remain in optimizing 
production and delivery. The natural delivery of helminth miRNAs via EVs is a particularly intriguing 
strategy, and efforts to mimic this process using synthetic exosomes could revolutionize miRNA-based 
therapies (Ryan et al., 2020), see Figure 3.

The scientific community calls on the industry to make long-term investments in research aimed 
at deciphering and capitalizing on the extraordinary and diverse modes of action exhibited by these 
products. By unlocking the full potential of these natural compounds, we can pave the way for devel-
oping a new generation of innovative therapeutics.

Conclusions
The ability of helminths to induce trained immunity offers a fascinating glimpse into the complex inter-
play between the immune system and parasites. By harnessing the power of these ancient organisms, 
researchers hope to develop innovative strategies for treating a range of inflammatory and autoim-
mune disorders. Identifying the specific regulatory pathways that underlie helminth-induced immune 
training is a major goal. By targeting these pathways, particularly during early childhood when the 
immune system is most malleable, scientists may be able to develop effective interventions, such as 
dietary, probiotic therapies, or even biological drugs to promote immune regulatory pathways and 
prevent the development of autoimmune diseases. ‘If we could find common pathways, we could 
adopt drugs or probiotics to activate [those pathways] to condition the immune system properly in 
early life,’ says Wills-Karp.
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