

THE WEIGHTED CORE WITH DISTINGUISHED COALITIONS

M. CANTISANI and E. MARCHI*

Instituto de Matemática Aplicada San Luis Universidad Nacional de San Luis — Conicet Ejército de los Andes 950 5700 – San Luis, Argentina * emarchi@sinectis.com.ar & emarchi@unsl.edu.ar

In this paper we generalize the studies of Bondareva–Shapley for a general core having weights in the definition. These weights were introduced by Billera but not used in the form as here. Moreover we study such a core with conditions of equalities for some coalitions analogously as those obtained *a posteriori* in the assignment games due to Shapley and Shubik.

Keywords: Cooperative games; core; weight; distinguished coalitions; balanced collection.

1. Introduction

In the theory of game there were many sequential works related with the core. Let us state Bondareva [1962], Billera [1970, 1971], Scarf [1967] and Shapley [1970]. However even if a result of Billera [1970] tells us that every π -balanced game with $\pi \in \Pi$, has a nonempty core, where π is a suitable matrix, up today it is not found in the literature the weighted core with distinguished coalitions.

Let N be a finite set of players, #(N) = n; $\gamma = (\gamma_{iS})$ be a matrix of order $n(2^n - 1)$ for each $i \in N, S \in \mathcal{P}(\mathcal{N}) - \{\emptyset\}$ and $\gamma_{iS} > 0$. We denote with v the characteristic function of the game G = (N, v).

2. H- γ -core, γ -balanced Collections

Consider a family of nonempty subsets of N, $\mathcal{H} = \{H_1, \ldots, H_p\}$ such that $N \subset \bigcup_{S \notin \mathcal{H}}$.

Definition 2.1. The H- γ -core (or weighted core) is the set of vectors (x_1, x_2, \dots, x_n) such that

$$\sum_{i=1}^{n} \gamma_{iN} x_i = v(N)$$

$$\sum_{i \in S} \gamma_{iS} x_i = v(S) \text{ for } S \in \mathcal{H}$$

$$\sum_{i \in S} \gamma_{iS} x_i \ge v(S) \text{ for } S \notin \mathcal{H} S \subseteq N.$$

The notation for the H- γ -core will be $C_{\gamma}^{\mathcal{H}}(v)$.

It is of interest to determine the games with $C_{\gamma}^{\mathcal{H}}(v)$ nonempty.

As a simple interpretation we have for those coalitions in \mathcal{H} they determine a priori which the coalitions for the maximal maching determine a posteriori in assignment game, which are fundamental. For this, the reader might read Shapley and Shubik [1972].

Secondly, the weights in left part of the equation of the core might be interpreted in the following way: consider a place where a player plays a n-person game weighed characteristic function v but with the condition that if he gets x_i he will pay to the owner of the agent in charge of the game the amount $(1 - \gamma_i)x_i$ and he keeps $\gamma_i x_i$. Then the H- γ -core will be the imputations which cannot be improved upon. Similar interpretation might be done for the coefficient γ_{iS} .

In order to characterize the game with $C_{\gamma}^{\mathcal{H}}(v) \neq \emptyset$ we have that if and only if the linear program

$$\min \sum_{i=1}^{n} \gamma_{iN} x_i = z^* \tag{2.1}$$

subject to

$$\sum_{i \in S} \gamma_{iS} x_i = v(S) \quad \text{if } S \in \mathcal{H}$$
 (2.2)

$$\sum_{i \in S} \gamma_{iS} x_i \ge v(S) \quad \text{if } S \notin \mathcal{H}, \ S \subseteq N$$
 (2.3)

has a minimum $z^* \leq v(N)$.

Now if one considers the dual program of (2.1); (2.3) which is

$$\max_{y} \sum_{S \subseteq N} y_S v(S) = q^* \tag{2.4}$$

subject to

$$\sum_{\substack{S \\ i \in S}} \gamma_{iS} y_S = \gamma_{iN} \quad \text{for each } i \in N$$

$$y_S \ge 0 \quad \text{if } S \notin \mathcal{H}, \ S \subseteq N$$

$$(2.5)$$

$$y_S \ge 0 \quad \text{if } S \notin \mathcal{H}, \ S \subseteq N$$
 (2.6)

$$y_S$$
 unrestricted if $S \in \mathcal{H}$. (2.7)

If both programs (2.1)–(2.3) and (2.4)–(2.7) are feasible, the minimum z^* must be equal to the maximum q^* , then $C_{\gamma}^{\mathcal{H}}(v) \neq \emptyset$ if and only if the maximum $q^* \leq v(N)$. In other words

Theorem 2.1. A necessary and sufficient condition in order that the game G = (N, v) has $H - \gamma$ -core nonempty is that for each vector $(y_S)_{S \subseteq N}$ satisfying (2.5) - (2.7) verifies

$$\sum_{S \subseteq N} y_S v(s) \le v(N). \tag{2.8}$$

Definition 2.2. Let $C = \{S_1, \ldots, S_m\}$ a collection of nonempty subsets of N such that

$$N \subset \bigcup \{ S_j \in \mathcal{C} \mid S_j \notin \mathcal{H} \}. \tag{2.9}$$

We say that C is $N-\gamma$ -balanced with respect to the collection \mathcal{H} , if there exists a vector $(y_{Sj})_{j=1}^m$ such that

$$\begin{cases} y_{S_{j}} > 0 & \text{if } S_{j} \notin \mathcal{H} \\ y_{S_{j}} \text{ unrestricted} & \text{if } S_{j} \in \mathcal{H} \\ \sum_{i \in S_{j}} \gamma_{iS_{j}} y_{S_{j}} = \gamma_{iN} & \forall i \in N. \end{cases}$$

$$(2.10)$$

The vector $(y_{S_j})_{j=1}^m$ is a γ -balanced vector for \mathcal{C} .

Examples:

- (1) The collection $\{N\}$ is γ -balanced for any \mathcal{H} and any matrix $\gamma=(\gamma_{iS})$. A γ -balanced vector is $y_N=1$.
- (2) The collection $C = \{N, H_1, \dots, H_l \mid H_i \in \mathcal{H}, 1 \leq i \leq l, N \notin \mathcal{H}\}$ is γ -balanced for any matrix $\gamma = (\gamma_{iS})$ such that

$$\frac{1}{\gamma_{iN}} \sum_{\substack{H_j \\ i \in H_j}} \gamma_{iH_j} y_{H_j} = \frac{1}{\gamma_{i'N}} \sum_{\substack{H_j \\ i' \in H_j}} \gamma_{i'H_j} y_{H_j} = (1 - y_N)$$

for each $i, i' \in N$.

(3) $C = \{\{1\}, \{2\}, \dots, \{n\}\}$ is γ -balanced for any matrix $\gamma = (\gamma_{iS})$ and any collection \mathcal{H} . A γ -balanced vector is

$$(y_{\{1\}},\ldots,y_{\{n\}})=\left(\frac{\gamma_{1N}}{\gamma_{1\{1\}}},\ldots,\frac{\gamma_{nN}}{\gamma_{n\{n\}}}\right).$$

(4) $\mathcal{C}=\{N,\{1\},\ldots,\{n\}\mid\{i\}\notin\mathcal{H},1\leq i\leq n\}$ is γ -balanced for any matrix $\gamma=(\gamma_{iS}).$ A γ -balanced vector for \mathcal{C} is:

$$(y_N, y_{\{1\}}, \dots, y_{\{n\}}) = \left(\epsilon, \frac{\gamma_{1N}(1-\epsilon)}{\gamma_{1\{1\}}}, \dots, \frac{\gamma_{nN}(1-\epsilon)}{\gamma_{n\{n\}}}\right)$$

with $0 < \epsilon < 1$

(5) Let $N=\{1,2,3\}$, $\mathcal{C}=\{\{1\},\{1,2\},\{3\}\}$ and $\gamma=(\gamma_{iS})$ a matrix verifying $\gamma_{iN}\gamma_{2\{1,2\}}-\gamma_{1\{1,2\}}\gamma_{2N}<0$. \mathcal{C} is γ -balanced if $\{1\}\in\mathcal{H}$ and a γ -balanced vector for \mathcal{C} is:

$$(y_{\{1\}},y_{\{1,2\}},y_{\{3\}}) = \left(\frac{\gamma_{1N}\gamma_{2\{1,2\}} - \gamma_{1\{1,2\}}\gamma_{2N}}{\gamma_{1\{1\}}\gamma_{2\{1,2\}}}, \frac{\gamma_{2N}}{\gamma_{2\{1,2\}}}, \frac{\gamma_{3N}}{\gamma_{3\{3\}}}\right).$$

The following properties of γ -balanced collections are of interest.

Theorem 2.2. The union of γ -balanced collections is γ -balanced.

Proof. Let $C = \{S_1, \ldots, S_m\}$ and $D = \{T_1, \ldots, T_k\}$ γ -balanced collections with γ -balanced vectors $(y_{S_1}, \ldots, y_{S_m})$ and $(z_{T_1}, \ldots, z_{T_k})$ respectively. Then

$$C \cup D = \{R_1, \dots, R_q\}$$
 with $q \le m + k$

for any t, 0 < t < 1, we define

$$w_{R_j} = \left\{ egin{array}{ll} ty_{S_j} & ext{if } R_j = S_j \in \mathcal{C} - \mathcal{D} \ (1-t)z_{T_p} & ext{if } R_j = T_p \in \mathcal{D} - \mathcal{C} \ ty_{S_j} + (1-t)z_{T_p} & ext{if } R_j = S_l = T_p \in \mathcal{C} \cap \mathcal{D}. \end{array}
ight.$$

It is easy to verify that the vector $(w_{R_1}, \ldots, w_{R_q})$ is a γ -balanced vector for $\mathcal{C} \cup \mathcal{D}$ independently that $R_j \in \mathcal{H}$ or $R_j \notin \mathcal{H}$.

From here, by induction, the union of any number of γ -balanced collections is γ -balanced.

Lemma 2.1. Let $C = \{S_1, S_2, \ldots, S_k\}$ and $D = \{S_1, S_2, \ldots, S_k, \ldots, S_m\}$ be two γ -balanced collections with γ -balanced vectors. $y = (y_{S_1}, \ldots, y_{S_k})$ and $z = (z_{S_1}, \ldots, z_{S_k}, \ldots, z_{S_m})$ respectively such that

$$\begin{cases}
(a) \ \mathcal{C} \subset \mathcal{D} & \mathcal{C} \neq \mathcal{D} \\
(b) \ S_{j} \in \mathcal{H}, \quad S_{j} \in \mathcal{D} \Rightarrow S_{j} \in \mathcal{C} \\
(c) \ \sum_{\substack{S \subset \mathcal{H} \cap \mathcal{C} \\ i \in S}} \gamma_{iS} y_{S} = \sum_{\substack{S \in \mathcal{H} \cap \mathcal{D} \\ i \in S}} \gamma_{iS} z_{S} \quad \text{for each, } i \in \mathbb{N}.
\end{cases}$$
(2.11)

Then there exists a γ -balanced collection \mathcal{B} such that $\mathcal{B} \cup \mathcal{C} = \mathcal{D}$ but $\mathcal{D} \neq \mathcal{B}$.

Proof. For t > 0 let us define

$$w_{S_j} = (1+t)z_{S_j} - ty_{S_j}$$
 $j = 1, 2, ..., k$
 $w_{S_j} = (1+t)z_{S_j}$ $j = k+1, ..., m$.

If $S \notin \mathcal{H}$ for t > 0 and small, it results $w_{S_i} > 0$. Moreover, for $i \in N$

$$\begin{split} \sum_{\substack{S_j\\i\in S_j\in\mathcal{D}}} \gamma_{iS_j}w_{S_j} &= \sum_{\substack{S_j\\i\in S_j\in\mathcal{C}}} \gamma_{iS_j}[(1+t)z_{S_j} - ty_{S_j}] + \sum_{\substack{S_j\\i\in S_j\in\mathcal{D}-\mathcal{C}}} \gamma_{iS_j}(1+t)z_{S_j} \\ &= -t\sum_{\substack{S_j\\i\in S_j\in\mathcal{C}}} \gamma_{iS_j}y_{S_j} + (1+t)\sum_{\substack{S_j\\i\in S_j\in\mathcal{D}}} \gamma_{iS_j}z_{S_j} = \gamma_{iN}. \end{split}$$

In this way $w = (w_S)_{S \in \mathcal{D}}$ is a γ -balanced vector for \mathcal{D} . Since $w_{S_j} > z_{S_j} > 0$ for $k+1 \leq j \leq m$, it is easy to see that z is not unique.

Besides, there exists an j which $1 \leq j \leq m, S_j \notin \mathcal{H}$ such that $z_{S_j} < y_{S_j}$. Suppose the contrary, then for each $j, 1 \leq j \leq k, z_{S_j} \geq y_{S_j}$ and

$$\begin{split} \gamma_{iN} &= \sum_{\substack{S_j \\ i \in S_j \in \mathcal{C}}} \gamma_{iS_j} y_{S_j} = \sum_{\substack{S_j \in \mathcal{C} \cap \mathcal{H} \\ i \in S_j}} \gamma_{iS_j} y_{S_j} + \sum_{\substack{S_j \in \mathcal{C} - \mathcal{H} \\ i \in S_j}} \gamma_{iS_j} y_{S_j} \\ &\leq \sum_{\substack{S_j \in \mathcal{C} \cap \mathcal{H} \\ i \in S_j}} \gamma_{iS_j} y_{S_j} + \sum_{\substack{S_j \in \mathcal{C} - \mathcal{H} \\ i \in S_j}} \gamma_{iS_j} z_{S_j} < \sum_{\substack{S_j \in \mathcal{D} \\ i \in S_j}} \gamma_{iS_j} z_{S_j} = \gamma_{iN} \end{split}$$

which is a contradiction. The last inequalities follow from the conditions (2.11) (b) and (c).

Let

$$ar{t} = \min \left\{ \frac{z_{S_j}}{y_{S_j} - z_{S_j}} \mid y_{S_j} > z_{S_j}, S_j \notin \mathcal{H} \right\}$$

$$\mathcal{C}' = \left\{ S_j \in \mathcal{C} \mid (1 + \bar{t}) z_{S_j} = \bar{t} y_{S_j} \right\} \quad \text{and} \quad \mathcal{B} = \mathcal{D} - \mathcal{C}'.$$

Clearly \mathcal{C}' is nonempty subcollection of \mathcal{C} then $\mathcal{D} \neq \mathcal{B}$; $\mathcal{B} \cup \mathcal{C} = \mathcal{D}, w_{S_i} > 0$ for each $S_j \notin \mathcal{H}$ and it is easy to verify that (for \bar{t}) $(w_S)_{S \in \mathcal{B}}$ is a γ -balanced vector for the collection \mathcal{B} .

Example. (illustrating Lemma 2.5).

Let $N = \{1, 2, 3\}$ and γ the matrix

$$\mathcal{H} = \{\{1,2\}\} \quad \mathcal{C} = \{\{1\}, \{2\}, \{3\}\} \cup \mathcal{H} \quad \mathcal{C} \neq \mathcal{D}$$
$$\mathcal{D} = \{\{1\}, \{2\}, \{3\}, \{2,3\}\} \cup \mathcal{H}.$$

 \mathcal{C} is γ -balanced with a γ -balanced vector

$$y = (21/4, 1/5, 10, -1)$$

and it is verified that

$$\sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} y_S = c_i \quad \text{for each } i$$

and in our case

$$c_1 = -\gamma_{1\{1,2\}} = -10$$

 $c_2 = -\gamma_{2\{1,2\}} = -2/3$,

 \mathcal{D} is γ -balanced with γ -balanced vector

$$z = (21/4, 3/20, 8, 1, -1)$$

$$\bar{t} = 3$$

$$C' = \{S \in \mathcal{C} \mid (1+3)z_S = 3y_S\} = \{\{2\}\}$$

$$\mathcal{B} = \mathcal{D} - \mathcal{C}' = \{\{1\}, \{3\}, \{2, 3\}\} \cup \mathcal{H}$$

and w = (21/4, 6, 4, -1) is γ -balanced for \mathcal{B} .

Definition 2.3. A γ -balanced collection \mathcal{B} with a γ -balanced vector $(y_S)_{S \in \mathcal{B}}$ is minimal if $\mathcal{B}' = \{S \in \mathcal{B} \mid S \notin \mathcal{H}\}$ does not have a proper sub collection \mathcal{B}'' such that $\mathcal{B}'' \cup (\mathcal{B} \cap \mathcal{H})$ is γ -balanced with γ -balanced vector $(z_S)_{S \in \mathcal{B}'' \cup (\mathcal{B} \cup \mathcal{H})}$ which verifies

$$\sum_{\substack{S \in \mathcal{B} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} y_S = \sum_{\substack{S \in \mathcal{B} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} z_S$$

for each $i \in N$.

Theorem 2.3. Any γ -balanced collection is union of γ -balanced minimal collections.

Proof. By induction on m (the number of subsets of the collection). For m=1, since the unique γ -balanced collection with one element is $\{N\}$ and this is minimal, the theorem is true.

Assume that the theorem is valid for all the collection with (m-1) or less elements. Let \mathcal{D} be a γ -balanced collection with m-elements. If \mathcal{D} is minimal, then it is a union of γ -balanced minimal collection. If \mathcal{D} is not minimal, then $\mathcal{D}' = \{S \in \mathcal{D} \mid S \notin \mathcal{H}\}$ contains a proper subcollection, \mathcal{D}'' such that $\mathcal{D}'' \cup (\mathcal{D} \cap \mathcal{H})$ is γ -balanced satisfying (2.11). By Lemma 2.5 there exists another proper γ -balanced collection \mathcal{B} such that

$$\mathcal{B} \cup (\mathcal{D}'' \cup (\mathcal{D} \cap \mathcal{H})) = \mathcal{D}.$$

Since \mathcal{B} and $\mathcal{D}'' \cup (\mathcal{D} \cap \mathcal{H})$ are proper subcollections of \mathcal{D} , they have (m-1) or less elements and therefore each one of them, can be express as union of minimal sub collection and the theorem is true.

Definition 2.4. A γ -balanced collection \mathcal{C} has a distinguished γ -balanced vector if and only if for each pair (w_S) and (z_S) of γ -balanced vectors verifying

$$\sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} w_S = \sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} z_S$$

it holds $w_S = z_S$ for each $S \in \mathcal{C} - \mathcal{H}$.

Theorem 2.4. Under the conditions of Lemma 2.5 a γ -balanced collection has a γ -balanced distinguished vector if and only if it is minimal.

Proof. The Lemma 2.5 says that a γ -balanced vector is distinguished only for γ -balanced minimal collections.

In the reverse way, suppose that C does not have a γ -balanced distinguished vector, that is, there exists vectors y and z such that

$$\sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} y_S = \sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} z_S$$

and $y_S \neq z_S$ for at least a $S \in \mathcal{C} - \mathcal{H}$.

Without loss of generality we assume $y_S > z_S$. Choose $w = (1 + \bar{t})z - \bar{t}y$ where

$$\bar{t} = \min \left\{ \frac{z_S}{y_S - z_S} \mid y_S > z_S, S \in \mathcal{C} - \mathcal{H} \right\}.$$

Then w is a γ -balanced vector for

$$\mathcal{B} = \{ S \in \mathcal{C} - \mathcal{H} \mid (1 + \bar{t})z_S > \bar{t}y_S \} \cup (\mathcal{C} \cap \mathcal{H})$$

Since \mathcal{B} is a proper sub collection of \mathcal{C} , and

$$\sum_{\substack{S \in \mathcal{B} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} w_S = \sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} w_S = \sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} z_S + \bar{t} \sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} z_S - \bar{t} \sum_{\substack{S \in \mathcal{C} \cap \mathcal{H} \\ i \in S}} \gamma_{iS} y_S$$

then C is not minimal.

Theorem 2.5. If y is an extreme point of the program (2.5)–(2.7), then it is a γ -balanced vector of a γ -balanced minimal collection.

Proof. Let $(y_S)_{S\subset N}$ a vector verifying (2.5)–(2.7) of the program. Such a vector is of γ -balanced for the collection

$$\mathcal{C} = \{ S \notin \mathcal{H} \mid y_S > 0 \} \cup \mathcal{H}.$$

If C is not minimal let B a proper sub collection of C (as in the Definition 2.3) with γ -balanced vector z. If $z_S > 0, S \notin \mathcal{H}$ then $y_S > 0$ then for small values of t, both

$$w = (1 - t)y + tz$$
$$w' = (1 + t)y - tz$$

satisfy the conditions (2.5)-(2.7). Besides $w \neq w'$ and $w_S < w'_S$ for any $S \notin \mathcal{H}$ and $S \in \mathcal{C} - \mathcal{B}$. But y = 1/2(w + w') and then y is not extreme of the program $(2.5) \cdot (2.7).$

Theorem 2.6. If y is a vector γ -balanced of a γ -balanced minimal collection then y is extreme point of the program

$$\max_{y} \sum_{\substack{S \subseteq N \\ S \notin \mathcal{H}}} y_S v(S) = q * \tag{2.12}$$

subject to

$$\sum_{\substack{S \\ i \in S}} \gamma_{iS} y_{S} = \gamma_{iN} \quad \text{for each } i \in N$$

$$y_{S} \ge 0 \quad \text{if } S \notin \mathcal{H}, \ S \subseteq N$$

$$(2.13)$$

$$y_S \ge 0 \quad \text{if } S \notin \mathcal{H}, \ S \subseteq N$$
 (2.14)

$$y_S \ge 0 \quad \text{if } S \notin \mathcal{H}, \quad S \subseteq \mathbb{N}$$

$$\sum_{\substack{S \in \mathcal{H} \\ i \in S}} \gamma_{iS} y_S = c_i \text{ (cte)} \quad \text{for each } i \in \mathbb{N}.$$
(2.14)

Proof. Assume that \mathcal{C} is a γ -balanced minimal collection with γ -balanced vector y. If y is not extreme let y = 1/2(w+w') where $w \neq w'$ and both satisfy (2.13)–(2.15). By the nonnegativity conditions (2.14) it holds $w_S = w'_S = 0$ when $y_S = 0$ and $S \notin \mathcal{H}$.

Then w and w' will be γ -balanced vectors for \mathcal{B} and \mathcal{B}' respectively, where

$$\mathcal{B} = \{ S \in \mathcal{C} - \mathcal{H} \mid w_S > 0 \} \cup \mathcal{H}$$
$$\mathcal{B}' = \{ S \in \mathcal{C} - \mathcal{H} \mid w_S' > 0 \} \cup \mathcal{H}$$

and both are subcollections of \mathcal{C} . Since \mathcal{C} is minimal then $\mathcal{B}=\mathcal{B}'=\mathcal{C}$ and by Theorem 2.9 for each $S \in \mathcal{C} - \mathcal{H}$ it is valid $w_S = w_S' = y_S$.

This contradiction proves that y must be extreme.

Acknowledgement

We are the most grateful to Prof. J. Cesco who found a simple but deep mistake in a previous version of this article. Without his help this article would have been impossible to write. We assume the entire responsibility of the content.

References

Billera L. J. [1970] "Some theorems on the core of an n-person game without side payments", SIAM. J. Appl. Math. 18, 567-579.

Billera L. J. [1971] "Some recent results in n-person game theory". Mathematical Programming, 1, 58-67.

Bondareva O. N. [1962] "Theory of the core in an n-person game", Vestnik Leningradskii Universitet 13, 141-142 (In Russian).

Owen G. [1982] Game Theory (Academic Press).

Scarf H. E. [1967] "The core of an n-person game", Econometrica 35, 50-69.

Shapley L. [1970] "On balanced games without side payments". Mathematical Programming, ed. Hu, pp. 261-290.

Shapley L. and Shubik M. [1972] "Assignment game I. The core", Int. J. Game Theory I. 111 130.