

Libro de resúmenes

3er jornada nacional de agroalimentos y sustentabilidad : libro de resumenes / Amadeo Oscar Martin Costa ... [et al.] ; compilación de Mariana Montenegro. - 1a ed. - Villa María : Universidad Nacional de Villa María, 2024. Libro digital, PDF/A

Archivo Digital: descarga y online ISBN 978-631-6584-02-1

Alimentos Saludables.
Alimentos Orgánicos.
Agricultura Sustentable.
Martin Costa, Amadeo Oscar.
Montenegro, Mariana, comp.
CDD 631.583

ÍNDICE

1 - Libro de Resúmenes	1
2 - Áreas temáticas	4
A - Ciencia y Tecnología de los Alimentos	4
B - "Una Salud". Aportes y desafíos para las ciencias veterinarias	27
C - Producción de agroalimentos y sustentabilidad	37
D - Realidad ambiental y energética	82
E - Diseño, consumo y producción sustentable	121
3 - Textos completos	129
Centomo, Antonella	130
Costa, Amadeo Martin	138
Setién, Evangelina	146
Biolé, Michelle	154
Degano, Salvador	164
Torres, Germán	174
Nioi, Mariano	181
Raspo, Matías	190
Vico, Ana Paula	198
Bettiol, Marina	206
Farioli, Ana Sofía	214

CARACTERIZACIÓN FISICOQUÍMICA Y BIOLÓGICA DE HIDROLIZADOS DE PROTEÍNA DE SUERO LÁCTEO CON DIFERENTES PROTEASAS COMERCIALES.

<u>Vico Ana Paula</u>¹, Centomo Antonella¹, Rossi Yanina¹, Ribotta Pablo², Montenegro Mariana¹.

- ¹ Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET UNVM), Villa María, Córdoba, Argentina.
- ² Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.

anavico@unvm.edu.ar

En los últimos años, el interés de los consumidores por el efecto de la dieta en la salud ha impulsado la búsqueda de estrategias para el desarrollo de ingredientes alimenticios funcionales y más saludables. La hidrólisis enzimática es un proceso ampliamente utilizado en la industria, escalable, con tiempos de reacción cortos y generalmente aceptado por los consumidores, cuyo producto final es una mezcla de péptidos y aminoácidos libres. El perfil peptídico resultante y su correspondiente bioactividad dependen en mayor medida de la especificidad de la enzima utilizada. El objetivo de este trabajo fue evaluar la composición química, el perfil proteico y la bioactividad (actividad antioxidante y citotoxicidad) de hidrolizados obtenidos a partir de aislado de proteína de suero lácteo (WPI) con tres proteasas comerciales. Las enzimas empleadas fueron Flavourzyme® 1000L (1000 LAPU/g), Alcalasa® 2.4L (2,4 AU/g) y Neutrasa® 0.8L (0,8 AU/g), gentilmente donadas por Novozymes®. Las condiciones de hidrólisis fueron una relación enzima/sustrato de 0,017, temperatura de 46,5°C y tiempo de reacción de 3 h. Los hidrolizados (WPH) fueron secados por liofilización, obteniéndose tres productos en polvo WPH FLA, WPH ALC y WPH NEU, respectivamente para cada enzima. Se evaluó la composición química, el grado de hidrólisis (determinado por el método de ortoftaldialdehído) y el perfil peptídico por electroforesis en gel de poliacrilamida con dodecilsulfato sódico (SDS-PAGE). Se determinó la capacidad antioxidante como la desactivación del radical catión ABTS⁺⁺, el poder reductor del ion férrico (FRAP) y la quelación de metales. También se midió la capacidad de desactivar las especies reactivas del oxígeno radical anión superóxido (O2:-) e hidroxilo (HO1), mediante los métodos de autooxidación del pirogalol y de la desoxirribosa, respectivamente. Además, se evaluó la citotoxicidad de los WPH frente a células normales del epitelio intestinal murino (IEC-18), para la cual se determinó la viabilidad celular mediante el ensayo de MTT. WPH FLA presentó el mayor contenido proteico y grado de hidrólisis, siendo de 78,56 ± 0,18% p/p y 34,93 ± 0,70%, respectivamente. Seguido por WPH ALC con valores de 77,48 ± 0,19% p/p y 27,56 \pm 0,53%, y luego por WPH NEU con valores de 71,02 \pm 0,42% p/p y 20,95 \pm 0,27%, respectivamente. En cuanto a la capacidad antioxidante, los tres WPH mostraron resultados estadísticamente superiores a WPI para todos los ensayos empleados. WPH FLA, WPH ALC y WPH NEU revelaron diferentes perfiles de capacidad antioxidante, demostrando distintos mecanismos de acción de los péptidos bioactivos obtenidos. Lo cual está estrechamente relacionado con el peso molecular y la composición aminoacídica de los mismos, determinado por la especificidad de la enzima utilizada en la hidrólisis. No obstante, solamente WPH FLA y WPH NEU fueron no citotóxicos frente a la línea celular

IEC-18 en todo el rango de concentraciones ensayadas (0,15 – 1,2 mg/mL). Por lo tanto, las enzimas Flavourzyme® 1000L y Neutrasa® 0.8L resultaron ser adecuadas en las condiciones establecidas para la producción de hidrolizados con capacidad antioxidante destinado a utilizarse como potencial ingrediente bioactivo para la formulación de alimentos funcionales.

Palabras clave: capacidad antioxidante, péptidos bioactivos, hidrólisis enzimática, citotoxicidad.