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fiber and 10 wt% clay were similar to or better than those containing 30 wt%
TMP, that is, tensile strength and modulus of 34 and 2700 MPa, compared to
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the addition of TMP fiber and clay, the water absorption of the composite with
20 wt% TMP and 10 wt% clay was relatively low and similar to the biocompo-
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The comparable properties of biocomposites with 30 wt% TMP and biocompo-
sites with 20 wt% TMP and 10 wt% clay demonstrate the potential of clay to
reduce the cost of the final product.

Highlights

« Clay enhances the tensile modulus and strength, and reduces the color dark-
ening, compared to TMP.

« TMP fibers and clay reduce the melt flow index, elongation, and impact
toughness.

« TMP fibers and clay increase the melting point and reduce the degradation
temperature.

« Reduction in production costs of biocomposites by adding inorganic clay
filler.
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1 | INTRODUCTION

Wood fibers can be obtained through well-established
mechanical or chemical pulping processes. Thermome-
chanical pulping (TMP) is a high-yield production pro-
cess where more than 95% of the woody biomass that
enters the process line is converted into lignocellulosic
pulp. Cellulose, hemicellulose, and lignin are the main
components of the obtained fiber. The TMP fibers are rel-
atively cheap, compared to chemical-thermomechanical
pulp (CTMP) and chemical pulp fibers."*

TMP fibers are commonly applied in the production
of folding and boxboards, newsprint, molded pulp, etc.
Additionally, in the last years, TMP fibers have been
applied as reinforcement in thermoplastic biocompo-
sites.> Overall, it has been shown that the addition of
wood fibers to thermoplastics such as polylactic acid
(PLA)* and polyethylene (PE),” enhances the mechanical
properties, reduces the global warming potential,’ and
improves the degradability of biodegradable thermoplas-
tics such as (polyhydroxyalkanoates) PHAs.’

Cost reduction in biocomposites could be achieved
using fillers (layered silicates: clay or talc, calcium carbon-
ate: CaCO,, or titanium dioxide: TiO,).® In Europe, stan-
dard CaCOs is the cheapest material (~250 USD/mT), and
the most expensive is TiO, (2500-3000 USD/mT, rutile
grade).” According to CEPI statistics, the most widely used
mineral fillers in the European pulp and paper industry
during 2023 were CaCOj; (52.4%) and clay (17.0%). How-
ever, the decision on a specific filler will not only depend
on the cost, but on its effect on the final properties. Clay
particles have been an important ingredient of pulp fur-
nishings to increase the gloss of printing paper. Clay is also
cheaper than pulp fibers which implies economic bene-
fits."® The cost of clay particles varies from roughly 1/3 to
less than 1/5 of the cost of pulp fibers, when considering,
for example, TMP and chemical pulp fibers, respectively.

Clay has a layered structure (lamellar geometry)'"'?
so during the extrusion process, the flakes tend to orient
in the direction of extrusion.'* CaCO; has a more rhom-
bohedral, spherical, and needle-like structure,* which
impacts the mechanical properties.'” The layered clay
structure leads to an increase in dimensional stability
and improvement of some mechanical properties.>™*®
Leong et al."> evaluated the influence on the mechanical
properties and melt flow index of three different mineral
fillers (CaCOs, talc, and clay) added to PP (10-40 wt%).
The results showed higher melt flow index (MFI) values

when calcium carbonate was used, however, increased
filler fractions deteriorated the tensile modulus and
strength. On the other hand, both talc and kaolin clay at
a loading of 10% presented similar MFI. The tensile prop-
erties were maximized with talc, although tensile
strength at 10% filler presented similar values.> Post
et al.'® found similar results for the same mineral fillers
but with biodegradable matrices.'® In wood fiber-based
biocomposites, when comparing the mechanical proper-
ties after adding talc or CaCOj; as a third component in
an LDPE-kenaf fiber system, improved effects were
observed when increasing the talc fraction, and a reduc-
tion in mechanical properties when CaCO; was used."’
Additionally, it has been reported that clay in thermo-
plastic matrices can have a smoother surface finish,
reduced water absorption, and improved mechanical
properties.'”” Lin and Renneckar® reported on clay
adsorbed onto wood fiber surfaces by applying a time-
consuming layer-by-layer process before compounding
with polypropylene. Despite the efforts to modify the sur-
face of the wood fibers, the authors measured a decrease
in the tensile strength and modulus, and increased water
uptake, as the fraction of clay particles increased.

A previous study demonstrated increased tensile
strength and modulus when adding TMP fibers in PE
matrices.> However, the combined effects of clay and
TMP fibers in LDPE- or HDPE-biocomposites have been
scarcely explored. Hence, the purpose of this study was to
demonstrate the potential of a furnish commonly used
for printing paper (TMP and clay particles), as reinforce-
ment in biobased PE (bioPE) for injection molding prod-
ucts. Two grades of bioPE (low-density and high-density
PE) were used, with two levels of TMP fibers (20 and
30 wt%). The assessment included mechanical, thermal,
and water absorption properties.

2 | EXPERIMENTAL

2.1 | Materials

Low-density polyethylene SPB681/59 (LDPE, with melt-
flow index (MFT) 3.8 g/10 min and density of 0.922 g/cm”®)
and high-density polyethylene SHL7260 (HDPE, with MFI
20 g/10 min and density of 0.955 g/cm®) were kindly pro-
vided by Braskem (Brazil). Yparex RENEW 0H17 biobased
compatibilizer based on maleic anhydride grafted polyeth-
ylene (bioMAPE) was provided by YPAREX
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TABLE 1 Morphological characteristics of TMP fibers.

Fiber length  Fiber

(mm) width (um)  Fines (%) Fibril area (%)

1.47 £ 0.01 32.8 +0.10 41.0+0.60 13.2 +0.10

(The Netherlands). According to the YPAREX, the RENEW
0H17 bioMAPE has a bio-based content >97% and a maleic
anhydride content of <2%. The TMP fibers (Norway spruce)
and clay SIBELCO particles were provided by Norske Skog
Saugbrugs (Norway) (Figure S1). According to the supplier,
98% of the clay particles have an equivalent spherical diam-
eter of less than 20 pm. The TMP fibers were collected from
the reject press. The morphological characteristics of the
TMP fibers, analyzed with an L&W Fiber Tester Plus (code
912. Software: version 4.0-3.0, Kista, Sweden), are indicated
in Table 1. The L&W Fiber Tester Plus automatically quan-
tifies the morphology of the TMP fibers by image analysis
of optical images and is based on some 10,000 quantified
fibers. Fines content refers to the sum of length averaged
fibrous objects with length <0.2 mm. The fibril area is the
percentage of the fiber perimeter that is created by the
external fibrils. Also, a Hitachi microscope (SU3500 model)
was used (5 kV and 6 mm acceleration voltage) for a pre-
inspection of the TMP fibers (100x magnification) and the
clay (1000x magnification).

2.2 | Compounding

The TMP fibers were dried for 1 h at 105°C. The LDPE and
HDPE were dried for 4 h at 80°C, and the bioMAPE was
dried for 2 h at 75°C. The polymers, fibers, and clay were
compounded in a Coperion twin-screw compounder at
170-180°C, equipped with a water bath and pelletizing unit.
All compounds contained 4 wt% bioMAPE. After the first
compounding step, the pellets were dried for 4 h at 80°C
and compounded again. The pellets were compounded
twice to secure a good dispersibility of the fillers in the poly-
mer matrix. Approximately 3 kg of pellets were obtained
(diameter ~ 5 mm). The series was produced according to
a 2> ANOVA factorial design (Table 2). Images of the bio-
composite pellets were acquired with an Epson Perfection
Pro scanner using a resolution of 1200 dpi.

2.3 | Melt flow index

The melt flow index (MFI) was measured with a Melt Flow
Index-Deluxe Presto Stantest Private Limited (Faridabad,
India). The temperature was 200°C with a preheating time
of 5min and using 5 kg weight. Three replicate measure-
ments were undertaken for each sample.

TABLE 2 Compounds produced in this study. Four weight
percent of the total formulation was bioMAPE in all the series.

Series PE type TMP load (wt%) Clay (Wt%)
LD20T LDPE 20 0
LD20TI0C  LDPE 20 10
HD20T HDPE 20 0
HD20T10C ~ HDPE 20 10
LD30T LDPE 30 0
LD30T1I0C  LDPE 30 10
HD30T HDPE 30 0
HD30T10C ~ HDPE 30 10
2.4 | Preparation of test specimens

All test specimens except the Charpy impact specimens,
were injection molded using an Xplore Instruments BV
system (Sittard, The Netherlands). Four dogbone
specimens (type 1A of ISO 527-2) and four circular tablets
(target diameter 10 mm, height 4 mm) were injection-
molded (10 bar pneumatic pressure, 190°C melting tem-
perature, and 30°C mold temperature). The specimens
for Charpy impact testing were machined from ISO
527 type 1A specimens, which were injection molded by
ISO 294-1, using an injection molding machine with
500 kN clamping force (Battenfield, Kottingbrunn,
Austria). The Charpy specimens were notched using a
CEAST Motorized Notchvis (Instron, Norwood, MA,
USA). The most common notch geometry of ISO 179 was
used (type leA; 45°, 2 mm deep, 0.25 mm notch tip
radius). The specimens were conditioned for 7 days at
23°C and 50% RH before testing.

2.5 | Bulk density

The bulk density of tablets was calculated as the ratio
between the weight and volume of tablets at room tempera-
ture. The sample dimensions were measured using a digital
caliper and the weights were determined by a Sartorius
Analytic (Mettler Toledo, Switzerland) scale. The reported
values correspond to the average of four measurements.

2.6 | Mechanical properties

Tensile testing was conducted with a Zwick Roell Zmart

Pro (Ulm, Germany), using a load cell of 2.5 kN and a

clip-on extensometer. The test speed was 2 mm/min.
Instrumented Charpy impact tests were performed

using an Imatek/Rosand Drop Weight Impact (Imatek
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Systems Ltd., Old Knebworth, England, UK). The impac-
tor speed, mass, and energy were 2.9 m/s, 8.507 kg, and
36 J, respectively. The tests were performed at room tem-
perature (22 +2°C) and —30°C, using five repeat
specimens.

2.7 | Thermo-gravimetric analysis and
differential scanning calorimetry

Thermo-gravimetric analysis (TGA) and differential scan-
ning calorimetry (DSC) were performed with a Netzsch
Jupiter F3 instrument. The analysis was performed
between 35°C and 800°C under a nitrogen atmosphere
and a heating rate of 10°C/min.

2.8 | Fourier-transformed infrared
spectroscopy

Fourier-transformed infrared spectroscopy (FTIR) spectra
were collected using an FTIR-ATR Perkin Elmer Spec-
trum (Waltham, United States). Each spectrum was col-
lected in the wavenumber range from 4000 to 652 cm ™ *

with a resolution of 4 cm ™.

2.9 | Scanning electron microscopy

Test specimens (dogbones) were embedded in epoxy resin
and prepared for scanning electron microscopy (SEM)
cross-sectional imaging in backscatter electron imaging
(BEI) mode. The prepared cross-section corresponded to
the middle area (2 x 4 mm) of the dogbone specimen. A
Hitachi microscope (SU3500 model) was used, using
5kV and 6 mm acceleration voltage, and working dis-
tance, respectively.

2.10 | Water absorption

Water absorption was measured according to the ASTM
D570 standard. Four circular tablets (target diameter
10 mm, height 4 mm) were immersed in water for 24 h,
7 days, 10 days, 15 days, and 30 days. The water absorp-
tion value was estimated according to Equation I:

(my —my)

WA (%) =~
0

x 100 (1)

where WA is the water absorption percentage, and m;
and m; are the weight of the specimen before and after
immersion, respectively.

{
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2.11 | Statistical analysis

Analysis of variance (ANOVA) was performed to evaluate
differences in mechanical properties and water absorp-
tion values. ANOVA was performed using Statgraphics
Plus statistical software.

3 | RESULTS AND DISCUSSION

3.1 | Biocomposite morphology
Figure 1 shows the images of the biocomposite pellets
after the second extrusion. Interestingly, compared to the
HDPE-based pellets, the LDPE-based pellets had a wider
diameter and appeared to be fluffier, and this was espe-
cially the case with the series containing clay (LD20T10C
and LD30T10C). Keep in mind that both neat LDPE and
HDPE are white, while the biocomposite colors vary from
light to dark brown. Greater color changes were observed
in HDPE containing 30 wt% TMP (sample HD30T). Gen-
erally, the addition of clay reduced the darkening of the
specimens. The color change increases with increasing
TMP fraction, and it is associated with hydrolysis and
oxidation of wood components.** The darkening of
wood fiber at a given extrusion temperature is mainly
associated with hemicellulose (pentosans) thermal degra-
dation® and with the release of acetic and formic acids.**
SEM of dogbones cross-sections revealed the struc-
tural composition of the biocomposites containing TMP as
reinforcement (Figure 2, left) and those containing TMP
and clay (Figure 2, right). The clay particles appear as white
particles compared to the gray fibers. In addition to the
large tubular gray TMP fibers, we observed a large amount
of smaller gray particles. These are fines that have been
quantified to be about 46% in the same TMP as used in this
study.”> The quantification of fines is length-weighed and
defined as fibers under 0.2 mm in length. The SEM micro-
graphs revealed a good dispersion of the TMP and clay par-
ticles in the PE matrix. Additionally, the micrographs
revealed a tubular shape of the TMP fibers, indicating that
the fibers are mostly aligned parallel to the main flow direc-
tion in the injection molded specimens.

3.2 | FTIR analysis

The IR absorption spectra of the LDPE and HDPE matri-
ces combined with fibers and clay are shown in the sup-
porting information (Figures S2 and S3, respectively).
The maximum absorbances reached in different areas of
the spectrum correspond to functional groups of the
fiber, polymers, and clay. The peaks referring to the
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LD20T

FIGURE 1

fraction of TMP fibers are similar in all cases, the
detected areas involve vibrations and stretching peaks
from cellulose, hemicellulose, and lignin chemical
groups. The symmetric and asymmetric stretching bands
for C—H were observed at 2848 and 2916 cm™': attrib-
uted to cellulose, hemicellulose, and lignin groups.”® In
the samples containing clay, peaks appear between 3600
and 3700 cm . These correspond to the valence absorption
bands of hydroxyl groups (3692 cm ™), surface hydroxyls of
the octahedral layer interacting with the core oxygens of
the adjacent tetrahedral layer (3650-3670 cm '), and inter-
nal layers (3620 cm™ ") of the structure.””*® At lower wave-
numbers, it was possible to visualize bands related to Si—O
bonds (around 695 cm ') and OH around 900-1000 cm ™ *
related to inner OH deformation in clay, being more pre-
dominately in LDPE, which may be due to a more
restricted vibration of OH groups.® The specific IR absorp-
tion bands of the polymers did not show variations, with
two maxima at 2915 cm ™" and 2849 cm ™" of the CH, asym-
metric and symmetric stretching vibrations, CH; umbrella
mode: at 1472 cm ™' in LDPE, and two peaks in HDPE
1464 cm ™', and 1472 cm™ ' due to the crystalline splitting.
Finally, around 720 cm ™ the split CH, vibration in both.*!

3.3 | DSCand TGA

The thermal properties of the pure polymers and the bio-
composites are shown in Table 3. The melting tempera-
tures of the pure polymers are somewhat lower than the

Biocomposite pellets of the series described in Table 1. The scale bar (lower-right image) corresponds to 10 mm.

melting temperatures of the corresponding biocompo-
sites. The biocomposites present two degradation temper-
atures (supporting information, Figure S4), one in the
range 317-339°C, which corresponds to the degradation
of the TMP fibers, and one in the range 462-469°C which
corresponds to the degradation of polyethylene, where
the degradation temperature of LDPE is a few degrees
lower than that of HDPE. As expected, the residual mass
of the biocomposites is higher than that of the pure poly-
mers. These results agree with previously reported data
on PE/wood fiber biocomposites.’> Moreover, the sam-
ples containing clay had between 7% and 9.5% higher
residual mass than those without clay, which agrees with
the clay fractions applied in this study.

34 | MFI

Figure 3A shows the MFI values obtained after adding
TMP and clay fillers to the LDPE and HDPE matrices.
Compared to the corresponding neat LDPE and HDPE
values, the MFI values decreased in both matrices and
with the 20 wt% TMP and 30 wt% TMP fiber load. The
analysis indicated a statistically significant reduction of
the MFI when adding the clay filler (p < 0.05) to the bio-
composite samples. Generally, adding fillers to polymer
matrices decreases MFI,** probably due to the reduced
mobility of the molecular polymer structure. Using wood
fibers as reinforcement in polymer biocomposites leads to
a significant reduction of the MFI.>*** Although the MFI
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FIGURE 2

sections of biocomposite
specimens. The dark gray
background corresponds to the
PE, the gray tubular structures
are TMP fibers, and the white
particles (right column) are clay

particles.

TABLE 3

Sample
LDPE
HDPE
LD20T
LD20T10C
HD20T
HD20T10C
LD30T
LD30T10C
HD30T
HD30T10C

SEM of cross-

Thermal properties of the biocomposites. The TGA and DSC analyses are provided in Figures S4 and S5.

Melting
temperature (°C)

111.4
128.2
118.8
117.0
139.6
140.9
118.3
117.9
138.9
140.0

Degradation
temperature 1 (°C)

317.4
338.7
326.7
321.3
323.8
322.3
323.1
324.5

W
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Degradation
temperature 2 (°C)

467.7
468.2
461.9
462.9
466.1
466.8
461.7
462.8
464.7
466.8

Residual
content (%)

0.14
0.80
3.23
12.69
3.19
10.49
5.48
13.20
4.12
13.09
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FIGURE 3

increased when the fraction of fibers was raised from
20 to 30 wt% TMP in the HDPE matrix, the relative incre-
ment was not considered significant, as the MFT is still
approx. 1/3 of the neat HDPE matrix (17.3 g/10 min).
Additionally, it has been observed that clays also reduce
the MFI of polymer composites.>> Biocomposites with the
same amount of filler (30 wt% TMP vs. 20 wt% TMP plus
10 wt% clay) show that a filler combination with clay
gives a larger reduction in MFI than using only TMP
fibers. A study with polypropylene (PP) showed incre-
ments in viscosity after the clay addition. The authors
attributed the increase to the clay size and its specific sur-
face area, as well as the dispersion of the particle in the
matrix which led to an additional restriction in the poly-
mer chain.*®

3.5 | Tensile strength properties

The tensile strength, tensile modulus, and elongation at
the breakpoint of the biocomposites are shown in
Figure 3B-D. The ANOVA analysis indicated significant
individual effects of TMP fiber load, clay load, and matrix
type on the tensile strength and tensile modulus
(p < 0.05). The interaction effects between fiber load-
matrix, and clay load-matrix were also observed for the
tensile strength (p < 0.05 in both cases). The clay
increased the tensile strength in all cases. Moreover,

(B) 4000

LDPE: 235 MPa

‘ WOwt% Clay &10wt% Clay ‘
HDPE: 1304 MPa

\
\
III

30wt% TMP 20wt% TMP 30wt% TMP

3000

2000

o

20wt% TMP

Tensile Modulus (MPa)

LDPE HDPE

(D) 12.0
LDPE: 30.0 %

10.0 HDPE: 10.1 %

W Owt% Clay 10wt% Clay

Il
o

6.0

- N N
S I BN

20wt% TMP 30wt% TMP 20wt% TMP 30wt% TMP

Elongation at break (%)

N
=}

LDPE HDPE

The effect of clay addition on (A) MFI, (B) tensile modulus, (C) tensile strength, and (D) elongation at break.

adding 10 wt% clay to the biocomposite with a 20 wt%
TMP allowed reaching strength values that were higher
than the biocomposites containing 30 wt% TMP fiber.
This is considered beneficial in terms of costs since clay
is less expensive than wood pulp.® An increase in the ten-
sile strength of biocomposites containing cellulose fibers
has not been observed with all inorganic fillers. For
example, when talc-based fillers were added to biocom-
posites, a decrease in tensile strength was observed in
HDPE/wood flour biocomposites®’ and PHBV/wood
fibers.>® On the other hand, it is well known that talc
increases the stiffness of PP, as also demonstrated in
CNF/PP biocomposites.*

The reduction of tensile strength due to inorganic
filler addition has also been reported for precipitated cal-
cium carbonate as filler in bamboo plastic biocompo-
sites.** Adding inorganic fillers is associated with an
increase in brittleness, leading to early failure. The differ-
ent effects of talc (in the studies mentioned above) and
clay are probably related to particle size. Clay can achieve
smaller particle sizes and variable shapes, providing
greater surface area and better distribution, which
enhance the stress transfer in all biocomposites.*!

Additionally, the enhanced mechanical properties
revealed in this study (tensile strength and modulus) may
be related to the dispersion of the clay,** which has been
shown to also depend on the type of mixing method per-
formed during the extrusion stage.”” Nunes et al.
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demonstrated a 15% increase in tensile strength in recycled
HDPE biocomposites with 20 wt% of coir fibers and 3 wt%
clay.** Additionally, Lei et al. demonstrated the synergic
effect of clay and MAPE on HDPE/wood biocomposites
production, reaching a 20% increase in tensile strength.*
The beneficial effect of clay on tensile properties was also
observed in studies with other matrices such as PLA.** On
the other hand, the fiber load significantly reduced the
elongation at break (p < 0.05), also previously reported by
some authors.*”** In addition, a significant effect on elon-
gation at break (p < 0.05) was observed regarding the
interaction of the matrix with the clay and fiber loads. The
decrease in elongation at break was more pronounced for
the LDPE matrix.

3.6 | Charpyimpact toughness
properties

The impact toughness values of biocomposites are shown
in Figure 4. The statistical analysis shows a significant
difference between the individual factors (p < 0.05) and
between the double interactions (p < 0.05). At 23°C, a
reduction in the impact toughness/energy when adding
fillers is the largest for the LDPE-based composites. This
effect in LDPE is probably due to its branched, less crys-
talline, and less dense polymer structure. This greater
flexibility permits more molecular movement of the
structure, achieving a high ability to absorb the energy
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and plastically deform without failure.*’ After filler addi-
tion, the reduced mobility leads to a lower ability of the
material to withstand the impact.

The increase in fiber load and the inclusion of clay
reduced the impact toughness in LDPE-biocomposites
(Figure 4A). The inclusion of clay simultaneously leads
to an increase in the peak force (Figure 4B). However,
impact testing revealed that the 20 wt% TMP and 10 wt%
clay samples were similar or tougher than the 30% TMP
sample. This is considered advantageous since it would
reduce the cost of the biocomposite formulation to achieve
the same characteristics in terms of impact toughness. Add-
ing organic and inorganic fillers in LDPE matrices generally
reduces the impact toughness as the reinforcement load
increases.”®>* Atuanya et al. observed a decrease in impact
toughness after incorporating wood sawdust in LDPE
matrices, resembling impact performance studies when
coconut fibers®* and kenaf®' were used.

In the HDPE, a moderate impact toughness decrease
was observed after the addition of fibers (Figure 4A).
However, there was no significant difference between the
loads. A non-significant effect of fiber content was also
reported by Ferreira et al.>> The authors concluded that
the decrease after fiber addition was due to the fiber
being a rigid material, reducing ductility, and, therefore,
the impact energy.’®> The clay addition demonstrated a
small increase in impact toughness (p < 0.05). Since the
HDPE with TMP fiber fractures at a small displacement,
the increase is likely associated with the stiffness increase
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FIGURE 4 Impact strength and peak force, at 23°C (A, B) and at —30°C (C, D).
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(a higher peak force, Figure 4B). An increase in the
impact toughness of PP/HDPE-based composites with
15% or less of clay was reported.*>° Our interpretation is
that the increase may be related to the improvement in
the distribution of the stress applied over an area, pre-
venting the propagation of cracks.’® Similar results were
obtained with other inorganic fillers like talc and calcium
carbonate.”’

The low-temperature impact tests (—30°C) impart
lower impact toughness values for all materials
(Figure 4C). Note that the LDPE specimen failed at
—30°C, which was not the case at 23°C. The impact tough-
ness decrease is associated with the ductile-to-brittle tran-
sition of LDPE, which also allows less displacement. The
addition of TMP fiber (p < 0.05) and clay (p < 0.05)
reduced the impact toughness even more. The influence of
the clay addition was observed in the maximum force
(Figure 4D), probably related to effects on stiffness, but
without producing strong effects on impact toughness.

3.7 | Water absorption

The water absorption of biocomposites is a critical factor
regarding outdoor applications. Figure 5 shows the water
absorption values for neat polymers and biocomposites
based on LDPE (Figure 5A), and HDPE (Figure 5B) during
the first 30 days (1, 7, 10, 15, and 30 days). Note that equi-
librium is not yet reached. However, the test helps to evalu-
ate the absorption kinetics of the biocomposites in their
first contact with water. The addition of fillers led to an
increase in water absorption in all biocomposites. The
ANOVA was carried out with the water absorption values
after 30 days as a response. The fiber load, clay load, and
matrix type significantly influenced the water absorption
values (p < 0.05). Significant differences were also observed
in the two-way interactions (p < 0.05). In cellulose-based
biocomposites, the presence of water causes swelling of the
cellulose fiber, leading to the development of stresses and,
therefore, loss of material performance.58
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Clay increases water absorption, due to the greater
hydrophilicity of clay compared to the polymers.”® When
adding fibers, the increase is even greater, both due to
the nature of the fiber and that of the clay as demon-
strated by the interaction effect in the statistical analysis.
Notice that the effect of filler on water absorption was
higher in LDPE than in HDPE. This is possibly due to
the greater number of interstitial spaces of the material,
due to its high branching structure and low density. It
has been reported that water absorption increased due to
the dispersion of the clay in the matrix, large aggregates,
and random distribution of clay components.** As for
wood fibers, some strategies to improve the dispersion
and compatibilization of clay in polymers involve chemi-
cal modification®>®" or the addition of compatibilizers.®*

Table S1 shows the initial bulk density values of the
injection-molded tablets. Bulk density refers to the mass
of the biocomposite that can occupy a given volume. The
addition of clay significantly increased the bulk density
of the samples (p < 0.05). The bulk density increase was
also demonstrated in HDPE combined with milled poplar
wood fiber and red pottery clay.®®> The authors attributed
this behavior to the gaps filling, which decreased the
porosity and led to a denser and more compact struc-
ture.®® This could be perceived as contradictory consider-
ing that decreased porosity is expected to decrease water
absorption. However, in our study clay caused an
increase in water absorption after 30 days. Keep in mind
that the water absorption in biocomposites is influenced
by the diffusivity and the nature of the filler (TMP fiber
+ clay).”®®* The higher increase in samples with clay at
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30 days, compared with the sample only with TMP fiber,
can be attributed to a clay swelling effect, which may
cause water to penetrate between clay layers.>®® The
determination of swelling values will be considered in
future studies.

Although the TMP fiber + clay biocomposites devel-
oped in this study absorb water, the level of water absorp-
tion is considered relatively low compared to previous
studies. In this study, the biocomposites were com-
pounded twice, and this caused a good dispersion of TMP
fibers and clay particles as revealed by SEM (Figure 2).
The good dispersion most probably contributed to limit-
ing the contact of the hydrophilic components (TMP and
clay) with water and thus reduced the water absorption.
Figure 6 compares water absorption measurements
(at room temperature) in biocomposites (30 wt% filler
load) from this study with results obtained previously by
other authors using a range of matrices.””’® Note that
the water absorption of our biocomposites containing
clay is relatively low compared to other matrices with the
same fiber load. PLA biocomposites containing 30 wt%
softwood flour (Figure 6, PLA/CP-30F and PBAT/PLA-
30F) in commercial matrices (PLA, Ecovio®, Bioflex, and
Tenite propionate) absorbed water rapidly reaching
roughly 1% water absorption after 24 h,°® which is
approximately 2-3 times the water absorption levels of
the PE biocomposites developed in this study (Figure 5).
Similarly, the addition of 30 wt% bleached kraft softwood
fibers in PLA matrices led to a high-water absorption
(5.27%), at the saturation point (20 days).”> Even for
100 wt% PLA a water absorption value of 0.97% was

ePLA-30F ® PLA-30F
PP-30F
-
HDPE-30F
.
HD20T10C
HD30T
This study
500 600 700 800 900 1000
Time (h)

FIGURE 6 Comparison of water absorption for a range of matrices reinforced with 30 wt% cellulose fibers. The following polymers
were included: Polypropylene (PP), recycled polypropylene (rPP), polylactic acid (PLA), polycarbonate (PC), polyhydroxybutyrate-co-valerate
(PHBV), poly(vinyl chloride) (PVC), polybutylene adipate terephthalate (PBAT, EcoFlex®), copolyester (CP), and cellulose acetate

propionate (CAP, Tenite propionate).”” %’
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reached.”” A similar value was obtained after the addition
of 30 wt% walnut shell flour, reaching an increase in water
absorption of 5.40% and saturation point at 15 days.”’

Furthermore, virgin and recycled PP matrices have
shown increments in water absorption by incorporating
fibers as reinforcement.”*’®’® For a similar period that
the samples evaluated in this study, virgin PP reinforced
with wood powder showed twice as high absorption
value.”*”® To conclude, the HDPE and LDPE biocompo-
sites developed in this study have demonstrated
improved mechanical properties and relatively low water
absorption, a trend also observed in previous studies with
virgin and recycled PE and 30% fiber.*>"

4 | CONCLUSIONS

This study revealed the effects of clay particles and
TMP fibers in composites with polyethylene matrices
(HDPE and LDPE). Generally, both TMP and clay
increased the mechanical strength of the biocompo-
sites. The tensile strength increased from 19 MPa for
neat HDPE to 30 MPa with 30 wt% TMP. Interestingly,
the tensile strength of the biocomposite containing
20 wt% TMP and 10 wt% clay was significantly higher
(34 MPa) than that of the biocomposite containing
30 wt% TMP (30 MPa). A similar trend was observed
for the tensile modulus and impact toughness.
Although there are still some water absorption chal-
lenges for the biocomposites developed in this study,
the measured levels of water absorption were relatively
low (roughly 1-2% after 30 days), compared to biocom-
posites with other polymer matrices (e.g., PP and PLA).
Finally, based on the lower price of clay compared to
TMP fibers, we expect that using clay in the formula-
tion may imply a significant cost reduction of the final
biocomposites.
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