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Abstract

The paper deals with several aspects related to numerical modelling of material failure in strong discontinuity

settings: (a) the onset and development of local material failure in terms of continuum constitutive models equipped

with strain softening. Closed forms formulas for the solutions of the discontinuous material bifurcation problem are

given for a class of those models; (b) finite elements with embedded discontinuities: nodal and elemental enrichments

families are formulated in the continuum strong discontinuity approach (CSDA); (c) instability treatment: a discrete

viscous perturbation method at the failure surfaces is presented as a way to substantially improve the robustness of the

numerical simulations.
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1. Motivation

Material failure has been traditionally characterized by means of local concepts. In early stages, tech-

niques and methodologies to detect and prevent material failure were grounded on the development of

material failure indicators that provided safe limits to the range of stable structural behavior. Onset of

inelasticity or loss of strong ellipticity have been classical failure indicators to characterize the beginning

of more complex material behaviors that lead to the progressive softening of the structural response and,

eventually, to the structural collapse. The most conservative methodologies were based on identifying the

load level that activates, for the first time, those failure indicators at any of the material points of the
structure as the critical load level or failure load, from which the design should move away through

appropriate safety factors. However, it is nowadays very well known that, in ductile materials, loss of

elasticity does not mean immediate local failure as material hardening follows. Most important, in many

cases local material failure does not imply global structural failure since relevant zones of the structure must
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fail locally before the structural failure (structural instability) can be observed. On the other hand the
concept of critical load, as responsible for the structural instability, is relative to the loading pattern. Indeed,

a limit point of the equilibrium path under prescribed load can became a stable point upon displacement

control and make physically attainable postcritical states unreachable under load control. These facts have

placed the present attention of material failure mechanics beyond the limits of the elastic range and the

initiation of local failure. In fact, the aim of modern material failure mechanics is to identify as closely as

possible the actual mechanisms of structural failure and to model the postcritical structural behavior.

It is also a well-accepted fact that global material failure under quasi-static loads for ductile and quasi-

brittle materials is characterized, from a macroscopical point of view, by the onset and propagation of
failure lines (in 2D) or failure surfaces (in 3D). Local failure at a material point (or at a discrete set of points)

propagates through the body along those failure surfaces, which are termed cracks, fractures, shear bands,

or slip lines depending on the context. In many cases, the mechanism of formation of those failure locus can

be explained as an initial local failure process followed by the concentration of the strains in a narrow band

responsible for an increasing dissipation, which eventually collapses into a physically observable failure

surface that propagates exhibiting a discontinuity in the displacement field. These displacement disconti-

nuities will be from now on termed strong discontinuities and an approach to capture and to model them in

a continuum (Continuum Mechanics) setting has been presented in detail elsewhere [19].
In this paper several theoretical and numerical aspects in modelling material failure in strong discon-

tinuity settings are addressed. After a brief introduction of a strong discontinuity scenario in Section 2, the

material bifurcation problem is tackled in Section 3 and an incursion is made into analytical, exact and

approximated, solutions of that problem for a class of constitutive models often considered for geomate-

rials failure modelling. In Section 4 finite elements with embedded discontinuities are explored and two

families of enrichments of standard elements to capture strong discontinuities are described. In Section 5

the issue of uniqueness is addressed. A discrete viscous perturbation method to assure algorithmic

uniqueness of the solution, a crucial fact to give robustness to the simulation, is presented. Finally, in
Section 6 some representative numerical simulations are carried out to highlight the most important fea-

tures of the presented approach.
2. Strong discontinuity scenario

In the last years the so-called strong discontinuity approach to material failure has been object of

increasing attention. Here we consider an specific version faithful to the spirit of the pioneering work [33]
and subsequently developed in [19–26]. It has been termed the continuum strong discontinuity approach

(CSDA) since it features a continuum format even for purposes of modelling displacement discontinuities.

The distinctive features of this approach, compared to alternative procedures that do not keep that con-

tinuum format [1,2,12,34] have been pointed out elsewhere [24–26] and its main ingredients (that are ex-

plored in detail in [21]) can be summarized as follows:

1. The use of a continuum format for the kinematics, i.e.: the strains eðx; tÞ are computed as the symmetric

gradient ð$suÞ of the displacement field uðx; tÞ, even as it exhibits jumps across the failure path and,
therefore, becomes unbounded (see Fig. 1). The displacement and strain fields read:

uðx; tÞ ¼ �uðx; tÞ þ HS ½½u��ðx; tÞ; ð1aÞ

eðx; tÞ ¼ $su ¼ �e|{z}
regular

ðboundedÞ

þ dSð½½u�� � nÞs|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
singular

ðunboundedÞ

; ð1bÞ



Fig. 1. Strong discontinuity kinematics: (a) initial and actual configurations of body X; (b) displacement field; (c) strain field along the

curve C.
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where HS and dS stand, respectively, for the line/surface Heaviside’s step function and Dirac’s delta

function placed at the discontinuity interface S in the body X, �u is the regular (continuous) displacement

field, ½½u�� is the displacement jump and n is the unit normal to the failure interface S. This is known in the

literature as the strong discontinuity kinematics [33].

2. Consideration of continuum (stress–strain) nonlinear constitutive equations equipped with strain soften-

ing, i.e.,

r ¼
X

ðe; a;HÞ; ð2Þ

where a and H < 0 stand, respectively, for the internal variables and the continuum softening modulus

that rules the evolution of the elastic domain respectively. The rate version of Eq. (2) reads

_r ¼ Etangðr; a;HÞ : _e; ð3Þ
where Etang is the tangent constitutive tensor.

3. The distributional character of the inverse of the continuum softening modulus H in terms of the discrete

softening modulus H, i.e.,

1

H
¼ dS

1

H
: ð4Þ

Regularized versions (more suitable for computational treatments) of Eqs. (1) and (4) are obtained via a

k-regularized sequence of Dirac’s delta functions:

dkSðxÞ ¼ lim
k!0

lSðxÞ
1

k
; ð5Þ

where lS is the collocation function on S (lSðxÞ ¼ 1 for x 2 S and lSðxÞ ¼ 0 otherwise) and k is a

regularization parameter as small as permitted by the machine precision. In this context Eq. (4) turns out
to be the so-called softening modulus regularization condition [21]:

HðxÞ ¼ kH 8x 2 S: ð6Þ
The discrete softening modulus H in Eq. (6) can be related to material properties as the fracture energy

Gf , Young’s modulus E and the uniaxial peak stress ru, typically for linear softening:
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H ¼ � 1

2

r2
u

EGf

ð7Þ

which qualifies H as an actual material property from which the continuum softening parameter H at

the failure interface can be obtained via Eq. (6).

In this context it can be shown [21] that:

(a) Eq. (4) (or its regularized counterpart (6)) makes compatible, for the constitutive equation (2),

bounded values of the stresses r with the unbounded strains eS emerging from Eq. (1) at the failure

surface S.
(b) As the strong discontinuity kinematics (1) is activated, the original continuum constitutive equation

(2) is projected into a discrete constitutive model (relating the traction at the failure interface

T ¼ rS � n with the displacement jump ½½u��) that is automatically fulfilled at that failure interface

[21], i.e.,
T ¼ Fð½½u��;HÞ: ð8Þ
Eq. (8) provides a clear link with the nonlinear decohesive Fracture Mechanics [11] while keeping the

continuum format of the analysis.
4. Boundedness of the stress (and rate of stress) field and the traction–separation law (8) can only be
achieved at the strong discontinuity regime if some restrictions on the stress field rS at the discontinuity

interface are fulfilled. These restrictions depend on the type of the parent constitutive model but they can

be generally written in a local orthonormal system fê1 � n; ê2; ê3g as

lim
k!0

k
oGðrS ; aSÞ

orij

�
þ eðiÞij ðrS; aSÞ

�
¼ 0; i; j 2 f2; 3g; ð9Þ

where GðrS; aSÞ stands for the complementary Gibbs energy, rS and aS are the stresses and the strain-like

internal variables, respectively, at the discontinuity interface and eðiÞ are the inelastic strains. More

details on derivation of the strong discontinuity conditions (9) and their explicit form for particular

models can be found in [26]. Although they are not derived under this goal, the role of Eq. (9) is to set a

particular dependence of the stress tensor rS on the traction vector T:

rS ¼ RSðTÞ ð10Þ
this being ultimately responsible for the aforementioned projection of the continuum model (2) into the

discrete one (8).

5. Since Eqs. (9) are not generally fulfilled, for a particular material point, at the onset of the material fail-

ure, a smooth transition to fulfillment of those conditions can be achieved by introducing a variable

bandwidth model that characterizes a strong discontinuity as the ultimate collapse of a weak disconti-
nuity (h � k ! 0) [24]. In physical terms, the dissipation phenomena taking place during that transition

match the Fracture Process Zone concept in Fracture Mechanics [6,14].
3. Onset and propagation of failure––closed form material bifurcation solutions

Discontinuous bifurcation analyses [28,30,35] provide a rigorous methodology to detect the onset of

failure, in a given material point, as the loss of strong ellipticity of the tangent constitutive operator Etang,
resulting in a local bifurcation of the stress–strain field. That bifurcation can be characterized in terms of

the singularity of the so-called localization tensor:

Qlocðx; n;H; tÞ ¼ n � Etangðrðx; tÞ;HÞ � n: ð11Þ
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Therefore the bifurcation time tB, that triggers the discontinuous kinematics (1), is determined as the first

time that the following condition is fulfilled for some n:

det½Qlocðn;H; tBÞ� ¼ 0: ð12Þ
Eq. (12) implicitly defines, at the bifurcation time and for the given material point, the value of the soft-

ening modulus H ¼ HðnÞ as a function of the directions n fulfilling that equation. Then the critical value of

the softening modulus Hcrit and the (normal to the) propagation direction ncrit are determined by imposing

H to be a maximum:

ncrit ¼ arg
jnj¼1

½maxHðnÞ�; ð13aÞ

Hcrit ¼ HðncritÞ: ð13bÞ
In the context of modelling of material failure, Eqs. (13) can be solved numerically by a local maximization

process [27]. However, for large problems, specially for 3D cases, this involves a large computational cost.

For 2D (plane stress–plane strain) cases those equations have been very often solved by analytical pro-
cedures for particular families of continuum constitutive equations (plasticity, damage etc.). In [35] a

geometrical interpretation of Eqs. (13), for a particular two-invariant parabolic plasticity model, invoked

an appealing geometrical interpretation to solve those equations in Mohr’s circle space. In the following

sections a generalization of that methodology, through a similar but slightly different geometrical inter-

pretation, provides closed form 3D solutions of the material bifurcation problem for a wider class of

constitutive models.

3.1. A class of tangent constitutive operators

Let us consider the class of constitutive models characterized by tangent constitutive operators, Etang, of

the form:

Etang ¼ E� � 1

nðHÞP� R;

_r ¼ Etang : _e;

ð14Þ

where E� is a fourth-order tensor, P and R are second-order symmetric tensors and nðHÞ a scalar function

of the softening modulus H. The following conditions are required to those entities:

(1) The structure of E� is such that its n-projection Q�ðnÞ ¼def n � E� � n is the following:

½Q�ðnÞ��1 ¼ �an� nþ b1; ð15aÞ

a > 0; b > 0; b� a > 0: ð15bÞ

(2) P and R are collinear and P � R is positive semi-definite. Therefore P, R and P � R diagonalize in the

same basis and eigenvalues of P (p1; p2; p3) and eigenvalues of R (r1; r2; r3) fulfill:

p1r1 P 0 ) signðp1Þ ¼ signðr1Þ;
p2r2 P 0 ) signðp2Þ ¼ signðr2Þ;
p3r3 P 0 ) signðp3Þ ¼ signðr3Þ:

ð16Þ

(3) nðHÞP 0 is the so-called generalized plastic modulus, a monotonous increasing function of the soften-

ing modulus H.
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Remark 1. For the particular case of E� ¼ E ¼ k1� 1þ 2lI (the standard isotropic elastic constitutive

tensor, where k and l are Lame’s parameters and 1 and I are, respectively, the unit second- and fourth-

order tensors) after some algebraic manipulations it turns out that

a ¼ 1

2ð1� mÞ
1

G
; b ¼ 1

G
; ð17Þ

where m is Poisson’s ratio and G ¼ l the shear modulus.

Condition (2) allows to define

S ¼def signðPÞ
ffiffiffiffiffiffiffiffiffiffiffi
P � R

p
¼ signðRÞ

ffiffiffiffiffiffiffiffiffiffiffi
R � P

p
ð18Þ

as a symmetric second-order tensor with real eigenvalues s1; s2; s3 (si ¼ signðpiÞ
ffiffiffiffiffiffiffi
piri

pzfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{no sum

) and orthonormal

eigenvectors ŝ1; ŝ2; ŝ3. For the associative case (P ¼ R) it turns out that S ¼ P ¼ R.
A variety of standard continuum dissipative constitutive models can be inserted in the previous class. As

a matter of example in the following table values of the above entities for two families (elasto-plastic and

damage [21]) of isotropic constitutive models are given:

ð19Þ
where / and w are, respectively, the yield and the plastic potential functions in plasticity models and

dðrÞ 2 ½0; 1� is the damage variable in terms of the internal variable r.

3.2. Geometric and closed form solutions

For the class of the tangent constitutive operators defined in Section 3.1 it can be shown, after some
algebraic manipulation, that Eq. (12) is equivalent to [35]:

nðHÞ � n � P �Q��1 � R � n ¼ nðHÞ � ½bn � P � R � n� aðn � P � nÞðn � R � nÞ� ¼ 0 ð20aÞ
) nðHÞ ¼ bðn � P � R � nÞ � aðn � P � nÞðn � R � nÞ; ð20bÞ

where Eqs. (11), (14) and (15) have been considered. In view of condition (3), the maximum value of
H � Hcrit in Eq. (13b) will correspond to the maximum value of n � ncrit in Eq. (20b). Now, let us consider

the following statements:

n � ðP � RÞ � n ¼ n � ðP � RÞ|fflfflffl{zfflfflffl}
S2¼S�S

� n ¼ ðn � SÞ � ðS � nÞ; ð21aÞ

ðn � P � nÞðn � R � nÞ ffi ðn � S � nÞ2; ð21bÞ
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where Eq. (18) has been considered. It can be shown that the right- and left-hand-side terms of statement

(21b) differ as the arithmetic and geometrical averages of couples ½jpirjj; jpjrij� (i 6¼ j) do (see Appendix A).

Now substituting Eqs. (21) into Eq. (20b) reads

nðHÞ ¼ bðn � P � R � nÞ � aðn � P � nÞðn � R � nÞ ffi bðn � SÞ � ðS � nÞ � aðn � S � nÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZðnÞ

; ð22aÞ

ZðnÞ ¼def bðn � SÞ � ðS � nÞ � aðn � S � nÞ2: ð22bÞ
In view of Eqs. (22) one can state that

ncrit ¼ arg
jnj¼1

½maxZðnÞ�; ð23aÞ

ncritðHcritÞ ¼ ZðncritÞ ð23bÞ
provides an approximation for the solution Hcrit in the original equation (13).

Remark 2. For the associative case (P ¼ R ¼ S) Eq. (22a) becomes an equality and solutions of problems

(23) and (13) coincide (see Appendix A). In this case, the derivations below and the obtained values for

Hcrit and ncrit, in Eqs. (27)–(29), are exact.

Eq. (23) admits a simple geometrical solution, in Mohr’s circle plane (r–s) associated to the symmetric

second-order tensor S, by defining (see Fig. 2)

rðnÞ ¼ n � S � n; ð24aÞ

s2ðnÞ ¼ ðn � SÞ � ðS � nÞ � r2: ð24bÞ
In that plane, Eq. (22b) reads in terms of the (r–s) coordinates:

Z ¼ b ðn � SÞ � ðS � nÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
r2þs2

�a ðn � S � nÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r2

¼ ðb� aÞ|fflfflffl{zfflfflffl}
P 0

r2 þ b|{z}
P 0

s2 P 0 ð25Þ
(b)

(c)

(a)

Fig. 2. Closed form material bifurcation solution: (a) localization ellipses in Mohr’s space; (b) geometric solution; (c) direction of ncrit

in the space of eigenvectors of S.
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which can be rewritten as

r2

Z
b�a

þ s2

Z
b

¼ 1: ð26Þ

Eq. (26) defines in Mohr’s plane an ellipse featuring the following properties (see Fig. 2a):

• The center of the ellipse is ð0; 0Þ.
• The ellipse semi-axes are Z

b�a and
Z
b. Therefore, the aspect ratio (shape) of the ellipse, defined as the ratio of

both semi-axes, is b
b�a (depending only on the material properties a and b) and therefore it is independent

of Z.
• The size of the ellipse (defined by the semi-axes values) is proportional to the value of Z.

Consequently, decreasing values of Z will define concentric smaller and smaller ellipses as it is shown in

Fig. 2a. Solutions of the bifurcation problem shall lie in the intersection of the ellipse with the feasible zone

inside Mohr’s circles area. Solutions corresponding to the highest value of Z and, therefore, to the highest

(critical) values of ncrit and Hcrit in Eq. (23b) will be obtained for the tangent ellipse to the outer Mohr’s’

circle in Fig. 2b. After some algebraic manipulations, ncrit can be solved as (see Appendix B)

ncrit ¼ cos hcritŝ1 þ sin hcritŝ3;

tan2 hcrit ¼ �ð1� 2a=bÞs1 þ s3
ð1� 2a=bÞs3 þ s1

:
ð27Þ

Eqs. (27) provide (in general two) closed form solutions for ncrit (see Fig. 2c). As for Hcrit, Eq. (23b) yields

ncritðHcritÞ ¼ Zcrit ¼ b
s1 � s3

2

� �2�
þ b

a

�
� 1

�
s1 þ s3

2

� �2�
ð28Þ

which can be solved for Hcrit for every specific model. As a matter of example explicit solutions for the
constitutive models considered in Eq. (19) are given in the following table:
ð29Þ
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4. Finite element modelling

Computational modelling of strong discontinuities has been object of increasing development during the

last years [1,7,13,15,16,25,32]. In the finite element context, specific elements to capture displacement jumps

by means of enriching deformation modes seem to be the best available option. This technology consists

essentially of adding, to standard continuum finite elements, enriching deformation modes, controlled by

additional degrees of freedom. The resulting elements capture displacement discontinuities placed anywhere

inside them and have been termed finite elements with embedded discontinuities. Then, depending on the
support of those additional displacement modes they can be split up into two families:

1. Nodal enrichment (see for instance [13,17,34]). The support of the enriching discontinuous mode is (in

most cases) the same than for the nodal shape functions of the underlying element (see Fig. 3a). The reg-

ular nodes of the enriched set of elements are increased with additional degrees of freedom (two per node

in 2D cases, three node in 3D cases) whose interpolation provides a, varying inside the element, discon-

tinuous displacement field.

2. Elemental enrichment (see for instance [3,10,18,20,25,29]). The support of the enriching discontinuity
mode is elemental (see Fig. 3b) and, in consequence, the additional internal discontinuous degrees of
(a)

(b)

(c)

Fig. 3. Finite elements with embedded discontinuities: nodal vs. elemental enriching techniques; (a) enriched nodes and elements;

(b) enhanced shape functions and support; (c) sampling points for numerical integration.
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freedom (two per element in 2D cases and three per element in 3D cases) can be condensed at the ele-

mental level. The displacement jump is element-wise constant.

In the following sections those finite elements are described.

4.1. Boundary value problem

The boundary value continuum problem for a strong discontinuity propagating in a body X along a

failure surface S of normal n, that splits X into the domains Xþ and X� (see Fig. 4), reads (in rate form):

FIND:
_�uðx; tÞ
½½ _u��ðx; tÞ

(
satisfying:

r � _rþ _b ¼ 0 in X nS ðinternal equilibriumÞ; ð30aÞ
_�u ¼ _u�

½½ _u�� ¼ 0
on Cu ðimposed displacementsÞ; ð30bÞ

_r � m ¼ _t� on Cr ðexternal equilibriumÞ; ð30cÞ

_rX� � n� _rXþ � n|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼:½½ _r��XnS �n

¼ 0 on S ðouter traction continuityÞ; ð30dÞ

_rS � n� _rXþ � n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼:½½ _r��S �n

¼ 0 on S ðinner traction continuityÞ; ð30eÞ

where r ¼ RðeÞ are the stresses returned by the constitutive model in terms of the strains:

eð�u; ½½u��Þ ¼ $sð�uþ HS$
s½½u��Þ ¼ $s�uþ HS$

s½½u�� þ dSð½½u�� � nÞs; ð31Þ
bðx; tÞ are the body forces, u� are the prescribed displacements and t� the prescribed traction at the external

boundaries Cu and Cr (Cu \ Cr ¼ ;;Cu [ Cr ¼ oX). In Eq. (30) m is the outwards normal to oX and rXþ , rX�

and rS stand for the stresses in Xþ, X� and S, respectively.

4.2. Nodal enrichment: symmetric formulation

Let us consider the following variational problem:

GIVEN:

Vg :¼ fg ¼ �gþ HS~g
0; �g; ~g0 2 ½H 1ðXÞ�ndim ~g0jCu

¼ 0 �gjCu
¼ _u�g; ð32aÞ

V0 :¼ fg0 ¼ �g0 þ H ~g0; �g0; ~g0 2 ½H 1ðXÞ�ndim ~g0j ¼ 0 �g0j ¼ 0g: ð32bÞ
g S Cu Cu

(a) (b)

Fig. 4. Failure surface S propagating in a body X: (a) boundary value problem; (b) unit jump function MS .
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FIND:

_u 2 Vg; _u ¼ _�uþ HS½½ _u�� ð33Þ
SUCH THAT:Z

X
$Sg0 : _rdX�

Z
X
g0 � _bdX

�
þ
Z
Cr

g0 � _t� dC
�
¼ 0 8g0 2 V0

g; ð34Þ

where ndim stands for the dimension of the problem (ndim ¼ 2 for 2D and ndim ¼ 3 for 3D). It can be readily

shown that the Euler–Lagrange equations of variational equation (34) are the ones defining the BVP (30).

Eq. (34) is the starting point for the nodal-based enriching formulation. The spatial discretization of the

displacement fields _u and g in Eqs. (32) and (33) reads:

_uhðx; tÞ ¼
Xi¼nnode

i¼1

NiðxÞ _diðtÞ þ
Xi¼nenr

i¼1

NiHSðxÞ|fflfflfflffl{zfflfflfflffl}
N�
i

_biðtÞ ¼
Xi¼nnode

i¼1

Ni
_di|fflfflfflfflfflffl{zfflfflfflfflfflffl}

½N�fdg

þ
Xi¼nenr

i¼1

N �
i
_bi|fflfflfflfflffl{zfflfflfflfflffl}

½N��fbg

; ð35aÞ

gh
0ðx; tÞ ¼

Xi¼nnode

i¼1

Ni�g
0
i þ

Xi¼nenr

i¼1

N �
i ~g

0
i ; ð35bÞ

f _uhg ¼ ½N�f _dg þ ½N��f _bg; N �
i ðxÞ ¼ NiðxÞHSðxÞ; ð35cÞ

f _dg ¼ ½ _d1; . . . ; _dnnode �
T; f _bg ¼ ½ _b1; . . . ; _bnenr �

T
; ð35dÞ

where nnode stands for the number of nodes of the finite element mesh, NiðxÞ are the shape functions of the
parent, standard, element and di are the regular nodal displacements. Also in Eq. (35) bi are additional

nodal degrees of freedom such that the enriching modes N �
i
_bi capture the displacements jumps in an in-

terelemental continuous way (see Fig. 3b) and nenr is the number of nodal points where the enrichment is

activated. In Eqs. (35c) and (35d) f�g and ½�� stand for vector and matrix components, respectively of the

entity ð�Þ.
In order to fulfill condition ~g0jCu

¼ 0 in Eqs. (32) the enriching degrees of freedom bi have to be pre-

scribed to zero at those nodes whose support (surrounding elements) contain points of Cu. As for the
discretized strain field _eh it yields from Eq. (35a):

_ehðx; tÞ ¼ $s _uðx; tÞ ¼
Xi¼nnode

i¼1

ð$Ni � _diÞS|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
½B�f _dg

þ
Xi¼nenr

i¼1

fNid
k
Sðn� _biÞ

S þ HSð$Ni � _biÞ
Sg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½G�f _bg

; ð36Þ

where dkS stand for the k-regularized Dirac’s delta function placed at the failure interface S (see Eq. (5)). In

matrix (Voigt’s) notation, Eq. (35) reads:

f_ehg ¼ ½B�f _dg þ ½G�f _bg; ð37Þ

where ½B� stands for the standard deformation matrix [36] and the structure of the additional matrix ½G�
comes out directly from Eq. (36). Substitution of Eq. (37) into the discrete form of the variational equation

(34) leads to the linearized discretized problem:R
X ½B�

T½D�½B�dX
R
X ½B�

T½D�½G�dXR
X ½G�T½D�½B�dX

R
X ½G�T½D�½G�dX

" #
_d
_b

	 

¼

_fd
_fb

	 

; ð38aÞ
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_fd
_fb

	 

¼

R
X ½N�Tf _bgdXþ

R
Cr
½N�Tf_t�gdCR

X ½N
��Tf _bgdXþ

R
Cr
½N��Tf_t�gdC

( )
; ð38bÞ

where ½D� is the matrix counterpart of the tangent constitutive tensor Etang in Eq. (14) ruling the incremental
constitutive equation in Voigt’s notation: f _rhg ¼ ½D�f_ehg.

Remark 3. The appearance of the regularized Dirac’s delta function in Eq. (36) requires additional

sampling points inside the elements to evaluate its contribution to Eqs. (38) (see [20] for more details).

Also terms NiHS and HS$
sðNiÞ in Eqs. (35) and (36) are discontinuous inside the element, which

requires specific integration rules at every side Xþ
e and Xþ

e of any enriched element, and knowledge of

the exact position of the failure surface inside the elements. The algorithms devised to determine

that position are termed tracking algorithms and some alternatives on this subject are presented in
[26].
4.3. Elemental enrichment: non-symmetric formulation

Let us consider the domain X crossed by the failure surface and a subdomain Xh containing S and such

that Xh \ Cu ¼ f;g. Let us also define a unit jump function MS (see Fig. 4b) as

MSðxÞ ¼ HSðxÞ � uðxÞ; uðxÞ 2 H 1ðXhÞ :¼
uðxÞ ¼ 0 8x 2 X� n Xh

uðxÞ ¼ 1 8x 2 Xþ n Xh

	
ð39Þ

exhibiting a unit jump across the failure surface S. Let us now consider the following variational problem:

GIVEN:

Vg :¼ fg ¼ ĝþMS~g; ĝ 2 ½H 1ðXÞ�ndim ~g 2 L2ðSÞ ĝjCu
¼ _u�g; ð40aÞ

V0
ĝ :¼ fĝ0 2 ½H 1ðXÞ�ndim ĝ0jCu

¼ 0g: ð40bÞ

FIND:

_u 2 Vg; _u ¼ _�uþMS½½ _u�� ð41Þ

SUCH THAT:Z
XnS

$S ĝ0 : _rdX�
Z
XnS

ĝ0 � _bdX
"

þ
Z
Cr

ĝ0 � _t� dC
#
¼ 0 8ĝ0 2 V0

ĝ: ð42Þ
Remark 4. It can be readily checked that any element of the solution space Vg in Eq. (40a) can be cast into

the original format of Eq. (1a).

Due to the difference between the functional spaces V0
g and V0

�g in Eqs. (32b) and (40b) now the Euler–

Lagrange equations of the variational form (42) are only Eqs. (30a)–(30d). Therefore, the inner traction

continuity equation (30e) has to be imposed independently of the variational statement (42). This can be

done in weak form through:Z
S

~g � ð _rS � _rXnSÞ � ndS ¼ 0 8~g 2 L2ðSÞ: ð43Þ
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The discrete version of _uðx; tÞ, ĝ0ðx; tÞ and ĝðx; tÞ in Eqs. (40) and (41) reads:

_uhðx; tÞ ¼
X1¼nnode

i¼1

NiðxÞ _diðtÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
½N�fdg

þ
Xe¼nenr

e¼1

Me
SðxÞ _beðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

½M�f _bg

; ð44aÞ

gh
0ðx; tÞ ¼

X1¼nnode

i¼1

NiðxÞĝiðtÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ĝhðx;tÞ

þ
Xe¼nenr

e¼1

Me
SðxÞ~geðtÞ; ð44bÞ

f _uhg ¼ ½N�f _dg þ ½M�f _bg; Me
S ¼ He

s ðxÞ � ue; ð44cÞ

f _dg ¼ ½ _d1; . . . ; _dnnode �
T
; f _bg ¼ ½ _b1; . . . ; _bnenr �T; ð44dÞ

where nenr is the number of enriched elements and Me
SðxÞ is the so-called elemental unit jump function:

Me
SðxÞ ¼ HSðxÞ � ueðxÞ; ueðxÞ 2 H 1ðXe

hÞ :¼
ueðxÞ ¼ 0 8x 2 X� n Xe

h

ueðxÞ ¼ 1 8x 2 Xþ n Xe
h

	
ð45Þ

with elemental support as shown in Fig. 3b. The term Me
SðxÞ _beðtÞ provides the enriching elemental mode

where be stands for the elemental displacement jump. As for the discretized strain field _eh it yields from Eqs.

(44a) and (45):

_ehðx; tÞ ¼ $s _uhðx; tÞ ¼
Xi¼nnode

i¼1

ð$Ni � _diÞS|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
½B�f _dg

þ
Xe¼nenr

e¼1

½dkSðn� _beÞS � ð$ue � _beÞS�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½G�f _bg

; ð46Þ

where dkS stands for the k-regularized Dirac’s delta function shifted to the failure surface S (see Eq. (5)). In

matrix notation, Eq. (46) reads

f_ehg ¼ ½B�f _dg þ ½G�f _bg; ð47Þ
where the format of matrices ½B� and ½G� comes readily out from Eq. (46).

As for the inner traction continuity enforced by Eq. (43) _rS � n and _rXnS � n can be approximated by its

average values inside every element, i.e.:

_rS � njx2Se 	
1

le

Z
Se
_rðeSÞ � ne dS ¼ _rSðx�

SeÞ � ne; x�
Se 2 Se;

_rXnS � njx2Xe 	 1

V e

Z
Xe

_rðeXnSÞ � ne dX ¼ _rXnSðx�
XeÞ � ne; x�

Xe 2 Xe;

ð48Þ

where V e ¼ measureðXeÞ, le ¼ measureðSeÞ and x�
Xe and x�

Se are those points at the interior of Xe and Se

where the mean values of _rðeXnSÞ and _rðeSÞ, respectively, are reached. For practical purposes they are

two additional sampling points sharing the same geometrical position, at the centroid of the element, see

Fig. 3c.

In this context, the discretized version of ~g in Eq. (43) yields:

~ghðx; tÞ ¼
Xe¼nenr

e¼1

veðxÞ~geðtÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
½G��f~gg

; veðxÞ ¼ fðxÞ 8x 2 Xe;
0 8x 62 Xe;

	
ð49aÞ
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fðxÞ ¼ le lx�
Se
ðxÞ=Wx�

Se

h
� lx�

Xe
ðxÞ=Wx�

Xe

i
; ð49bÞ

f~ghg ¼ ½G��f~gg; f~gg ¼ ½~g1; . . . ; ~gnenr �T; ð49cÞ
where lx�

Se
ðxÞ and lx�

Xe
ðxÞ are collocation functions at the sampling points x�

Se and x�
Xe , respectively (lyðxÞ ¼

1 for x ¼ y and lyðxÞ ¼ 0 otherwise) and Wx�
Se
and Wx�

Xe
are the integration weights at the additional sam-

pling points.

Substitution of Eqs. (46)–(48) into the discrete form of the integral equations (42) and (43) leads to the

linearized problem:R
X ½B�

T½D�½B�dX
R
X ½B�

T½D�½G�dXR
X ½G

��T½D�½B�dX
R
X ½G

��T½D�½G�dX

" #
_d
_b

	 

¼

_fd
0

	 

; ð50aÞ

_fd ¼
Z
X
½N�Tf _bgdXþ

Z
Cr

½N�Tf_t�gdS: ð50bÞ

Notice that, from their definition in Eqs. (46) and (49), matrices ½G� and ½G�� are different and the resulting

formulation is non-symmetric, as one should expect from the Petrov–Galerkin character of the original

problem in Eqs. (40)–(43).

Remark 5. Determination of the elemental unit jump function in Eq. (45) (see Fig. 3a) requires, to some

extent, knowledge of the position of the failure surface S in every enriched element. Thus, like in the nodal
enrichment case, this fact requires resorting to tracking algorithms for determination of that position (see

Remark 3).

Remark 6. As for the integration rule, the weight of the additional sampling points in x�
Xe and x�

Se ðWx�
Xe
and

Wx�
Se
, respectivelyÞ should be made very small and, thus, their contribution made negligible except for

imposing Eq. (30e) through (43). Therefore, they can be incorporated to all elements, even to those non-

enriched. In this sense, and unlike the nodal enrichment case in Section 4.2, distinction, in terms of the

integration rule, between elements in and out the enriched domain is not necessary.
5. Instability issues: loss of uniqueness

It is a very well-known fact in failure mechanics that material softening is responsible for unstable

structural behavior [4,5]. For purposes of numerical modelling of the postcritical structural behavior, some

of those instabilities, like limit or turning points, depend on the load pattern, and the response can be easily

traced by resorting to appropriate continuation methods [9]. More difficulties are found in presence of
bifurcation points (loss of uniqueness) which require detection and continuation through appropriate

branch-switching methods. This situation, which can appear even when a unique failure surface is modelled,

worsens as multiple failure surfaces, interacting with each other and capable to arrest and activate, are

tackled.

A possible way to get rid of the difficulties posed by bifurcation points in material instability simu-

lations is to resort to unfolding techniques. Those techniques are based on introducing perturbations to

unfold and smooth the different equilibrium paths emanating from a bifurcation point in such a way

that the unique stable path remains continuous (see Fig. 5) and, therefore, it can be theoretically traced
as an approximation to the physical equilibrium path. The success of such methodology relies on two

facts:



Fig. 5. Bifurcation unfolding.
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• The size of the perturbation should be small enough as to keep the physical sense of the numerical re-

sponse.

• The type of perturbation has to unfold the appropriate branch among the ones emanating from the

bifurcation point.

In this section a methodology to unfold bifurcations in continuum material failure, by introducing a
viscous perturbation into the failure surfaces, and their beneficial effects on the robustness of the numerical

simulation is tackled.

5.1. Discrete viscous perturbation method

5.1.1. Nodal enrichment (variational) formulation

Let us consider the BVP in Eqs. (32)–(34) now in a total format:

GIVEN:

Vg :¼ fg ¼ �gþ HS~g
0; �g; ~g0 2 ½H 1ðXÞ�ndim ~g0jCu

¼ 0 �gjCu
¼ u�g; ð51aÞ

V0
g :¼ fg ¼ �g0 þ HS~g

0; �g0; ~g0 2 ½H 1ðXÞ�ndim ~g0jCu
¼ 0 �g0jCu

¼ 0g: ð51bÞ

FIND:

u 2 Vg; u ¼ �uþ HS½½u�� ð51cÞ
SUCH THAT:Z

X
$Sg0 : rdX�

Z
X
g0 � bdX

�
þ
Z
Cr

g0 � t� dC
�
¼ 0 8g0 2 V0

g; ð51dÞ

and the introduction of a perturbation in terms of a set of viscous tractions ~tðx; tÞ at the failure surface S of

the form:

~tðX; tÞ ¼ c½½ _u��ðx; tÞ 8X 2 S; ð52Þ
where c > 0 ðc ’ 0Þ is a perturbing viscosity, which is supposed to be small enough to provide a negligible

additional dissipation and to keep the inviscid character of the numerical response. The structure of the
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viscous tractions in Eq. (52) makes them active immediately after the local bifurcation time tBðxÞ so that

loss of ellipticity is not inhibited. Inserting those tractions into the original variational equation (51d)

(Virtual Work Principle) yields

Z
X
$Sg0 : rdX�

Z
X
g0 � bdX

2
64 þ

Z
Cr

g0 � t� dCþ
Z
S
g0 � c½½ _u��|ffl{zffl}

~t

dS

3
75 ¼ 0 8g0 2 V0

g; ð53Þ

and the corresponding Euler–Lagrange equations can be obtained, after standard operations, as:

r � rþ b ¼ 0 in X nS ðinternal equilibriumÞ; ð54aÞ

r � m ¼ t� on Cr ðexternal equilibriumÞ; ð54bÞ

rXþ � n� rX� � n ¼ c½½ _u�� on S
perturbed
outer traction continuity;

	
ð54cÞ

rXþ � n� rS � n ¼ c½½ _u�� on S
perturbed
inner traction continuity;

	
ð54dÞ

where it can be observed that the original traction continuity equations (30d) and (30e) are now perturbed

in Eqs. (54c) and (54d) by the introduced viscous term c½½ _u��: As the perturbing viscosity c tends to zero the
perturbing force (52) also tends to zero and the original problem is recovered.

However, the introduction of the viscous perturbation has relevant consequences on the uniqueness of

the problem. In fact, let us consider two possible solutions of problem (51) whose differences ð�Þð2Þ � ð�Þð1Þ,
in terms of the displacements, strains and stresses are:

Muðx; tÞ :¼ uð2Þðx; tÞ � uð1Þðx; tÞ; ð55aÞ

M½½ _u��ðx; tÞ :¼ ½½ _u��ð2Þðx; tÞ � ½½ _u��ð1Þðx; tÞ; ð55bÞ

Meðx; tÞ :¼ eð2Þðx; tÞ � eð1Þðx; tÞ; ð55cÞ

Mrðx; tÞ :¼ rð2Þðx; tÞ � rð1Þðx; tÞ: ð55dÞ
Since both are solutions of the variational equation (53) one can write:Z

X
$Sg0 : rð2Þ dX�

Z
X
g0 � bdX

�
þ
Z
Cr

g0 � t�dCþ
Z
S
g0 � c½½ _u��ð2Þ dS

�
¼ 0 8g0 2 V0

g;Z
X
$Sg0 : rð1Þ dX�

Z
X
g0 � bdX

�
þ
Z
Cr

g0 � t� dCþ
Z
S
g0 � c½½ _u��ð1Þ dS

�
¼ 0 8g0 2 V0

g;

ð56Þ

and subtraction of both equations readsZ
X
$Sg0 : MrdX�

Z
S
g0 � cM½½ _u��dS ¼ 0 8g0 2 V0

g: ð57Þ

Let us now assume the existence of a bifurcation time, tB, in the time interval of interest, tB 2 ½0; T �, at which
uniqueness is lost and two branches emanate from the fundamental one featuring:

½½ _u��ð2Þðx; tBÞ 6¼ ½½ _u��ð1Þðx; tBÞ
M½½ _u��BðxÞ :¼ ½½ _u��ð2Þðx; tBÞ � ½½ _u��ð1Þðx; tBÞ 6¼ 0

)
for some x 2 S: ð58Þ
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Since at tB the solution is still unique one can write

Mrðx; tBÞ ¼ Meðx; tBÞ ¼ Muðx; tBÞ ¼ 0 8x 2 X: ð59Þ
For the specific choice g0 ¼ M½½ _u��BðxÞ 2 V0

g substitution in Eq. (57) for t ¼ tB reads:Z
X
$SðM½½ _u��BÞ : Mrðx; tBÞ|fflfflfflfflffl{zfflfflfflfflffl}

¼0

dX�
Z
S
cðM½½ _u��BðxÞ � M½½ _u��BðxÞÞdC ð60Þ

¼ �
Z
S
ckM½½ _u��BðxÞk

2
dC ¼ 0 ) M½½ _u��BðxÞ ¼ 0 8x 2 S ð61Þ

which is in contradiction with Eq. (58). Therefore, the introduction of the viscous perturbation (52) precludes

any bifurcation in terms of the displacement jump [[u]] at the failure surface S.

5.1.2. Elemental enrichment formulation

Let us now consider Eq. (43) (in total format) perturbed with the viscous traction (52):Z
S

~g � ðrXnSðx; tÞ � rSðx; tÞÞ � ndS þ
Z
S

~g � c½½ _u��ðx; tÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t̂

dS ¼ 0 8~g 2 L2ðSÞ; ð62Þ

in such a way that for c ! 0 the original equation is recovered, and the inner traction continuity equation

(30e) is imposed in weak form. Let us consider the bifurcation time tB as Eqs. (58) and (59) are fulfilled.

Substituting solutions ð�Þð1Þ and ð�Þð2Þ into Eq. (62) and subtracting the results leads toZ
S

~g � ðMrXnSðx; tBÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼0

�MrSðx; tBÞÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼0

� ndS þ
Z
S

~g � cM½½ _u��ðx; tBÞdS ¼ 0 8~g 2 L2ðSÞ; ð63Þ

and for the particular choice ~g ¼ M½½ _u��ðx; tBÞ ¼ M½½ _u��BðxÞ 2 L2ðSÞ in Eq. (63)Z
S
cM½½ _u��BðxÞ � M½½ _u��BðxÞdS ¼

Z
S
ckM½½ _u��BðxÞk

2
dS ¼ 0 ) M½½ _u��BðxÞ ¼ 0 8x 2 S ð64Þ

which contradicts Eq. (58). Once again the introduction of the viscous force precludes bifurcations in terms

of the displacement jump at the failure surface. This states the beneficial effects of the viscous perturbation

method in unfolding such a type of bifurcations.

5.1.3. Time discretization––critical time step

In the context of a time (or pseudo-time) advancing algorithm, since progression along the equilibrium

path in the action-response space is discrete, it is no longer possible to guarantee, for a given length of

the time step DsðDtÞ, the uniqueness of the algorithmic response even for the unfolded (perturbed)

problem. Even if the solution at time t lies on the stable branch, if the time step is too large in com-

parison with the perturbation, there might be more than one solution at time t þ Dt and the iterative
solution might fall in the unstable branch (see Fig. 5). This translates into loss of convergence of the

iterative process.

However, it is possible to determine the critical length of the time step to assure algorithmic uniqueness.

Let us consider the finite element formulation based on elemental enrichment presented in Section 4.3. The

tangent matrix in the linearized system (50a) can be written asR
XnS ½B�

T½D�½B�dX
R
XnS ½B�

T½D�½G�dXR
X ½G

��T½D�½B�dX
R
X ½G

��T½D�½G�dX

" #
tþDt

¼def Kdd Kdb

Kbd Kbb

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

½KtþDt �

; ð65Þ
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where ½KtþDt� stands for the tangent stiffness matrix at time t þ Dt. In particular submatrix Kbb associated to

the enriching degrees of freedom has the following diagonal-band structure:

½Kbb� ¼

K1
bb

: 0

Ke
bb

0 :
Knenr

bb

2
66664

3
77775; ð66Þ

where Ke
bb stands for a ðndim 
 ndimÞmatrix associated to the discontinuous degrees of freedom be of element

e. The introduction of the viscous perturbation force ~tS ¼ c½½ _u�� ð) _~tS ¼ c½½€u��Þ into the rate version of Eq.

(62) readsZ
S

~g � ½ _rXnSðx; t þ DtÞ � _rSðx; t þ DtÞ� � ndS þ
Z
S

~g � c ½½ _u��ðx; t þ DtÞ � ½½ _u��ðx; tÞ
Dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½½€u��ðx;tþDtÞ

dS ¼ 0 8~g 2 L2ðSÞ;

ð67Þ
and the subsequent spatial discretization in Eqs. (49) leads, after standard operations, to the following

structure of the linearized problem:

Kdd Kdb

Kbd Kbb þ ðc=DtÞ1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½~KtþDt �

_dtþDt
_btþDt

	 

|fflfflfflfflffl{zfflfflfflfflffl}

f _atþDtg

¼
_fd

ð�c=DtÞ _bt

	 

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

f _~FtþDtg

; ð68Þ

where ½~KtþDt� and f _~FtþDtg stand, respectively, for the tangent stiffness matrix and incremental forces vector
for the unfolded problem. A non-unique solution at time t þ Dt is characterized by the existence of several

solutions of Eq. (68) for the same value of
_~FtþDt. Therefore, the difference of both solutions

D _atþDt :¼ _a
ð2Þ
tþDt � _a

ð1Þ
tþDt 6¼ 0 fulfills:

½~KtþDt�fD _atþDtg ¼ f0g ð69Þ
which states the singularity of ½~KtþDt�. Therefore, the value of Dt that guarantees positive definiteness of

½~KtþDt� precludes any bifurcation. Since submatrix ½Kdd � in Eq. (68) can be shown to be positive, an
approximate value of Dt ¼ Dtcrit can be obtained by imposing positive definiteness of the symmetric part of

all the diagonal submatrices ½~Kbb�e in Eq. (68) associated to the enriching degrees of freedom, i.e.,

symð½~Kbb�eÞ ¼ symð½Ke
bb þ ðc=DtÞ1ndim
ndim�Þ ! positive definite 8e 2 f1; . . . ; nenrg ð70Þ

or, equivalently,

kemin þ
c
Dt

> 0 8e 2 f1; . . . ; nenrg; ð71Þ

where kemin stands for the minimum eigenvalue of symð½Ke
bb�Þ. From Eq. (71) the following value for Dtcrit

emerges:

Dtcrit ¼ min
e

c
h�kemini

8e 2 f1; . . . ; nenrg; ð72Þ

where h�i stands for the ramp function. Therefore, a time step Dt < Dtcrit guarantees uniqueness of the

solution at time t þ Dt which shall lie on the right equilibrium path. Nearby bifurcation points, Dtcrit tends to
be small and proportional to the perturbation viscosity as pointed out in Eq. (72). At regular points of the
equilibrium path, Dtcrit ! 1 and the length of the time step is determined by reasons other than uniqueness.



Fig. 6. Shielding zone around a propagating failure surface.
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Remark 7. In the context of the considered quasi-static problems, time t is just a parameter controlling the

advance along the equilibrium path that, for practical purposes, can be substituted in the previous deri-

vation by the actual control parameter, i.e., the load parameter k�, in an incremental load advancing

method, or the arc-length parameter s, in arc-length type continuation methods. Therefore, for practical

implementation purposes Dt and Dtcrit in Eqs. (68)–(72) must be substituted by Dk�, Dk�crit or Ds, Dscrit

depending on the load control method (see Fig. 5).

5.1.4. Shielding zone

The finite element methodology presented above is not thought for the case of several failure surfaces

crossing each other inside the same element. However, in the numerical experiments performed by the

authors it has been, sometimes, observed during nonlinear iterations, a secondary spurious failure surface

attempting to cross one of the primary failure surfaces. This situation can result in a sort of numerical

locking and a subsequent loss of convergence. To circumvent this problem, in the numerical examples

presented below, the elements inside a shielding zone (whose width is defined by the user) around an

existing propagating failure surface can not be crossed by any external surface (see Fig. 6). This prevents the
formation of a number of spurious secondary failure surfaces, around the primary ones, that give rise to

numerical difficulties but not providing any gain in the physical insight of the problem.
6. Representative numerical simulations

In the following sections several examples illustrate the behavior of the preceding methodologies in

material failure simulation. For this purpose the following ingredients have been considered:

• An isotropic continuum damage model (see [21]) for a detailed description.

• The quadrilateral 2D finite element with an embedded discontinuity based on elemental enrichment de-

scribed in Section 4.3.

• The discrete viscous perturbation method described in Section 5.1 when necessary. The control of the

time step length based on Eq. (72) is considered as well.

6.1. Smoothing a singular sharp point

In Fig. 7 the following numerical experiment is sketched: a bar, discretized in 10 elements, is stretched by

applying a uniform set of forces at its right-hand side (see Fig. 7a). The properties of the material are shown in

the same figure, where E is Young’s modulus, m Poisson’s ratio, Gf the fracture energy and ru the peak stress.



(a)

(b)

(c)

Fig. 7. Smoothing of a sharp singular point by a viscous perturbation: (a) geometric and material data; (b) load parameter vs. dis-

placement curves; (c) close up view of the peak of the curves.
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At the central element, the peak stress is slightly reduced in order to trigger the material failure in that

element. In consequence, the force–displacement curve exhibits an initial elastic branch, until the peak

stress is reached at the central element, and a subsequent softening branch (see Fig. 7b). The area under the

force–displacement curve is proportional to the fracture energy. Therefore, for sufficiently small values of
Gf the descending branch has a positive slope. Under these conditions the upper point in the equilibrium

path becomes, simultaneously, a turning point under load control L (limit point) and a turning point under

displacement control D (snap-back point). As a result, the solution at this point in terms of the state

variables x� � ½ _u; _k�T is not unique, since there are two different solutions, x�
1 � ½ _u1; _k1�T and x�

2 � ½ _u2; _k2�T
(see Fig. 7b). In consequence, displacement control, force control and standard arc-length continuation

methods fail to pass this sharp singular point.

Remark 8. Notice that this type of instability has a structural nature (it comes from the small value of Gf

with respect to the strain energy stored in the bar) and can not be attributed to the type of enrichment

(nodal or elemental) used to capture the discontinuity.

The inclusion of the viscous perturbation dramatically changes this situation. In Fig. 7b the force–

displacement curve, for decreasing values of c, is presented together with the theoretical inviscid (unper-

turbed) result. There it can be checked:

(1) The effect of decreasing perturbations (c ! 0) making the results, as expected, converge to an inviscid
(theoretical) limit.
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(2) The benefits of the viscous perturbation on unfolding and smoothing the sharp point. This is clearly

stated in Fig. 7c showing a close up view of the peak of the curves. Increasing values of the viscosity

c move both turning points, L and D, away from each resulting in a unique solution x� � ½ _u; _k�T all

along the equilibrium path. As a result the unfolded equilibrium path can be now reproduced with

no difficulties using standard arc-length procedures.

Although Dtcrit ! 0 as c ! 0, for any c > 0 there is a corresponding critical time step that assures

algorithmic uniqueness according to Eq. (72). The smaller are the values of c the larger will be the required
number of time steps to cross the singular point, but algorithmic uniqueness is always assured for c > 0

while keeping convergence to the inviscid solution.

6.2. Unfolding a bifurcation point

The numerical example simulates the propagation of two cracks within a bulk of concrete-like material,

constrained by two infinitely rigid plates forced to open as indicated in Fig. 8a in a plane strain setting. The

considered material properties for the concrete are shown in the same figure and the finite element mesh is
displayed in Fig. 8b. Observe that the geometry, finite element mesh and loading system are perfectly

symmetric with respect to the central vertical axis of the specimen. In order to induce a perfectly symmetric

couple of cracks, two elements (labelled 1 and 2 in Fig. 8b) have a small (the same for both) perturbation on

the peak stress ry . Therefore, from the symmetry of the problem one should expect a fundamental equi-

librium path characterized by two symmetric parallel cracks developing from points 1 and 2. This is the

solution, presented in Fig. 8c, which is numerically obtained when no viscous perturbation is included. At

point A, the peak stress is simultaneously attained at elements 1 and 2 of the specimen. In addition, at the

neighborhood of point B, negative pivots in the stiffness matrix indicate the presence of a singular point.
This corresponds to a bifurcation where a secondary branch, characterized by only one propagating crack,

the other arresting, emanates. Indeed, from the structural failure point of view, this is the most interesting

failure mode since, for a real specimen, any physical perturbation breaking the theoretical symmetry would

result in that only-one-crack solution. Besides, since the total crack-length in this case is smaller, one should

expect about half the dissipation (area under the force–displacement curve) for this solution in comparison

with the previous one and, consequently, a lower peak force characterizing that one-crack-mode as the

most unsafe (critical) failure mode.

However, the round off errors are not enough to unfold that bifurcation at point B and the (inviscid)
unperturbed simulation proceeds along the fundamental branch. On the contrary, the introduction of the

viscous perturbation always results in the one-crack failure mode. This failure mode is characterized by (see

Fig. 8c):

(a) Onset of both cracks at point A of the force–displacement curve.

(b) Subsequent development of both cracks following the fundamental branch, up to point B characteriz-

ing the peak of the force–displacement curve.

(c) Bifurcation characterized by arrest (unloading) of crack 1 and propagation of crack 2. The one-crack
failure mode is triggered at point B and holds for the rest of the equilibrium path (point C in the curve).

This pattern holds independently of the value of the viscous perturbation c. As it can be checked in

Fig. 8d, the larger is c the more delayed is the bifurcation (peak point of the load–displacement curve) and

the larger is the spurious dissipation due to the viscous mechanism. However, in all cases the triggered

failure mode is the one-crack mode displayed in Fig. 8c, and convergence as c ! 0, to the one-crack

inviscid solution forced by introduction of an unsymmetrical perturbation in the peak stress only in

element 2, can be observed in Fig. 8d. This seems to state that the discrete perturbation method, described



Fig. 8. Unfolding a bifurcation point: (a) geometric and material data; (b) finite element mesh; (c) evolution of the cracks along the

equilibrium curve; (d) load vs. displacement curves; (e) close up view.
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above, unfolds the bifurcation towards the less dissipative branch thus display the most critical and stable

failure mode.

As for which of the two (right- or left-hand-side) cracks gets arrested, for this perfectly symmetric case

this seems to be determined by round off errors. In the presented simulations the left-hand-side crack 1
always arrests. However, a small additional perturbation on the peak stress at point 1 is enough to revert

the crack pattern and make crack 2 arresting.

Once again the use of the critical time step length Dtcrit in Eq. (72) assures robustness and uniqueness of

the algorithmic solution in the neighborhood of the bifurcation (peak) point.

6.3. Steel slab debonding from a concrete specimen

A tension pull test applied to a reinforced concrete specimen is analyzed in this section. This test was
inspired by a similar one presented in [31] where the axisymmetric case was considered, while in the

numerical simulation presented here the plane strain case is assumed. Besides, and due to the symmetry,
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only one fourth of the specimen is modelled. The dimensions and loads applied to the specimen are dis-
played in Fig. 9a. An only-tension-damage model [26] was used for the concrete matrix, considering the

following material properties: Ec ¼ 2:5
 104 MPa, ru ¼ 3 MPa, mc ¼ 0:18, and Gf ¼ 25 N/m. The rein-

forcement slab was modelled as an elastic material with Es ¼ 2:14
 105 MPa, ms ¼ 0:3.
The bond-slip mechanism that rules the transmission of the tangential stresses to the concrete is modeled

by a thin layer of an ideally plastic (J2 plasticity) material at the steel–concrete interface (see Fig. 9b). This

bonding material has the following properties: Eb ¼ 2:14
 105 MPa, ryb ¼ 3 MPa, mb ¼ 0:3.
In order to check mesh sensitivity of the results two different finite element meshes A (coarse) and B

(fine) have been used for the numerical simulations.
Fig. 9d shows the evolution of the load P , applied at the end-face of the steel slab, vs. the displacement at

the same point. It exhibits a sharp snap-back characterizing a sudden change in the failure mode. In Fig. 9e

a closed up view shows in detail this behavior for both meshes.
Fig. 9. Steel slab debonding from a concrete specimen: (a) and (b) finite element meshes; (c) evolution of the cracks along the

equilibrium curve; (d) load vs. displacement curves; (e) close up view of the snap-back zone.
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The crack pattern exhibits a large number of failure lines. Some of them, that will be termed secondary

cracks, are active during a short period of the deformation process an do not consume a relevant amount of

energy. Some others, on the contrary, remain active for a large part of the process and dissipate an

important part of the supplied energy. They will be termed primary cracks and their capture is the main goal

of the simulation since they are supposed to determine the failure mode.

Secondary transverse cracks can be observed in an initial diffuse failure stage, before the snap-back of

the equilibrium path takes place (see Fig. 9c). They initially nucleate at the end-face of the specimen but, as

the loading increases, they spread out through the total steel-concrete interface length. An initial primary

crack onsets and propagates across the concrete section, up to the complete softening of the material in that
region (see Fig. 9c). It is responsible for the subsequent loss of loading capacity and triggers the snap-back

displayed in the equilibrium path in Fig. 9d.

At this stage, the bulk of concrete is still able to hold an increasing external loading that is transmitted

through the steel slab to other sections of the concrete bulk. In fact, a subsequent loading after the snap-

back induces the propagation of a second primary crack (see Fig. 9c) across the concrete and a severe

change in the failure mode since the first primary crack tends to unload. Once the second crack is fully

developed the concrete has no remaining strength, the steel plate is almost completely debonded and the

specimen would eventually fail by plastic yielding of the steel.
Results, in terms of failure modes and force–displacement curves (see Fig. 9d), obtained with both (fine

and coarse) meshes compare reasonably well. For the numerical simulations of this problem, the use of the

viscous perturbation method of Section 5.1 became crucial to provide smoothness to the obtained equi-

librium path and to prevent loss of uniqueness, this resulting in a robust simulation process.
7. Concluding remarks

Throughout this work some recent developments on numerical simulation of continuum material failure

have been presented. They aim at increasing the reliability and robustness of numerical modelling of

material failure in strong discontinuity settings in the following aspects:

• Characterization of the onset and propagation of local failure. There is a clear connection of loss of mate-

rial strong ellipticity with the onset of a weak discontinuity as a precursor of a strong discontinuity [22].

In this sense, singularity of the localization tensor and discontinuous bifurcation tools provide physically

grounded material failure indicators and directions of propagation of failure, which seem specially suited
for strong discontinuity settings. Closed form solutions (exact and approximated) for those indicators,

for a wide class of constitutive models used in geomaterials, and not restricted to particular (bi-dimen-

sional plane-stress, plane-strain or three-dimensional) cases have been provided. They have been success-

fully checked by the authors for several isotropic associative elasto-plastic and damage models where

those solutions are exact. Assessment of the approximated results provided by these formula for more

general constitutive models is a remaining task.

• Finite element modelling. Two alternatives, nodal and element enrichment, for finite elements with

embedded discontinuities presently available for capturing displacement discontinuities have been pre-
sented, and their formulations in a continuum strong discontinuity approach (CSDA) have been devel-

oped. Which is the most suitable, for the purposes of simulation of material failure, is still a

controversial issue out of the scope of this work. The numerical simulations presented in this work in

2D problems have been carried out using elemental enriched elements in a specific finite element code

[8]. Additional issues, like crack branching modelling, which would require some, not conceptual but

not trivial, modification of those finite element formulations, and applications to 3D problems will be

addressed in subsequent works.
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• Instability treatment. Strain softening in continuum models is a source of severe instabilities and ill-po-

sedness of the boundary value problem. The CSDA and the entailed softening regularization procedure

contributes to the well-posedness of the problem and to get rid of most of the local instabilities [23].

However, structural uniqueness problems still remain due to the structural softening present in the prob-

lem and the failure surfaces interaction. A strategy based on a discrete viscous perturbation at the failure

surfaces, of trivial implementation, has been presented, and its performance in several examples has been

displayed. Two main benefits might be extracted from this methodology: (a) assure algorithmic unique-

ness in terms of the displacement jump, which entails a dramatic increase in the robustness of the numer-
ical simulations keeping the approximation of the results; and (b) the discrete perturbation seems to

activate the least energy consuming among the possible combinations in terms of development/arrest

of multiple failure surfaces, this providing the most unfavorable solutions in terms of material failure.

This fact has not been theoretically proved, but the experiences of the authors in a large number of

numerical simulations seem to corroborate it.
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Appendix A

Let us consider the following tensors:

P ¼
Xi¼3

i¼1

piêi � êi;

R ¼
Xi¼3

i¼1

riêi � êi;

S ¼
Xi¼3

i¼1

signðpiÞ
ffiffiffiffiffiffiffi
piri

p
êi � êi

such that piri P 0 and, therefore, signðpiÞ ¼ signðriÞ, i 2 f1; 2; 3g. Then, for a vector

n ¼
Xi¼3

i¼3

niêi :

ðn � P � nÞðn � R � nÞ � ðn � S � nÞ2 ¼
Xi¼3

i¼1

n2i pi

 ! Xi¼3

i¼1

n2i ri

 !
�

Xi¼3

i¼1

ðn2i signðpiÞ
ffiffiffiffiffiffiffi
piri

p Þ2
 !

¼
Xi¼3

i¼1

ðn4i piriÞ þ
Xk¼3

k¼1

i<j;i6¼k;j 6¼k

n2i n
2
j ðpirj þ pjriÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼sign ðpiÞjpijsignðrjÞjrjj
þsign ðpjÞjpjjsignðriÞjri j
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�
Xi¼3

i¼1

n4i signðpiÞ
2|fflfflfflfflffl{zfflfflfflfflffl}

¼1

piri �
Xk¼3

k¼1

i<j;i6¼k;j 6¼k

2n2i n
2
j signðpiÞsignðpjÞ

ffiffiffiffiffiffiffi
piri

p ffiffiffiffiffiffiffi
pjrj

p

¼
Xk¼3

k¼1

i<j;i 6¼k;j 6¼k

n2i n
2
j signðpiÞsignðpjÞðjpijjrjj þ jpjjjrijÞ

�
Xk¼3

k¼1

i<j;i6¼k;j 6¼k

n2i n
2
j signðpiÞsignðpjÞ

ffiffiffiffiffiffiffi
piri

p ffiffiffiffiffiffiffi
pjrj

p

¼
Xk¼3

k¼1

i<j;i 6¼k;j 6¼k

2n2i n
2
j signðpiÞsignðpjÞ

1

2
ðjpirjj þ jpjrijÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
arithmetic average

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpirjjjpjrij

q
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
geometric average

2
64

3
75

¼
Xk¼3

k¼1

i<j;i 6¼k;j 6¼k

2n2i n
2
j signðpiÞsignðpjÞ


 ½averagearith � averagegeom�averagearithðjpirjj; jpjrijÞ

¼ 1

2
ðjpirjj þ jpjrijÞaveragegeomðjpirjj; jpjrijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpirjjjpjrijÞ2

q
:

If R ¼ P, then

ri ¼ pi; rj ¼ pj;

averagearith ¼ jpipjj ¼ averagegeom ¼ jpipjj ) ðn � P � nÞðn � R � nÞ � ðn � S � nÞ2 ¼ 0:

Appendix B

Equations for the ellipse and outer Mohr’s circle in Fig. 2b are:

Localization ellipse ! r2

Z
b�a

þ s2
Z
b

¼ 1;

Outer Mohr’s circle !
ðr� cÞ2 þ s2 ¼ R2;

c ¼ s1 þ s3
2

; R ¼ s1 � s3
2

:

8<
:

Since we are looking for the tangent ellipse, there will only be two solutions for the intersection of both

locus in terms of points in Mohr’s space ðr�; s�Þ, ðr�;�s�Þ in Fig. 2b. Solving for r in the previous system

leads to the quadratic equation:

� a
b|{z}

p

r2 þ 2c|{z}
q

rþ R2 þ Z

b
� c2

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

r

¼ 0:
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A unique solution for r ðr ¼ r�Þ in this equation requires:

D ¼ q2 � 4pr ¼ 0 ) Zcrit ¼ b
s1 � s3

2

� �2�
þ b

a

�
� 1

�
s1 þ s3

2

� �2�
; ðB:1aÞ

r� ¼ � q
2p

¼ b
a
c ) ncrit � S � ncrit ¼ b

a
c ¼ b

a
s1 þ s3

2

� �
; ðB:1bÞ

where Eq. (24a) has been considered. Since solutions ðr�; s�Þ, ðr�;�s�Þ lie on the outer Mohr’s circle, see

Fig. 2b, ncrit can be characterized (after some straightforward operations) in terms of the eigenvalues

ðs1 P s2 P s3Þ of the symmetric tensor S ¼ signðPÞ
ffiffiffiffiffiffiffiffiffiffiffi
P � R

p
and the corresponding eigenvectors ŝ1; ŝ2; ŝ3:
ncrit ¼ cos hcritŝ1 þ sin hcritŝ3;

tan2 hcrit ¼ �ð1� 2a=bÞs1 þ s3
ð1� 2a=bÞs3 þ s1

:
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