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In this work we apply a procedure based on the quantum imaginary time evolution method to
solve the unit-disk maximum independent set problem. Numerical simulations were performed for
instances of 6, 8 and 10-qubits graphs. We have found that the failure probability of the procedure
is relatively small and rapidly decreases with the number of shots. In addition, a theoretical upper
bound for the failure probability of the procedure was obtained.

I. INTRODUCTION

Obtaining the Hamiltonian ground state of a quantum system is of utmost importance for various physics problems
and also for optimization problems. Quantum computing may be useful for calculating these states. Several quantum
algorithms have been proposed for this purpose, including adiabatic quantum optimization [1], quantum annealing [2],
and classical quantum variational algorithms such as the quantum approximate optimization algorithm (QAOA) [3]
and the variational quantum eigensolver (VQE) [4–6]. Despite many advances, these algorithms also have potential
drawbacks, especially in the context of near-term quantum computing architectures with limited quantum resources.
For example, phase estimation is not practical without error correction, while variational quantum algorithms are
limited in accuracy by a fixed ansatz and involve noisy high-dimensional classical optimizations [7].

Recently, a new approach to the quantum imaginary time evolution method (QITE) [8–10] has been proposed
in [11]. This approach is based on emulating classical imaginary time evolution with measurement-assisted unitary
circuits. However, unlike previous strategies, it is not a variational quantum algorithm. Some improvements of QITE
algorithm have been developed for noisy intermediate-scale quantum (NISQ) hardware [12–15]. QITE has found
practical application in quantum chemistry on NISQ hardware [16, 17], in simulating open quantum systems [18],
and recently in optimization problems such as Max-Cut and polynomial unconstrained boolean optimization (PUBO)
[19, 20]. QITE seems to have an advantage over QAOA [3, 21–26] since there is no need for classical optimization
parameters, distinguishing from it. Furthermore, it does not employ ancilla qubits like VQE [5, 6].

The MaxCut and the Maximum Independent Set problems are prototypical examples of optimization problems that
have received attention as candidates for quantum advantage [27–37]. The unit-disk maximum set problem (UD-MIS)
is computationally challenging. It belongs to the class of NP-hard problems, which means that finding an exact
solution efficiently for large instances is infeasible. Studies using quantum hardware an algorithms to tackle UD-MIS
problems are being conducted [29, 38–40]. For instance, in [40] quantitative requirements on system sizes and noise
levels of Rydberg atoms platforms were studied to reach quantum advantage in solving UD-MIS with a quantum
annealing-based algorithm. In [29] it was compared the probability for finding the UD-MIS solution using an analog
quantum annealing algorithm to the QAOA algorithm with no quantum noise.

In this work we will apply a procedure based on QITE algorithm proposed in [11] to solve UD-MIS problems. We
will simulate, without noise, QITE with two non-trivial domains and apply it to several UD-MIS instances of 6, 8
and 10 qubits. We will explore the number of iterations and shots required for our probabilistic procedure to return
acceptable results.

The paper is organized as follows. In section II we review the quantum imaginary-time evolution method presented
in [11]. We provide some notations and definitions that will be useful later on. In Section III we describe our proposed
method for solving optimization problems using QITE. In Section IV we briefly describe the UD-MIS problem and we
explain how this problem can be formulated in terms of the Hamiltonian of a quantum system. In Section V we test
numerically the proposed method on several intances of UD-MIS problems. In Section VI, we give some concluding
remarks. For readability, auxiliary lemmas and proofs, and an explanation of numerical calculations are presented
separately in Appendices A and B, respectively.
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II. QUANTUM IMAGINARY-TIME EVOLUTION METHOD

In this section we review the imaginary-time evolution (ITE) method and a quantum proposal for it [11]. The
imaginary-time evolution method is a well-known approach used for obtaining the ground state of a quantum Hamil-
tonian. The idea is to express the ground-state |ψ⟩ of the Hamiltonian as the long-time limit of the imaginary-time
Schrödinger equation, that is,

|ψ⟩ = lim
t→∞

|ψite
t ⟩ , |ψite

t ⟩ = e−tH |ψ0⟩
||e−tH |ψ0⟩ ||

, (1)

for some initial state |ψ0⟩, with the condition ⟨ψ0|ψ⟩ ≠ 0. The parameter t must be chosen such that the final state is
close enough to the ground state. This parameter can also be thought of as the inverse temperature (t = 1

kBT , where

kB is the Boltzmann constant and T is the temperature). In this case, Eq. (1) states that the system tends to the
ground state when temperature tends to zero.

In [11] it was proposed a quantum imaginary-time evolution method (QITE) that emulates Eq. (1). It consists of
measurement-assisted unitary circuits, acting on suitable domains around the support of different qubits. To be more
precise, start with a geometric k-local Hamiltonian with m terms of the form:

H =

m∑
l=1

h[l]. (2)

Each term h[l] acts on at most k (neighboring) qubits on an underlying graph. Let us consider a Trotter decomposition
of the corresponding imaginary time evolution

e−tH = (e−τh[1]e−τh[2] · · · e−τh[m])n +O(τ2), τ = t/n, (3)

acting on an initial state |ψ0⟩ (usually taken to be a product state). In the decomposition we have n iteration of
the form e−τh[1]e−τh[2] · · · e−τh[m], and each e−τh[l] is a sub-step of a complete iteration step. The interval τ must be
chosen such that the squared errors are negligible.

After a Trotter sub-step e−τh[l] of the iteration j we have

|ψ′⟩ = e−τh[l]

||e−τh[l]|ψ⟩||
|ψ⟩. (4)

The idea is to map the scaled non-unitary action e−τh[l] of the iteration j on the state |ψ⟩ to that of a unitary
evolution e−iτA[l,j]:

|ψ′⟩ ≈ e−iτA[l,j]|ψ⟩. (5)

Here A[l, j] is a Hermitian operator associated to the l-th term h[l] of iteration j acting on a qubit domain Dl,j of
dimension dl,j . The domain is usually chosen around the support of h[l]. A[l, j] can be expanded as a sum of Pauli
strings acting on Dl,j ,

A[l, j] =
∑
I

a[l, j]IσI , I = i1i2 . . . idl,j
, (6)

with σI = σi1 ⊗ · · · ⊗ σidl,j , and σik being a Pauli matrix with ik ∈ {I,X, Y, Z}, and it is understood that identity

matrices should be inserted in the product when appropriately.
The goal is to minimize the difference || |ψ′⟩ − (1− iτA[l, j]) |ψ⟩ ||2 with respect to real variations of a[l, j]I , where

|| · || is the norm of the Hilbert space. Up to O(τ2) errors, this difference translates into a linear problem in the
coefficients a[l, j]I : ∑

J

(S + ST )IJaJ [l, j] = −bI , (7)

where SIJ = ⟨ψ|σIσJ |ψ⟩ and bI = −2Im⟨ψ|σIh[l]|ψ⟩. In order to obtain SIJ and bI , we need to perform suitable
measurements of the state |ψ⟩. Solving the linear equation (7), we obtain the coefficients a[l, j]. From a[l, j] we obtain
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the unitary evolution e−iτA[l,j] for the corresponding sub-step. Finally, iterating this process for the m terms of the
Hamiltonian and the n iteration steps, we construct the QITE operator:

QH(τ, n,D) =

n∏
j=1

m∏
l=1

e−iτA[l,n+1−j]. (8)

Here D contains the information of all domains Dl,j , with 1 ≤ l ≤ n and 1 ≤ j ≤ m. Finally, the QITE evolution is
given by

|ψ0⟩ → |ϕqitet ⟩ = QH(τ, n,D)|ψ0⟩. (9)

For simplicity, in the Section V we will fix all domains to be equal on each step (but not on each sub-step), that is,
for each 1 ≤ l ≤ m, Dl,1 = · · · = Dl,n.
In the construction of the QITE operator we have to define for each sub-step the domain of qubits where the Pauli

strings act. In [11] it is argued that as the sub-steps increase, the dimension of the domain should increase from
an initial domain that involves the qubits associated to the natural support of each h[l]. In general, this is due to
an expected increase in correlations between qubits when starting from a product state. However, it is argued that
for systems with finite correlations over at most C qubits bounded by exp(−L/C), with L the distance between the
observables, the domain can be chosen with a width of at most O(CD) surrounding the qubits on the support of h[l]
(D the dimension of the underlying regular lattice). They also argue that the number of measurements and classical
storage at a given time step required to perform the QITE computation is bounded by exp(O(CD)), but it scales
in a quasi-polynomial way in terms of the numbers of qubits. In practice, however, we can choose a fixed domain
smaller than the one induced by C by truncating the unitary updates on each step to domain dimensions that fit
the computational budget. Of course, the larger the dimension the better the approximation to the ground-state.
Nevertheless, this approximate QITE version remains useful as a valid heuristic. We will use this approximate version
all along this work.

III. OPTIMIZATION METHOD BASED ON QITE

Let us consider a quantum system of N qubits, with Hilbert space H = C2 ⊗ · · · ⊗ C2, and dimension d = 2N . We
consider a diagonal Hamiltonian in the computational basis {|i⟩}0≤i≤d−1, given by

H = aI +

N−1∑
i=0

biZi +

N−1∑
(i,i′)

ci,i′ZiZi′ , (10)

with I the identity operator, Zi the Z Pauli matrix acting on the i-th qubit, and a, bi, ci,i′ real coefficients. We denote
E0, . . . , Ed−1 the eigenvalues of the Hamiltonian H, with all the Ei sorted in an non-decreasing way (each eigenvalue
has to be considered with their respective degeneracy). We denote the corresponding eigenstates respectively as
|E0⟩, . . . , |Ed−1⟩, where some |Ei⟩ should be understood as belonging to the same eigenspace. Since the Hamiltonians
are diagonals in the computational basis, that is, the eigenvectors of H are the vectors of the computational basis,
the basis {|Ei⟩}0≤i≤d−1 can be chosen such that it has the same elements of the computational basis, but in different
order. In this work, the basis {|Ei⟩}0≤i≤d−1 is chosen in such a way.
The problem we want to solve is the following: Finding the lowest eigenvalue E0 of H or an eigenvalue Ei such

that Ei ≤ E0 + δE, with δE ≥ 0 a tolerable error.
In order to solve this problem, we propose the following probabilistic method (see Alg.1) based on QITE:

1. We start with an initial state |ψ0⟩ = H⊗N |0 . . . 0⟩, where H⊗N is the Hadamard gate acting on each qubit. In

terms of the eigenvectors basis of H, the initial state has the form |ψ0⟩ = 1√
d

∑d−1
i=0 |Ei⟩.

2. Then, we apply the QITE operator up to a time tmax:

|ψ0⟩ → |ϕqitetmax
⟩ = QH(τ, nmax,D)|ψ0⟩, (11)

where tmax, τ , and D should be chosen according to the particular problem, and nmax = tmax/τ .

3. We measure |ϕqitet ⟩ M times (M number of shots) in the computational basis, with M << d. We register the
M outputs Eim , with 1 ≤ m ≤M .
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4. Finally, with a classical computer, we choose from the M outputs Eim the one with less energy.

The general idea of the method is the following. When applying QITE operator QH(τ, nmax,D) to the initial state
|ψ0⟩, as nmax grows, it is expected to obtain a superposition of eigenstates of H with higher probabilities for the
eigenstates with the smallest eigenvalues. In the case of Hamiltonians of the form given in Eq. (10), the Hamiltonian
basis coincides with the computational basis. Therefore, when measuring in the computational basis, we obtain
eigenstates of H, and we expect to obtain with more probability the eigenstates with lower eigenvalues. If we consider
M shots, the more we increase M , the more likely we are to get a good result, that is, a state with eigenvalue Ei

such that Ei ≤ E0 + δE with δE a tolerable error. However, the number of shots should not increase exponentially
with the number of qubits, otherwise in the fourth step of the procedure we end up in a for loop with an exponential
number of iterations. In Section V we will numerically show that an exponential increase in M is not needed.
It should be noted that the state obtained by our method and the QITE state |ϕqitet ⟩ are not necessarily the same.

While the first one is an eigenstate of H, obtained after a measurement, the second one, in general, is a superposition
of eigenstates. When this output state is such that Ei ≤ E0+δE with δE a tolerable error, we will call it an acceptable
state.
Since the proposed method is probabilistic, there is a failure probability associated with it, and the lower it is, the

higher the chances of obtaining at least one acceptable eigenvalue of H after M shots. Given the QITE state at time
t, |ϕqitet ⟩, when measuring one time (M = 1) in the computational basis, the failure probability is the probability of
obtaining an eigenvalue Ei > E0 + δE, which is given by

P qite
F (t) =

∑
Ei>E0+δE

|⟨Ei |ϕqitet ⟩ |2. (12)

When measuringM times in the computational basis, the failure probability for the QITE state at time t is (P qite
F (t))M .

In the ideal case, the QITE state at time t, |ϕqitet ⟩, coincides with the ITE state at time t, |ψite
t ⟩, given by Eq. (1).

The ITE state sometimes will be called exact state in Section V. It can be expressed in terms of the eigenvectors of
the Hamiltonian as follows:

|ψite
t ⟩ = 1

K

d−1∑
i=0

e−tEi |Ei⟩, with K2 =

d−1∑
i=0

e−2tEi . (13)

We can compute the failure probability for the ITE state:

P ite
F (t) =

∑
Ei>E0+δE

|⟨Ei |ψite
t ⟩ |2 =

∑
Ei>E0+δE

e−2tEi

K2
. (14)

We are interested in an upper bound for the failure probability independent of the Hamiltonian H. The following
theorem provides a relevant bound for the ITE failure probability.

Theorem 1 (ITE failure probability upper bound). Let H =
∑d−1

i=0 Ei |Ei⟩ ⟨Ei| be a Hamiltonian of a quantum
system with the fundamental eigenvalue with degeneracy g, and δE ≥ 0 a tolerance. The failure probability for |ψite

t ⟩
satisfies the inequality

P ite
F (t) ≤ 1

1 + g(d− g)−1e2tδE
. (15)

From this result we can obtain useful relations between the parameters of the proposed method. Eq. (15) can be
restated as P ite

F (t) ≤ 1/(1 + ge2tδE−N ln 2). When measuring M times, this expression has an exponent M . Then, it
is enough that the parameters satisfy 2tδE ⪆ N ln 2 in order to obtain a good upper bound. This implies that time
need not increase more than linearly with the number of qubits.

The ITE upper bound can be connected with the QITE upper bound. The following theorem provides a relation
between the ITE failure probability and the QITE failure probability.

Theorem 2 (QITE failure probability upper bound). Let H =
∑d−1

i=0 Ei |Ei⟩ ⟨Ei| be a Hamiltonian of a quantum

system, δE ≥ 0 a tolerance, and |ψite
t ⟩ and |ϕqitet ⟩ the corresponding ITE and QITE states at time t. Given 0 ≤ ε ≤

√
2,

if || |ψite
t ⟩ − |ϕqitet ⟩ || ≤ ε, the failure probabilities P ite

F (t) and P qite
F (t) satisfy

|P qite
F (t)− P ite

F (t)| ≤ ε

√
1− ε2

4
. (16)
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Thm. 2 shows how the QITE failure probability is related with distance between QITE and ITE states. Motivated
by this theorem we define the following quantities that will be analyzed later on:

ε(t) = || |ψite
t ⟩ − |ϕqitet ⟩ ||, (17)

ε̄(t) = || |ψite
tmax

⟩ − |χt⟩ ||, (18)

where |χt⟩ could be either |ψite
t ⟩ or |ϕqitet ⟩. The quantity ε(t) tells us how much departs the QITE state from the ITE

state at time t, and ε̄(t) tells how much the corresponding state at time t departs from the ITE state at a final time
tmax. For an iterative process, ε̄(t) shows how well |χt⟩ is approximating the expected solution |ψite

tmax
⟩ at a certain

iteration step.

Algorithm 1

|ϕ0⟩ ← H⊗n|0 . . . 0⟩ ▷ Initial state
t← tmax ▷ tmax = τ × nmax, with nmax iterations.
H ← Optimization Hamiltonian
|ϕqite

tmax
⟩ ← QH(τ, nmax,D)|ϕ0⟩

Measure |ϕqite
tmax
⟩ M times (computational basis). Keep each measured state: |Eim⟩, 1 ≤ m ≤M. ▷ M : Number of shots

for m ≤M do
Eim ← ⟨Eim |H|Eim⟩
m← m+ 1

end for
return |Eim⟩ associated with lowest Eim , 1 ≤ m ≤M.

IV. UNIT-DISK MAXIMUM INDEPENDENT SET PROBLEM

In this section, we describe the unit-disk maximum independent set problem (UD-MIS), a basic graph optimization
problem with many applications. We also explain how this problem can be formulated in terms of the Hamiltonian
of a quantum system.

Let G = (V,E) be a graph with vertex set V and edge set E, and let N be the number of vertices of the graph G.
An independent set of G is a set of mutually non-connected vertices. Let S = (s1, . . . , sN ) be a bitstring of length
N (si ∈ {0, 1}), and let BN be the set of all possible bitstrings of length N . The size of BN is exponential in the

graph size, |B| = 2N . The Hamming weight of a bitstring S is given by |S| =
∑N

i=1 si. The maximum independent
set (MIS) problem consists in determining the size of the largest possible independent set and returning an example
of such a set. This problem can be formulated as the following maximization problem:

max
S∈B

|S|

s.t. S ∈ I.S,
(19)

where I.S (for “Independent Sets”) is the set of bitstrings (s1, . . . , sN ) corresponding to independent sets of G. A
bitstring S = (s1, . . . , sN ) corresponds to an independent set if for all pair of vertices (i, i′) we have si = si′ = 1 =⇒
(i, i′) /∈ E.

The UD-MIS problem is the MIS problem restricted to unit-disk graphs. A graph is a unit-disk graph if one can
associate a position in the 2D plane to every vertex such that two vertices share an edge if and only if their distance
is smaller than unity.

This optimization problem can be reformulated as a quantum minimization problem that consists in finding the
ground state of a Hamiltonian of a quantum system. The idea is to associate to each bitstring S = (s1, . . . , sN ) a
quantum state |s1, . . . , sN ⟩ of the N -qubit system. The associated Hamiltonian is the following:

H = −
∑
i∈V

n̂i + u
∑

(i,i′)∈E

n̂in̂i′ , (20)

with n̂i = (I −Zi)/2 and Zi the Pauli matrix in the z direction acting on the qubit i, and u a parameter whose value
can be adjusted. Fixing u > 1 guarantees that the ground state of H will necessarily be an independent set.
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(a) (b)

(c)

FIG. 1. Examples of UD-MIS graphs consisting of 6 (a), 8 (b) and 10 (c) qubits.

The Maximum Independent Set problem, along with the MaxCut problem, are prototypical examples that have
received attention as candidates for quantum advantage [27–37, 40] The unit-disk maximum set problem is com-
putationally challenging. It belongs to the class of NP-hard problems, which means that finding an exact solution
efficiently for large instances is infeasible and that any NP optimization problem can be reformulated as a UD-MIS
problem with polynomial overhead [41]. Researchers have developed several heuristic algorithms to approximate this
problem. The are two main strategies that can be distinguished. One base on 2-level shifting schemes [42–45] and
the other based on breadth-first-search schemes [46].

Here, we are going to solve it applying the optimization method based on QITE described in Section III. It should be
noted that the Hamiltonian given in (20) does not depend on the actual distances of the nodes, but the links between
them. This implies that correlations between nodes are affected by the links they share rather than the geometric
distance between them. The QITE method is expected to work well under the assumption of finite correlation length
with a geometric k-local Hamiltonian [11]. The UD-MIS graphs do not have, in general, a regular lattice shape as
can be seen in Fig. 1. This means that correlation lengths may not follow an exponential decaying law between node
distances in the graph1. Regardless of this, we have used QITE as a valid heuristic method.

V. NUMERICAL RESULTS

In this section we apply the optimization method based on QITE (Alg. 1) described in Section III, to solve the
UD-MIS problem presented in Section IV. In this section we summarize our numerical findings. We first explore
several numerical quantities and analyze the failure probability for graphs of Fig. 1. Then, we test the method by
sampling several random graphs. We use Hamiltonians of the form given in Eq. (20) with u = 1.35.

1 See [40] for a discussion on correlation length being roughly independent of the graph size with exponential decaying in UD-MIS problem.
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FIG. 2. Error and fidelity results for the 6-qubit graph instance of Fig. 1a for different domains. (a) and (c) depict plots of
ε(t) (Eq. (17)) and F (ψite

t , ϕqite
t ) = |⟨ψite

t |ϕqite
t ⟩|2, respectively. (b) and (d) depict plots of ε̄(t) and fidelity F (ψite

tmax
, ϕqite

t ) =

|⟨ψite
tmax
|ϕqite

t ⟩|2. The blue line corresponds to calculate the fidelity with respect to the ITE state |ψite
t ⟩.

A. Failure probability characterization

We recall from section III that the aim of our method is to obtain an acceptable state, that is, an eigenstate with
eigenvalue Ei such that Ei ≤ E0 + δE, with δE ≥ 0 a tolerable error. In what follows, we numerically explore several
quantities for the graphs instances depicted in Fig. 1 in order to understand how the performance of the method
relates to the number of iterations, the domains, and the number of shots. The Hamiltonian for these graphs are
constructed according to Eq. (20). The results will be used later on when testing Alg. 1 on several instances of
random graphs.

In an ideal case, that is when we choose a full domain D and a very small interval τ , the QITE state at time t,
|ϕqitet ⟩, should approximate very well the ITE state at time t, |ψite

t ⟩. In practical cases the matching between these
two states would depend on the chosen domain and the number of iterations. The difference between them can be
characterize by ε(t), given in Eq. (18), or by the fidelity. The closer the QITE state is to the ITE state, the closer the

QITE failure probability P qite
F (t) is to the ITE failure probability P ite

F (t), and the better the results of our algorithm
should be. Thm. 2 gives an upper bound for the difference between QITE and ITE failure probabilities in terms
of ε(t). We thus start plotting ε(t) and ε̄(t) (Eq. (17) and (18), respectively) for the 6-qubit graph instance of Fig.
1a. In all numerical simulations we have set τ = 0.01, so tmax is fixed with the number of iterations, nmax. For the
6-qubit graph instance we have used tmax = 10 (i.e. nmax = 1000). We have chosen two different domains: DA and
DB . DA is chosen in such a way that each Dl,j equals the same qubit support of h[l] for all iterations 1 ≤ j ≤ nmax.
DB is chosen in a similar way to DA except that associated domains with terms containing ZiZi′ are expanded to
contain a 4-qubit support around the linked qubits i and i′ (see Appendix B for details). It should be noted that
these domains imply that the evolution given by Eq. (11) produces entanglement between qubits. This differs from
other proposals where QITE is applied with a linear ansatz [19, 20].

In Fig. 2a and 2b we plot ε(t) and ε̄(t). Fig 2a shows that |ψite
t ⟩ and |ϕqitet ⟩ start to depart from each other as the

number iterations increases, reaching a plateau for long iterations. Lower values of ε(t) indicate a good fit between
both states while higher values show the contrary. If both states are almost orthogonal, this implies that ε(t) is near

to
√
2. It should be noted that for all iterations we have ε(t) ≤

√
2, satisfying hypothesis of Thm. 2. For a better

comparison, we have plotted the fidelity between both states in Fig. 2c. Fig. 2d shows convergence of QITE state
to |ψite

tmax
⟩ as the domain dimension and the number of iterations increase. Regarding the chosen domains, we find

that DB performs better than DA as expected, since DB has a bigger domain than DA. However, this comes at
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FIG. 3. Failure probability for 6-qubit graph (Fig 1a). (a) P ite
F (t) (blue line) and P qite

F (t) for different domains and δE = 0.
(b) Similar to (a) but δE = 0.35. This value represents the difference between the energy ground-state E0 = −2 and the energy
of the first excited state E1 = −1.65. The degeneracy of the ground states is g = 3 and for first excited states is g = 2.

the cost of needing more expectation values to obtain coefficients aI [l, j], and bigger linear systems to solve. From
these plots we see that the low-dimensional domain DA does not perform very well compared to DB in matching
the ITE state for large number of iterations. However, as we said in Section III, we are interested in using QITE to
get a state with eigenvalue Ei such that Ei ≤ E0 + δE, with δE a tolerable error. Moreover, we are interested in
low-dimensional domains to ensure few measurements of expectation values (less coefficients a[l, j] to be computed)

and in few iterations to avoid deep quantum circuits. For this, we analyze in Fig. 3 and Fig. 4 how P qite
F (t) behaves

as t increases together with the number of shots M .
In Fig. 3 we see that P qite

F (t) decreases a t grows. Also, we see that DB seems to be a much better option than

DA for getting low values of P qite
F (t). However, as stated before, even using DA and a low number of iterations we

might get good results, since we are only interested in getting acceptable states. This is what we see in Fig. 4 when
the number of shots is taking into account. (P qite

F (t))M decreases considerable as the number of shots increases for
different domains and number of iterations. In both Fig. 3 and 4, δE has been chosen to include not only the ground
state but also first-excited states as acceptable states (since the energy gap is roughly around 0.35, then δE = 0.35).
For this 6-qubit graph instance, δE represents 17.5% of the ground state energy (see description of Fig. 3b). This
implies that we are tolerating relative errors up to 17.5%. The relative error is computed as 100×|E0−Ei|/|E0|, with
Ei the obtained eigenvalue and E0 the ground state energy. Fig. 4 shows, for different domains, how many iterations
and number of shots are needed to get a reasonable low probability of failure for our method. It should be noted that
the number of shots can be kept to be proportional to the number of qubits to obtain good results.

We have also repeated the same analysis for the 8 and 10-qubit graphs. These cases have a similar behaviour
compared to the 6-qubit graph (see Appendix B 1 and B2 for numerical results). Based on these results, for our
purposes it will be sufficient to test Alg. 1 on randomly generated instances using DA with 100 iterations and M at
most equal to 2N (N number of qubits). This is what we do in the next subsection.

B. Testing random samples of UD-MIS graphs

Based on the analysis of previous subsection we have tested Alg. 1 on several random UD-MIS graphs for 6, 8 and
10 qubits with domain DA, nmax = 100 iterations and τ = 0.01. We tested on approximately 400 graphs for 6 qubits,
150 graphs for 8 qubits and 10 graphs for 10 qubits.
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FIG. 4. Failure probability (P qite
F (t))M vsM (number of shots) for 6-qubit graph for different number of iterations and domains.

FIG. 5. (a) and (b) show normalized histograms of obtained eigenvalues for 6-qubit graphs, with number of shots M = 6 and
M = 12, respectively. (c) and (d) show normalized histograms of relative errors for M = 6 and M = 12 shots. The number of
UD-MIS instances to make these plots was around 400.
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In Fig. 5a and 5b we plotted, forM = 6 andM = 12 shots, the normalized histogram of obtained eigenvalues using
Alg. 1 for 6-qubits graphs. In Fig. 5c and 5d we plotted, the histogram of relative errors. From Fig. 5a we conclude
that even for M = 6 shots the Alg. 1 returns acceptable results, in accordance with Fig. 4. For this random sample
of 6-qubits graphs, the energy gap is roughly around 0.35, representing at least a 15% of the ground state. When the
gap is small, it is more difficult to find the ground state, since there is a greater probability of obtaining lower-energy
excited states. However, in this case, the relative error is small. Therefore, from an optimization point of view, all
these states are expected to be acceptable states since the difference in the cost function is very small.

We have also sampled random graphs for 8 and 10-qubits instances and obtained similar results presented in
Appendix B 1 and B2, respectively.

VI. CONCLUSIONS

In this work, we applied a method based on QITE algorithm to solve UD-MIS optimization problems. In Section
II we briefly introduced the QITE algorithm presented in [11]. In Section III we described our proposed method for
solving optimization problems using QITE and we provided an upper bound for the failure probability.

In Section V we tested the proposed method on UD-MIS problems. First, in Subsection VA, we characterized the
error ε(t) and the failure probability for 6, 8 and 10-qubits graphs depicted in Fig. 1. We obtained that DB performs
better than DA in matching the ITE state for large number of iterations. However, DA performs well enough in terms
of the failure probability with a lower number of iterations and it has the advantage of involving less measurements
of expectation values (less coefficients a[l, j] to be computed). Moreover, we observed that the failure probability
decreases rapidly with the number of shots, and the tolerable error. It should be noted that the number of iterations
and shots do not needed to be increased exponentially with the number of qubits.

In Subsection VB, we tested the proposed method on approximately 400 graphs for 6 qubits, 150 graphs for 8
qubits and 10 graphs for 10 qubits. Our numerical findings show that for 100 iterations and a domain of type DA, the
number of shots needed can be made proportional to the number of qubits to obtain a failure probability less than
0.1. It is expected that larger domains will tend to do even better as suggested by Fig. 4, 8 and 12. We remark that
our chosen domains imply that the evolution given by Eq. (11) produces entanglement between qubits. This has to
be contrasted with other proposals where QITE is applied with a linear ansatz [19, 20]. Further analysis is needed
to better characterize our method. For example, studying the scalability with the number of qubits, the effectiveness
when used on real quantum computers, and the applicability to other optimization problems. Also, it would be useful
to study the effects of choosing other domains.
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Appendix A: Auxiliary lemmas and proofs

In this appendix we present the proofs of Thms. 1 and 2 presented in Section III.
Proof of Theorem 1 (ITE failure probability upper bound):

Proof.
Let us consider the set of eigenvalues of H that are greater than E0 + δE, that is, {Ei : Ei > E0 + δE}. We call r

the lower index of eigenvalues of this set.
The ITE state at time t can be expressed as

|ψite
t ⟩ = 1

K

d−1∑
i=0

e−tEi |Ei⟩, with K2 =

d−1∑
i=0

e−2tEi , (A1)

and the failure probability for this state is

P ite
F (t) =

∑
Ei>E0+δE

|⟨Ei |ψite
t ⟩ |2 =

d−1∑
i=r

|⟨Ei |ψite
t ⟩ |2. (A2)
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Then,

P ite
F (t) =

∑d−1
i=r e

−2tEi∑d−1
i=0 e

−2tEi

=

∑d−1
i=r e

−2tδEi∑d−1
i=0 e

−2tδEi

=

∑d−1
i=r e

−2tδEi

g +
∑r−1

i=g e
−2tδEi +

∑d−1
i=r e

−2tδEi

, (A3)

with δEi = Ei − E0.
For i ∈ [g, r − 1] we have δEi ≤ δE, this implies that∑d−1

i=r e
−2tδEi

g +
∑r−1

i=g e
−2tδEi +

∑d−1
i=r e

−2tδEi

≤
∑d−1

i=r e
−2tδEi

g + (r − g)e−2tδE +
∑d−1

i=r e
−2tδEi

. (A4)

For i ∈ [r, d − 1] we have δEi > δE, then
∑d−1

i=r e
−2tδEi ≤ (d − r)e−2tδE . Since f(x) = x

A+x (with A > 0 is a
monotonically increasing function, we have∑d−1

i=r e
−2tδEi

g + (r − g)e−2tδE +
∑d−1

i=r e
−2tδEi

≤ (d− r)e−2tδE

g + (r − g)e−2tδE + (d− r)e−2tδE
. (A5)

Therefore,

P ite
F (t) ≤ (d− r)e−2tδE

g + (d− g)e−2tδE
≤ (d− g)e−2tδE

g + (d− g)e−2tδE
. (A6)

Finally,

P ite
F (t) ≤ 1

1 + g(d− g)−1e2tδE
. (A7)

Lemma 1. Let H be a finite Hilbert space and S1,S2 ⊆ H vector subspaces such that S1 ⊥ S2 and S1 ⊕S2 = H. Let
|ψ⟩ = |ψ1⟩+ |ψ2⟩ and |ϕ⟩ = |ϕ1⟩+ |ϕ2⟩ be normalized vectors, such that

|ψ1⟩ = cosα |ψ̂1⟩ , |ψ2⟩ = sinα |ψ̂2⟩ , 0 ≤ α ≤ π/2, (A8)

|ϕ1⟩ = cosβ |ϕ̂1⟩ , |ϕ2⟩ = sinβ |ϕ̂2⟩ , 0 ≤ β ≤ π/2. (A9)

with |ψ̂1⟩ , |ϕ̂1⟩ ∈ S1 and |ψ̂2⟩ , |ϕ̂2⟩ ∈ S2 normalized vectors.

Given 0 ≤ ε ≤
√
2, if || |ψ⟩ − |ϕ⟩ || ≤ ε, we have |α− β| ≤ θM , with θM = 2arcsin( ε2 ).

Proof.

ε2 ≥ || |ψ⟩ − |ϕ⟩ ||2 = || |ψ⟩ ||2 + || |ϕ⟩ ||2 − 2Re⟨ψ|ϕ⟩ = 2− 2 cosα cosβRe⟨ψ̂1|ϕ̂1⟩ − 2 sinα sinβRe⟨ψ̂2|ϕ̂2⟩. (A10)

Then,

1− ε2

2
≤ cosα cosβRe⟨ψ̂1|ϕ̂1⟩+ sinα sinβRe⟨ψ̂2|ϕ̂2⟩ ≤ cosα cosβ + sinα sinβ = cos |α− β|. (A11)

From inequality (A11), we obtain

|α− β| ≤ θmax = arccos

(
1− ε2

2

)
= 2arcsin

(
ε2

2

)
. (A12)

Proof of Theorem 2 (QITE failure probability upper bound):
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Proof. Let us consider the set of eigenvalues of H that are greater than E0 + δE, that is, {Ei : Ei > E0 + δE}, We
call r to the lower index of eigenvalues of this set, and we define two sets of eigenvectors of H, S1 = {|Ei⟩}r−1

i=0 and

S2 = {|Ei⟩}d−1
i=r . Then, we consider the linear spanned subspaces S1 = span(S1) and S2 = span(S2). This vector

subspaces satisfy S1 ⊥ S2 and S1 ⊕ S2 = H.
We can express |ψite

t ⟩ = |ψ1⟩ + |ψ2⟩ and |ϕitet ⟩ = |ϕ1⟩ + |ϕ2⟩, with |ψ1⟩ , |ϕ1⟩ ∈ S1 and |ψ2⟩ , |ϕ2⟩ ∈ S2. Moreover,

since |ψite
t ⟩ and |ϕqitet ⟩ are normalized vectors, we can express them as follows

|ψ1⟩ = cosα |ψ̂1⟩ , |ψ2⟩ = sinα |ψ̂2⟩ , 0 ≤ α ≤ π/2, (A13)

|ϕ1⟩ = cosα |ϕ̂1⟩ , |ϕ2⟩ = sinα |ϕ̂2⟩ , 0 ≤ β ≤ π/2. (A14)

with |ψ̂1⟩ , |ϕ̂1⟩ ∈ S1 and |ψ̂2⟩ , |ϕ̂2⟩ ∈ S2 normalized vectors.

The failure probabilities P ite
F (t) and P qite

F (t) are given by

P ite
F (t) = || |ψ2⟩ ||2 = sin2 α, (A15)

P qite
F (t) = || |ϕ2⟩ ||2 = sin2 β. (A16)

Then, we have |P qite
F (t) − P ite

F (t)| = | sin2 β − sin2 α| = | sin(α + β) sin(α − β)|. In the last step we have used a
trigonometric identity. Defining θ = |α− β|, we obtain

|P qite
F (t)− P ite

F (t)| ≤ sin θ. (A17)

Due to Lemma 1, we have, θ ≤ θM = 2arcsin( ε2 ), which implies |P qite
F (t) − P ite

F (t)| ≤ sin θM . Finally, using

sin(2 arcsinx) = 2x
√
1− x2, we obtain

|P qite
F (t)− P ite

F (t)| ≤ ε

√
1− ε2

4
. (A18)

Appendix B: Some remarks and extra results of Section V

In this section we briefly summarize the details of the numerical analysis. We have discretized time as t = τn with
τ = 0.01. When analyzing single instances of graphs we simulated up to 1000 iterations (i.e. tmax = 10) and when
testing several random graphs we set nmax = 100. A central aspect of QITE is the chosen domain D. Since UD-MIS
graphs in general do not have a regular lattice shape, it is difficult to propose natural domains for them. Nevertheless,
we have used the following recipe for the Hamiltonian (20). Single Zi terms are kept separated from interaction terms
ZiZi′ . And for each single Zi the associated Dl,j equals exactly the support of qubit i (for all 1 ≤ j ≤ nmax). For
the interaction terms we have defined two different domains DA and DB . DA associates to each interaction term a
domain with exactly the same support on which the interaction term acts on. That is, ZiZi′ acts non-trivially on
qubits i and i′, so the associated domain has non-trivial support on i and i′. On the other hand, DB is similar to DA

except that the domain associated to ZiZi′ is expanded to a total of 4 qubits containing not only i and i′ but other
two qubits linked to i and i′. In this case, if i and i′ are linked with several nodes, we randomly choose any of those
nodes (since every link in a UD-MIS graphs weighs the same). Note that Hamiltonian (20) does not depend on the
distances between graph nodes, otherwise we would expect this feature to provide a natural way to build domains.

The complete domain DA for the 6-qubit instance of Fig. 1a is:

DA = [(0), (1), (2), (3), (4), (5),

(0, 1), (0, 3), (0, 5),

(1, 2), (1, 3), (1, 4), (1, 5),

(2, 3), (2, 4),

(3, 4), (3, 5),

(4, 5)].

(B1)

The first line of Eq. (B1) are domains which are associated with each single Zi terms of Hamiltonian (20) and the rest
of lines are the ones associated with interaction terms ZiZi′ . It should be understood that each domain represents a
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complete Pauli basis for the qubits involved. The chosen DB for the 6-qubit instance of Fig. 1a is:

DB = [(0), (1), (2), (3), (4), (5),

(0, 1, 3, 5), (0, 1, 2, 3), (0, 1, 4, 5),

(1, 2, 4, 5), (0, 1, 3, 4), (1, 2, 4, 5), (0, 1, 3, 5),

(0, 2, 3, 4), (2, 3, 4, 5),

(0, 3, 4, 5), (1, 3, 4, 5),

(0, 2, 4, 5)].

(B2)

We say the dimension of DB is bigger than the dimension of DA since the first one contains bigger qubit supports
associated with interaction terms. This implies measuring more expectation values per Trotter sub-step.

1. Results for 8-qubits graphs

In this section we present the results for random graphs of 8 qubits. As in the case of 6-qubit graphs, we obtained
that DB performs better than DA in matching the ITE state for large number of iterations. However, DA performs well
enough in terms of the failure probability. Again, we obtained that the failure probability decreases when increasing
the number of iterations, the number of shots, and the tolerable error. As in the case of 6 qubits, the number of
iterations and shots do not need to be increased exponentially with the number of qubits.

FIG. 6. Error and fidelity results for the 8-qubit graph instance of Fig. 1b for different domains. (a) and (c) depict plots
of ε(t) (Eq. (17)) and F (ψite

t , ϕqite
t ) = |⟨ψite

t |ϕqite
t ⟩|2, respectively. (b) and (d) depict plots of ε̄(t) (Eq. (18)) and fidelity

F (ψite
tmax

, ϕqite
t ) = |⟨ψite

tmax
|ϕqite

t ⟩|2. The blue line corresponds to calculate the fidelity with respect to the ITE state |ψite
t ⟩.
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FIG. 7. Failure probability for 8-qubit graph (Fig 1b). (a) P ite
F (t) (blue line) and P qite

F (t) for different domains and δE = 0.
(b) Similar to (a) but δE = 0.35. This value represents the difference between the energy ground-state E0 = −3 and the energy
of the first excited state E1 = −2.65. The degeneracy of the ground states is g = 4 and for first excited states is g = 3.

FIG. 8. Failure probability (P qite
F (t))M vs M (number of shots) for 8-qubit graph for different iterations and domains.
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FIG. 9. (a) and (b) show normalized histograms of obtained eigenvalues for 8-qubit graphs, with number of shots M = 8 and
M = 16, respectively. (c) and (d) show normalized histograms of relative errors for M = 8 and M = 16 shots. The number of
UD-MIS instances to make these plots was around 150.

2. Results for 10-qubits graphs

In this section we show the results for random graphs of 10 qubits. In this case we only consider 10 random graphs
due to the numerical complexity of the calculations. As in the other cases, DA performs well enough in terms of
the failure probability, but DB performs better than DA in matching the ITE state for large number of iterations.
Moreover, it is observed that the failure probability decreases when increasing the number of iterations, the number
of shots, and the tolerable error. The number of iterations and shots do not need to be increased exponentially with
the number of qubits.
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FIG. 10. Error and fidelity results for the 10-qubit graph instance of Fig. 1c for different domains. (a) and (c) depict plots
of ε(t) (Eq. (17)) and F (ψite

t , ϕqite
t ) = |⟨ψite

t |ϕqite
t ⟩|2 respectively. (b) and (d) depict plots of ε̄(t) (Eq. (18)) and fidelity

F (ψite
tmax

, ϕqite
t ) = |⟨ψite

tmax
|ϕqite

t ⟩|2. The blue line corresponds to calculate the fidelity with respect to the ITE state |ψite
t ⟩.

FIG. 11. Failure probability for 10-qubit graph (Fig 1c). (a) P ite
F (t) (blue line) and P qite

F (t) for different domains and δE = 0.
(b) Similar to (a) but δE = 0.35. This value represents the difference between the energy ground-state E0 = −3 and the energy
of the first excited state E1 = −2.65. The degeneracy of the ground states is g = 9 and for first excited states is g = 15.
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FIG. 12. Failure probability (P qite
F (t))M vs M (number of shots) for 10-qubit graph for different number of iterations and

domains.

FIG. 13. (a) and (b) show normalized histograms of obtained eigenvalues for 6-qubit graphs, with number of shots M = 10 and
M = 20, respectively. (c) and (d) show normalized histograms of relative errors for M = 10 and M = 20 shots. The number
of UD-MIS instances to make these plots was 10.
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[39] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A. Browaeys, “Synthetic three-dimensional atomic structures
assembled atom by atom,” Nature, vol. 561, p. 79–82, Sept. 2018.

[40] M. F. Serret, B. Marchand, and T. Ayral, “Solving optimization problems with rydberg analog quantum computers:
Realistic requirements for quantum advantage using noisy simulation and classical benchmarks,” Physical Review A,
vol. 102, Nov. 2020.
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