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We introduce the notions of normal tensor functor and exact sequence of tensor cat-

egories. We show that exact sequences of tensor categories generalize strictly exact

sequences of Hopf algebras as defined by Schneider, and in particular, exact sequences

of (finite) groups. We classify exact sequences of tensor categories C ′ → C → C ′′ (such

that C ′ is finite) in terms of normal, faithful Hopf monads on C ′′ and also in terms of

self-trivializing commutative algebras in the center of C. More generally, we show that,

given any dominant tensor functor C →D admitting an exact (right or left) adjoint, there

exists a canonical commutative algebra (A, σ ) in the center of C such that F is tensor

equivalent to the free module functor C → modC(A, σ ), where modC(A, σ ) denotes the

category of A-modules in C endowed with a monoidal structure defined using σ . We

re-interpret equivariantization under a finite group action on a tensor category and, in

particular, the modularization construction, in terms of exact sequences, Hopf monads,

and commutative central algebras. As an application, we prove that a braided fusion

category whose dimension is odd and square-free is equivalent, as a fusion category, to

the representation category of a group.
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2 A. Bruguières and S. Natale

1 Introduction

Tensor categories are abelian categories over a field k having finite-dimensional Hom

spaces and objects of finite length, endowed with a rigid (or autonomous) structure, that

is, a monoidal structure with duals, such that the monoidal tensor product is k-bilinear

and the unit object 1 is simple (End(1) = k). A fusion category is a split semisimple tensor

category having finitely many isomorphism classes of simple objects. A tensor functor

is a strong monoidal k-linear functor between tensor categories.

In this paper, we introduce and study the notion of exact sequence of tensor

categories, defined as follows. Let F : C →D be a tensor functor. Then F is dominant if

any object Y of C ′ is a subobject of F (X) for some X in C. It is normal if any object X of C
admits a subobject X0 such that F (X0) is the largest subobject of F (X) which is trivial,

that is, isomorphic to 1n. Denote by KerF the full subcategory of C whose objects have a

trivial image under F .

An exact sequence of tensor categories is a diagram of tensor functors

C ′
i

�� C
F

�� C ′′

such that

(a) F is normal;

(b) F is dominant;

(c) i induces an equivalence between C ′ and KerF ⊂ C.

This notion extends the notion of strictly exact sequence of Hopf algebras intro-

duced by Schneider in [31]. Indeed, any strictly exact sequence of Hopf algebras

K
i−→ H

p−→ H ′

gives rise to an exact sequence of tensor categories:

comod-K �� comod-H �� comod-H ′,

and, if H is finite dimensional, to a second exact sequence of tensor categories,

H ′- mod �� H- mod �� K- mod .
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Exact Sequences of Tensor Categories 3

For instance, an exact sequence of groups 1 �� G ′ �� G �� G ′′ �� 1

yields an exact sequence of tensor categories:

C(G ′) �� C(G) �� C(G ′′),

(where C(G) denotes the tensor category of G-graded vector spaces) and if G is finite, a

second exact sequence of tensor categories is

rep G ′′ �� rep G �� rep G ′.

In particular, we study exact sequences of fusion categories, and we show that

the Frobenius–Perron dimension is multiplicative, that is, given an exact sequence of

fusion categories C ′ → C → C ′′, we have

FPdim C = FPdim C ′ FPdim C ′′.

We show that an exact sequence of pointed categories is classified by an exact sequence

of finite groups 1 → G ′ → G → G ′′ → 1 together with a cohomology class α ∈ H3(G ′′, k×).

Also, generalizing a well-known result for semisimple Hopf algebras, we show that a

dominant tensor functor F : C → C ′′ of Frobenius–Perron index 2 between fusion cate-

gories is normal, and therefore, gives rise to an exact sequence: rep Z2 → C → C ′′.

Can we interpret an exact sequence of tensor categories

(E) C ′ −→ C F−→ C ′′

in terms of ‘algebraic’ data on C ′′, or on C? For technical reasons, we assume that C ′ is

finite, that is, F has adjoints. Then we show that (E) is encoded by a certain Hopf monad

on C ′′, and also, if the right adjoint of F is exact, by a certain commutative algebra in the

center Z(C) of C.

A Hopf monad on a rigid category D (as defined in [7, Subsection 3.3]) is an alge-

bra T in the monoidal category End(D) of endofunctors of D, which is also a comonoidal

functor in a compatible way, and possesses left and right antipodes.

An exact sequence of tensor categories over a field k

(E) C ′ f−→ C F−→ C ′′
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4 A. Bruguières and S. Natale

defines a fiber functor ω = Hom(1, F f) : C ′ → vectk; hence by Tannaka reconstruction, a

Hopf algebra H = L(ω), called the induced Hopf algebra of (E), such that C ′ � comod-H .

The Hopf algebra H is finite dimensional if and only if the tensor functor F has adjoints.

A k-linear right exact Hopf monad T on a tensor category C is normal if T(1) is

a trivial object. If T is such a Hopf monad, and if in addition T is faithful, then it gives

rise to an exact sequence of tensor categories

comod-H → CT → C,

where H is the induced Hopf algebra of T , isomorphic to Hom(T(1), 1).

We show that, given tensor categories C ′ and C ′′, with C finite, exact sequences

(E) are classified by k-linear, normal, faithful Hopf monads T on the tensor category C ′′

whose induced Hopf algebra H is such that comod-H is tensor equivalent to C ′.

Equivariantization provides examples of exact sequences of tensor categories.

Indeed, if a finite group G acts on a tensor category C by tensor autoequivalences, then

the equivariantization CG is again a tensor category, and we have an exact sequence of

tensor categories as follows:

rep G → CG → C.

An action ρ of a finite group G on a tensor category C by tensor autoequivalences can be

encoded in the form of a Hopf monad Tρ on C, defined by

Tρ =
⊕
g∈G

ρ(g)

as an endofunctor of C, so that CG is the category of Tρ-modules CTρ

.

We show that a Hopf monad T on a tensor category C is of the form Tρ for some

group action ρ if and only if T is k-linear right exact, faithful, normal, and cocommuta-

tive (see Definition 5.20) and its induced Hopf algebra is split semisimple.

A special case of an equivariantization is given by the modularization procedure

[6, 23]. A premodular category C over an algebraically closed field k of characteristic zero

is modularizable if there exists a dominant ribbon tensor functor F : C → C̃, where C̃ is a

modular category. Such is the case if and only if the tensor subcategory of transparent

objects T of C is tannakian, that is, T � rep G as a symmetric tensor category, for some

finite group G (see [6]). In that case, we have an exact sequence of fusion categories

rep G → C F→ C̃,
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Exact Sequences of Tensor Categories 5

where F is the modularization functor and G acts on C̃ by braided tensor equivalences,

so that F is an equivariantization. Conversely, given a modular category D, we classify

premodular categories admitting D as a modularization in terms of k-linear, semisimple,

faithful, normal Hopf monads on D which are compatible with the ribbon structure.

We also interpret exact sequences of tensor categories in terms of commutative

central algebras using results of [9]. If C is a tensor category and (A, σ ) is a commutative

algebra in the categorical center Z(C) of C, then the k-linear abelian category modC(A, σ )

of right A-modules in C admits a monoidal structure involving the half-braiding σ , so

that the free module functor FA : C → modC A, X �→ X ⊗ A is strong monoidal. We show

that, given a dominant tensor functor F : C →D admitting an exact right adjoint R, the

object A= R(1) admits a canonical structure of commutative algebra in the center of C
such that modC(A, σ ) is a tensor category, and F = FA up to a tensor equivalence D �
modC A. The central algebra (A, σ ) is called the induced central algebra of F . We show

that F is normal if and only if A is self-trivializing, that is, FA(A) is trivial. Then the

induced Hopf algebra of F is Hom(1, F (A)).

Thus, an exact sequence of tensor categories C′ −→ C F−→ C ′′ such that F has an

exact right adjoint is equivalent to 〈A〉 −→ C −→ modC(A, σ ), where (A, σ ) is the induced

central algebra of F and 〈A〉 denotes the smallest abelian subcategory of C containing

A and stable by direct sums, subobjects, and quotients. Moreover, we show that F is

an equivariantization if and only if F (σ ) is trivial and the induced Hopf algebra of F is

split semisimple.

We introduce the notions of simple fusion category and normal fusion subcate-

gory arising naturally from the definition of an exact sequence. If C is a fusion category

and C′ ⊂ C is a fusion subcategory, we say that C ′ ⊂ C is normal if it fits in an exact

sequence of fusion categories C ′ → C → C ′′. We say that C is simple if it has no nontrivial

normal fusion strict subcategory. We characterize normal fusion subcategories in terms

of commutative central algebras, and show that our notion of simplicity differs from

that introduced in [17]. If G is a finite group, then the simplicity of rep G is equivalent

to the simplicity of G and also to the simplicity of the fusion category C(G) of G-graded

vector spaces.

As an application of the notion of exact sequence of fusion categories, we show

the following classification result.

Theorem 1.1. Let C be a braided fusion category over an algebraically closed field k of

characteristic 0. If dim C is odd and square-free, then C is equivalent to rep Γ as fusion

categories for some finite group Γ . �
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6 A. Bruguières and S. Natale

The proof relies on modularization and on the fact that a quasitriangular Hopf

algebra whose dimension is odd and square-free is in fact a group algebra [26].

The paper is organized as follows: general definitions and classical results are

recalled in Section 2, which also contains elementary facts about Hopf monads. In

Section 3, we define dominant and normal tensor functors, and exact sequences of ten-

sor categories. We prove several fundamental results and study the relations between

strictly exact sequences of Hopf algebras as defined by Schneider and exact sequences of

tensor categories. In Section 4, we study exact sequences of fusion categories. Section 5

is devoted to the classification of exact sequences of tensor categories in terms of

Hopf monads, as well as equivariantization and the special case of modularization. In

Section 6, we revisit tensor functors and exact sequences of tensor categories in terms of

commutative central algebras, and study normal fusion subcategories and simple fusion

categories. Section 7 is devoted to the proof of Theorem 1.1.

2 Tensor Categories and Hopf Monads

2.1 Conventions and notations

Monoidal categories will be strict, unless otherwise specified, and the unit object will

be denoted by 1. A monoidal category is rigid (or autonomous) if any object admits a

left dual and a right dual. If such is the case, the left dual and right dual functors are

denoted ∨? and ?∨, respectively.

Most of the time, we work over a base field k. If A is an abelian k-linear category,

we say that an object X of A is scalar if End(X) = k idX. The category A is split semisim-

ple if there is a set Λ of scalar objects in A such that every object of A is a finite direct

sum of elements of Λ, and such that HomC(X, Y) = 0 for X 
= Y in Λ. Note that if A is split

semisimple, scalar objects and simple objects coincide in A.

An abelian k-linear category A is finite if it is k-linearly equivalent to the cat-

egory of finite-dimensional left modules over a finite-dimensional k-algebra. A k-linear

functor F : A→B between finite abelian k-linear categories has a left (respectively right)

adjoint if and only if it is left exact (respectively right exact).

2.2 Tensor categories and tensor functors

A tensor category over k is a k-linear abelian rigid monoidal category where Hom spaces

are finite dimensional, all objects have finite length, the monoidal product is k-linear in

each variable, and the unit object 1 is scalar. In a tensor category, the monoidal product

is exact in each variable and the unit object is simple [4, Lemma 2.4.], see also [11].
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Exact Sequences of Tensor Categories 7

A tensor category over k is finite if it is finite as a k-linear abelian category.

A tensor functor is a k-linear exact strong monoidal functor between two tensor

categories. A tensor functor preserves duals. Moreover, it is automatically faithful.

Indeed, we have the following lemma, which generalizes [5, Proposition 5.2.2.].

Lemma 2.1. Let A, B be two abelian monoidal categories, and let F : A→B be a strong

quasimonoidal additive exact functor. Assume that

(1) A is rigid,

(2) the unit object of A is simple,

(3) the unit object of B is nonzero.

Then F is faithful. �

Here strong quasimonoidal means that F is endowed with natural isomor-

phisms F (a) ⊗ F (a′) � F (a ⊗ a′) and with an isomorphism 1B � F (1A).

Proof. Since F is additive exact, it is enough to show that the image of a nonzero object

a of A is nonzero. Now if a 
= 0, the evaluation e : a ⊗ a∨ → 1A is nonzero (because 0 ⊗
a= 0), so it is epic since 1A is simple. Since F preserves epimorphisms, the morphism

F (e) : F (a) ⊗ F (a∨) � F (a ⊗ a∨) → 1B is epic and since 1B is nonzero, F (a) ⊗ F (a∨) 
= 0, so

we have F (a) 
= 0 (because 0 ⊗ F (a∨) = 0). �

If H is a Hopf algebra over k, H- mod denotes the tensor category of finite-

dimensional representations of H , that is, finite-dimensional left H-modules. Simi-

larly, comod-H denotes the tensor category of finite-dimensional right H-comodules.

In particular, if G is a finite group, rep G := k G- mod � comod-kG is the category of

finite-dimensional representations of G, whereas comod-k G is the category of finite-

dimensional G-graded vector spaces.

A morphism of Hopf algebras f : H → H ′ defines two tensor functors:

f∗ :

{
comod-H → comod-H ′

(M, δ) �→ (M, (idM ⊗ f)δ),

f∗ :

{
H ′- mod → H- mod

(M, r) �→ (M, r( f ⊗ idM)).
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8 A. Bruguières and S. Natale

A fiber functor for a tensor category C over k is a tensor functor ω : C → vectk.

By Tannaka theory, given a fiber functor ω for a tensor category C over k, the coend

L(ω) = ∫X∈C
ω(X) ⊗k ω(X)∨ is a Hopf algebra over k, and we have a canonical equivalence

of tensor categories C �−→ comod-L(ω).

Let C be a tensor category. For a finite-dimensional vector space E and an object

X ∈ C, their tensor product, denoted by E ⊗ X ∈ C is defined by the adjunction

HomC(E ⊗ X, Y) � Homk(E, HomC(X, Y)).

The assignment (E, X) �→ E ⊗ X makes C a left vectk-module category. In particular, the

functor vectk → C, E �→ E ⊗ 1 is a tensor functor from vectk to C, and in fact the only

such functor up to tensor isomorphism. It is right adjoint to the global section functor

Γ : C → vectk, defined by Γ (X) = Homk(1, X).

If X is an object or set of objects of a tensor category C, we denote by 〈X〉 the

smallest abelian subcategory of C containing X and stable by direct sums, subobjects,

and quotients.

An object of a tensor category C is trivial if it is isomorphic to 1n for some natural

integer n. The full subcategory of trivial objects of C is 〈1〉 ⊂ C. It is a tensor category

equivalent to vectk via the tensor functor X �→ HomC(1, X). A tensor category C is trivial

if C = 〈1〉, that is, if C is tensor equivalent to vectk.

2.3 Existence of adjoints

Let F : C →D be a strong monoidal functor between rigid categories. According to [8,

Lemma 3.4], if F has a left adjoint G, then it has a right adjoint R, and conversely. In

that case, R and G are related thus:

R(X) � ∨G(X∨) � G(∨X)
∨ and R(X) � G(∨X)

∨ � ∨G(X∨) (for X in C).

In that case we say that F has adjoints. A tensor functor between finite tensor categories

has adjoints. In general, a tensor functor need not have adjoints; for instance, a fiber

functor for a tensor category C has adjoints if and only if C is finite.

However, a tensor functor F : C →D has an Ind-adjoint and a Pro-adjoint because

it is exact [3]. In other words, the functor Ind F : Ind C → IndD obtained by extending F

to the categories of Ind-objects of C and D has a right adjoint R : IndD → Ind C, called

the Ind-adjoint of F , and, dually, the functor Pro F : Pro C → ProD obtained by extending
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Exact Sequences of Tensor Categories 9

F to the categories of Pro-objects of C and D has a left adjoint G : ProD → Pro C, called

the Pro-adjoint of F .

2.4 Fusion categories

A fusion category over k is a split semisimple finite tensor category over k. Note that

if k is algebraically closed, a tensor category C is split semisimple if and only if it is

semisimple. See for instance [33, Section 2].

Let C be a fusion category over k. The finite set of isomorphism classes of sim-

ple (or scalar) objects in C will be denoted by ΛC . The class of an object X of C in the

Grothendieck ring K0(C) will be denoted by [X]. If X ∈ ΛC and Y is an object of C, denote

by mX(Y) the multiplicity of X in Y, that is, mX(Y) = dim HomC(X, Y) = dim HomC(Y, X),

so that we have

Y �
⊕

X∈ΛC

XmX(Y).

The Frobenius–Perron dimension FPdim X of X ∈ ΛC is the largest positive eigenvalue of

the matrix of left multiplication by X in the Grothendieck ring of C with respect to the

basis ΛC . It is a real nonnegative algebraic integer. The Frobenius–Perron dimension of

C is FPdim C := ∑
X∈ΛC (FPdim X)2.

See [16, 24] for a survey and a general reference on fusion categories.

2.5 Monads

A monad on a category A is an algebra T in the monoidal category End(A) of endo-

functors of A. In other words, it is an endofunctor T of A endowed with natural trans-

formations μ : T2 → T and η : idA → T (the multiplication and unit of T , respectively),

satisfying the associativity and unit axioms in End(A).

Let T be a monad on A. A T-module in A (often called a T-algebra) is a pair

(M, r), where M ∈D and r : T(M) → M is a morphism in D, such that

rT(r) = rμM, rηM = idM . (2.1)

A morphism f : (M′, r′) → (M, r) between T-modules (M′, r′) and (M, r) is a morphism

f : M′ → M in D such that fr′ = rT( f). This defines a category AT of T-modules in A.

Let U : AT →A denote the forgetful functor: U(M, r) = M. Then U admits a left adjoint

L : A→AT , defined by L(X) = (T(X), μX). We have T = UL.
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10 A. Bruguières and S. Natale

If T and T ′ are monads on C, a morphism of monads f : T ′ → T is a natural

transformation such that fμ′
X = μX fT(X)T ′( fX) and fXη′

X = ηX, for all object X of C.

A monad T will be called faithful (respectively, left/right exact), if its underlying

functor is faithful (respectively, left/right exact).

We will require the following characterization of faithful monads.

Lemma 2.2. Let T be a monad on a category A. The following assertions are equiva-

lent:

(i) For any X object of A, there exists a T-module (M, r) and a monomorphism

X → M;

(ii) The unit η of T is monomorphic;

(iii) The monad T is faithful;

(iv) The free module functor L : A→AT is faithful.
�

Proof. Recall that L is left adjoint to the forgetful functor U :AT →A, and T = UL.

Clearly, we have (ii) ⇒ (i). Conversely, (i) ⇒ (ii): if f : X → M is a monomorphism, (M, r)

being a T- module, then ηX is a monomorphism because we have f = rηM f = rT( f)ηX.

Now, since T = UL and U is faithful, we have (iv) ⇐⇒ (iii). Also (iii) ⇒ (ii): let u, v :

Y → X be morphisms such that ηXu= ηXv. Then, T(u) = μXT(ηX)T(u) = μXT(ηX)T(v) =
T(v), hence u= v if T is faithful. Finally, (ii) ⇒ (iii). Indeed, let u, v : X → Y be mor-

phisms such that T(u) = T(v). We have ηYu= T(u)ηX = T(v)ηX = ηYv, so u= v if ηY is a

monomorphism. �

2.6 Hopf monads

Let C be a monoidal category. A monad on C is a bimonad when the category CT

is endowed with a monoidal structure such that the forgetful functor U : CT → C is

monoidal strict. This is equivalent to saying that the monad T is endowed with a struc-

ture of comonoidal endofunctor, that is, a natural transformation

T2(X, Y) : T(X ⊗ Y) → T(X) ⊗ T(Y) (X, Y in C)

and a morphism T0 : T(1) → 1, satisfying

(T2(X, Y) ⊗ idT(Z))T2(X ⊗ Y, Z) = (idT(X) ⊗T2(Y, Z))T2(X, Y ⊗ Z),

(idT(X) ⊗T0)T2(X, 1) = idT(X) = (T0 ⊗ idT(X))T2(1, X);
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Exact Sequences of Tensor Categories 11

and such that the product μ and the unit η are monoidal transformations, that is,

T2(X, Y)μX⊗Y = (μX ⊗ μY)T2(T(X), T(Y))T(T2(X, Y)),

T0μ1 = T0T(T0), T2(X, Y)ηX⊗Y = ηX ⊗ ηY, T0η1 = id1 .

Bimonads are introduced in [20] under the name Hopf monads.

If C is rigid, a bimonad T on C is a Hopf monad if CT is rigid; this is equivalent

to saying that T has a left and a right antipode (see [7, Subsection 3.3]) Hopf monads on

arbitrary monoidal categories are defined in [9].

A morphism of bimonads or Hopf monads is a comonoidal morphism of monads

between bimonads or Hopf monads.

2.7 Monadicity

Let (G : A→B, F : B →A) be an adjunction, with unit η : idA → F G and counit ε : GF →
idB. Then T = F G is a monad on A, and there exists a unique functor κ :B →AT such

that Uκ = F and κG =L. The functor κ, called the comparison functor of the adjunction,

is given by κ(X) = (F (X), F (εX)).

The adjunction G � F is called monadic if the comparison functor κ is an equiv-

alence. Necessary and sufficient conditions for an adjunction to be monadic are given

by Beck’s Theorem, see [21, Chapter VI.7]. In particular, if A and B are abelian and the

functor F is additive and faithful exact, then G � F is monadic.

Now let C, D be monoidal categories and F : D → C be a strong monoidal functor.

Assume that F has a left adjoint G. Then, ref. [7, Theorem 9.1] asserts that the functor

G is comonoidal, the monad F G in D has a canonical structure of a bimonad, and the

comparison functor κ : C →DT is strong monoidal. Moreover, Uκ = F as monoidal func-

tors and κG =L as comonoidal functors. Finally, if C and D are rigid, then T is a Hopf

monad.

2.8 Hopf monads and tensor categories

Let F : C →D be a tensor functor between tensor categories over a field k. Assume that F

admits a left adjoint G (which is then unique up to unique isomorphism). Then, F being

faithful exact, the adjunction G � F is monadic. The monad T = F G of this adjunction is

a Hopf monad on D, which is called the Hopf monad of F . It is k linear right exact, and

we have C �DT as tensor categories.
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12 A. Bruguières and S. Natale

Note that if F is a tensor functor between finite tensor categories (such as fusion

categories), then F admits a left adjoint and so, it is monadic.

Proposition 2.3. Let C be a tensor category over a field k, and let T be a k-linear right

exact Hopf monad on C. Then, CT is a tensor category over k, and the forgetful functor

U : CT → C is a tensor functor. �

Proof. It is a general fact that the category of modules over a k-linear right exact monad

on an abelian category is k-linear abelian and the forgetful functor is k-linear exact.

Applying this to T , the category CT is k-linear abelian and rigid; its tensor product is k-

linear; and its unit object (1, T0) is scalar. Moreover, the forgetful functor U is monoidal

strict and k-linear, faithful, exact; in particular, in CT , Hom’s are finite dimensional

and objects have finite length. Thus, CT is a tensor category over k, and U is a tensor

functor. �

Example 2.4. A Hopf algebra H in a braided autonomous category B defines a Hopf

monad H⊗? on B, see [7, Example 3.10] and [8, Example 2.8]. In particular, a finite-

dimensional Hopf algebra H over k defines a Hopf monad H⊗? on the category vectk of

finite-dimensional vector spaces. It is the monad of the forgetful functor

H-mod → vectk . �

In fact, k-linear Hopf monads on trivial tensor categories are just finite-

dimensional Hopf algebras:

Lemma 2.5. Let C be a trivial tensor category. If H is a finite-dimensional Hopf algebra

over k, then H⊗? : C → C admits a natural structure of k-linear Hopf monad on C. The

assignment H �→ H⊗? defines an equivalence of categories between finite-dimensional

Hopf algebras over k and k-linear Hopf monads on C. �

Proof. A trivial tensor category, being by definition tensor equivalent to vectk, admits

a unique braiding and is symmetric. The tensor functor vectk → C, E �→ E ⊗ 1, is sym-

metric and sends a finite-dimensional Hopf algebra H over k to a Hopf algebra H ⊗ 1

in C. Thus, H⊗? : C → C is k-linear Hopf monad on C. Now if T is a k-linear Hopf monad

on C, set H = HomC(1, T(1)). We have a canonical isomorphism a1 : H ⊗ 1
∼−→ T(1), which

extends uniquely to a natural isomorphism a : H⊗?
∼−→ T because C is semisimple and

ΛC = {1}. One verifies that there exists a unique structure of Hopf algebra on H such that
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Exact Sequences of Tensor Categories 13

when H⊗? is endowed with the corresponding structure of Hopf monad, a becomes an

isomorphism of Hopf monads on C. �

3 Exact Sequences of Tensor Categories

In this section, we introduce the notions of normal tensor functor and of exact sequences

of tensor categories over a field k.

3.1 Dominant functors, normal functors, and exact sequences

Lemma 3.1. Let F : C →D be a tensor functor between tensor categories. The following

assertions are equivalent:

(i) Any object Y of D is a subobject of F (X) for some object X of C;

(ii) Any object Y of D is a quotient of F (X) for some object X of C;

(iii) The Pro-adjoint of F is faithful;

(iv) The Ind-adjoint of F is faithful. �

Proof. Assume (i) and let Y be an object of D. There exists an object X of C and a

monomorphism i : Y∨ → F (X). In a rigid category, the left and right dual functors are

quasi-inverse contravariant equivalences, and strong monoidal functors preserve duals.

Hence, ∨i : F (∨X) � ∨F (X) → ∨Y∨ � Y is an epimorphism, hence (i) ⇒ (ii); the converse is

proved similarly. Hence (i) ⇔ (ii).

Now, let us prove (i) ⇔ (iii). The Pro-adjoint functor of F is the left adjoint functor

G of the functor Pro F : Pro C → Pro D. Pro C and ProD are abelian categories and Pro F

is k-linear, faithful, and exact. By Beck’s theorem, the adjunction G � Pro F is monadic,

with monad T = Pro F G, so Pro C is equivalent to (ProD)T via the comparison functor, F

being the forgetful functor. Denote by η the unit of the monad T . Assume (i) holds. Then

for any object Y in ProD, ηY is a monomorphism. Indeed, if Y is in D ⊂ ProD, then there

exists X in C and a monomorphism i : Y → F (X). Since C is a full subcategory of Pro C �
(ProD)T , we may view X as a T-module, with action r : T F (X) → F (X) and i = rT(i)ηY, so

ηY is a monomorphism in that case. In general, an object Y of ProD is of the form “ lim ”Yi

for some filtering system (Yi) of objects of D, and ηYi is a monomorphism for all i, hence

ηY is a monomorphism. By Lemma 2.2, this implies that G is faithful. Conversely, if G

is faithful, again by Lemma 2.2 for any object Y of ProD there exists a filtering system

(Xi) of objects of C such that Y is a subobject of Pro F (“ lim ”Xi) = “ lim ”F (Xi). If Y is in
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14 A. Bruguières and S. Natale

D, it has finite length so there exists i such that Y → F (Xi) is a monomorphism. Hence

(i) ⇔ (iii).

Finally, (ii) ⇔ (iv) results from (i) ⇔ (iii) applied to the opposite functor F op :

Cop →Dop, hence the lemma is proved. �

Definition 3.2. A tensor functor F : C → C ′′ is dominant if it satisfies the equivalent

conditions of Lemma 3.1. �

Remark 3.3. A dominant tensor functor in surjective in the sense of [15]. �

Let F : C →D be a tensor functor between tensor categories. We denote by KerF

the full tensor subcategory F −1(〈1〉) ⊆ C of objects X of C such that F (X) is a trivial object

of C.

Definition 3.4. Let F : C →D be a tensor functor between tensor categories. Then F is

normal if for any object X of C, there exists a subobject X0 ⊂ X such that F (X0) is the

largest trivial subobject of F (X). �

Proposition 3.5. Let F : C →D be a tensor functor between tensor categories.

(1) If F admits a right adjoint R, or, equivalently, a left adjoint G, then F is

normal if and only if G(1) belongs to KerF , if and only if R(1) belongs to

KerF .

(2) If C and D are fusion categories, F is normal if and only if any simple object

X of C such that Hom(1, F (X)) 
= 0 belongs to KerF . �

Proof. Let us prove Part (1). For X in C, denote by X0 ⊂ X the largest subobject of X

belonging to KerF , which exists because objects have finite length in C. We have a com-

mutative diagram

HomD(1, F (X0))

∼
��

aX

�� HomD(1, F (X))

∼
��

HomC(G(1), X0)
bX

�� HomC(G(1), X),

where the vertical arrows are the adjunction isomorphisms, and the horizontal arrows

a and b are induced by the inclusion X0 ⊂ X. If G(1) belongs to KerF , then for all X, bX
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Exact Sequences of Tensor Categories 15

is bijective, so aX is bijective, which means that F (X0) is the largest trivial subobject of

F (X). Hence, F is normal. Conversely, suppose F is normal, and let X0 ⊆ X be such that

F (X0) is the largest trivial subobject of F (X). Thus aX is bijective, so bX is bijective, for

all object X of C. In particular, bG(1) is bijective, so G(1)0 = G(1), hence G(1) belongs to

KerF . Thus, F is normal ⇐⇒ G(1) belongs to KerF ⇐⇒ R(1) = G(1)∨ belongs to KerF .

Let us now prove Part (2). If C and D are fusion categories, F admits a left adjoint

G, and F is normal if and only if G(1) is in KerF by Part (1). By adjunction, we have

mXG(Y) = mY F (X) for all X ∈ ΛC and Y ∈ ΛD. In particular, m1 F (X) > 0 if and only if

mXG(1) > 0, hence Part (2). �

Lemma 3.6. Let F : C →D be a tensor functor between tensor categories. Then:

(1) The functor F is an equivalence if and only if it is full and dominant.

(2) The functor F is full if and only if F is normal and KerF is trivial; �

Proof. Part (1): clearly, if F is an equivalence, it is both full and dominant. Conversely,

assume F is full and dominant. Let Y be an object of D. By Lemma 3.1, there exist

X1, X2 in C, an epimorphism p : F (X1) → Y and a monomorphism i : Y → F (X2), and Y

is (isomorphic to) the image of ip. Since F is full, there exists π : X1 → X2 such that

F (π) = ip. Let X be the image of π ; since F is exact, it preserves images so F (X) � Y.

Thus, F is essentially surjective, and is therefore an equivalence.

Part (2): if F is full, it is normal and KerF is trivial. Conversely, assume F is

normal and KerF is trivial. Then for any X in C we have a subobject X0 ⊂ X such that

F (X0) is the largest trivial subobject of F (X). In particular, X0 is trivial, so F induces

an isomorphism HomC(1, X) → HomD(1, F (X)). Since, in a rigid category, Hom(X, X′) �
Hom(1, X∨ ⊗ X′), we conclude that F is fully faithful. �

Definition 3.7. Let C ′, C, and C ′′ be tensor categories over k. A sequence of tensor

functors

C ′
f

�� C
F

�� C ′′ (3.1)

is an exact sequence of tensor categories if the following conditions hold:

(1) The tensor functor F is dominant and normal;

(2) The tensor functor f is a full embedding;

(3) The essential image of f is KerF ;
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16 A. Bruguières and S. Natale

Two exact sequences of tensor categories

C ′
f1

�� C1

F1

�� C ′′ and C ′
f2

�� C2

F2

�� C ′′

are equivalent if there exists a tensor equivalence λ : C1 → C2 such that F1 � F2λ and

f2 � λ f1 as tensor functors, that is, such that the diagram

C ′ f1−−−−→ C1
F1−−−−→ C ′′⏐⏐�=

⏐⏐�λ

⏐⏐�=

C ′ f2−−−−→ C2
F2−−−−→ C ′′.

is commutative up to monoidal isomorphism.

A exact sequence C ′ → C → C ′′ is called an extension of C ′′ by C ′; we also say that

C is an extension of C ′′ by C ′. �

Note that a normal dominant tensor functor F : C → C ′′ between tensor categories

defines an exact sequence of tensor categories

KerF → C F→ C ′′.

Proposition 3.8. If C ′ f→ C F→ C ′′ is an exact sequence of tensor categories, then:

(1) The tensor functor F is an equivalence if and only if C ′ is trivial;

(2) The tensor functor f is an equivalence if and only if C ′′ is trivial. �

Proof. Part (1): if F is an equivalence, then KerF = 〈1〉, that is, C ′ is trivial. Conversely, if

KerF is trivial, then by Lemma 3.6 F is an equivalence.

Part (2): if C ′′ is trivial, KerF = C, hence f is an equivalence. Conversely, if f is an

equivalence, KerF = C. Hence, F (C) ⊂ 〈1〉, and, F being dominant, C ′′ = 〈1〉, that is, C ′′ is

trivial. �

3.2 Exact sequences of tensor categories from Hopf algebras

Strictly, exact sequences of Hopf algebras as defined in [31] give rise to exact sequences

of tensor categories. We always assume that Hopf algebras have a bijective antipode. If

H is a Hopf algebra, we denote by H+ ⊂ H the augmentation ideal H+ = {x ∈ H | ε(x) = 0}.
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Exact Sequences of Tensor Categories 17

A Hopf subalgebra K ⊂ H is normal if it is a submodule of H for the adjoint

action of H on itself, defined by x.y= x(1)yS(x(2)), and a Hopf ideal I ⊂ H is normal if it

is a subcomodule of H for the right coadjoint coaction of H on itself, defined by x �→
x(2) ⊗ S(x(1))x(3).

In the category of Hopf algebras over a field k, the trivial Hopf algebra k is a zero

object, that is, it is both initial and final. A morphism f : H → H ′ of Hopf algebras over

k admits a categorical kernel and a categorical cokernel, defined by

ker( f) = {x ∈ H | x(1) ⊗ f(x(2)) ⊗ x(3) = x(1) ⊗ 1 ⊗ x(2)}

in Sweedler’s notation, and

coker( f) = H ′/H ′ f(H+)H ′.

Observe that ker( f) is not f−1(0) and coker( f) is not H ′/ f(H).

A strictly exact sequence of Hopf algebras is a diagram

K
i−→ H

p−→ H ′

where i, p are morphisms of Hopf algebras such that

(a) K is a normal Hopf subalgebra of H ;

(b) H is right faithfully flat over K;

(c) p is a categorical cokernel of i,

or, equivalently, setting I = p−1(0), such that

(a′) I is a normal Hopf ideal of H ;

(b′) H is right faithfully coflat over H ′;

(c′) i is a categorical kernel of p.

Proposition 3.9. A strictly exact sequence K
i−→ H

p−→ H ′ Hopf algebras over a field

gives rise to an exact sequence of tensor categories:

comod-K
i∗−→ comod-H

p∗−→ comod-H ′
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18 A. Bruguières and S. Natale

and also, if H is finite dimensional, to a second exact sequence of tensor categories

H ′- mod
p∗

−→ H- mod
i∗−→ K- mod . �

Proof. Let f : H → H ′ be a morphism of Hopf algebras over k. Denote, respectively, by

H co H ′
and co H ′

H the subalgebras of H of right and left H ′ coinvariants, that is,

H co H ′ = {h∈ H | (idH ⊗ f)Δ(h) = h ⊗ 1}, co H ′
H = {h∈ H | ( f ⊗ idH )Δ(h) = 1 ⊗ h}.

Lemma 3.10. Let f : H → H ′ be a morphism of Hopf algebras over a field, and consider

the tensor functors

f∗ : comod-H → comod-H ′ and f∗ : H ′- mod → H- mod .

Then,

(1) We have Ker f∗ = comod- ker( f). Moreover, the tensor functor f∗ is normal if

and only if H co H ′ = co H ′
H . If such is the case, ker( f) = H co H ′

.

(2) We have Ker f∗ = coker( f)- mod. Moreover, the tensor functor f∗ is normal

if f(H) is a normal Hopf subalgebra of H ′. If such is the case, coker( f) =
H ′/H ′ f(H+). �

Proof. Part (1). If (M, δ) is a right H-comodule, then f∗(M, δ) = (M, (idM ⊗ f)δ), and the

largest trivial subobject of f∗(M, δ) is

Mco H ′ = {x ∈ M/ (idM ⊗ f)δ(x) = x ⊗ 1}.

We have Mco H ′ = M if and only if M is a ker( f)-comodule. That is, Ker f∗ = comod- ker( f).

According to Definition 3.4, f∗ is normal if and only if for all finite-dimensional

right H-comodule M, Mco H ′ ⊂ M is a subcomodule. This is equivalent to saying that for

all right H-comodule M, Mco H ′ ⊂ M is a subcomodule, because any comodule is locally

finite.

Now assume f∗ is normal. Then, H co H ′
is a subcomodule of the right comod-

ule H = (H,Δ). If h∈ H co H ′
, we have in Sweedler’s notation Δ(h) = h(1) ⊗ h(2), with h(1) ∈

H co H ′
. Thus, h(1) ⊗ f(h(2)) ⊗ h(3) = h(1) ⊗ 1 ⊗ h(2), and so f(h(1)) ⊗ h(2) = 1 ⊗ h, and h∈co H ′

H .

Thus H co H ′ ⊂ co H ′
H . The reverse inclusion follows from the fact that the antipode of H ,
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Exact Sequences of Tensor Categories 19

being an anti-bialgebra isomorphism by assumption, exchanges H co H ′
and co H ′

H . Hence,

H co H ′ = co H ′
H .

Conversely, assume H co H ′ = co H ′
H . Let (M, δ) be a right H-comodule. We have

δ(Mco H ′
) ⊆ M ⊗ H co H ′

. Indeed, for x ∈ M, let δ(x) = x(0) ⊗ x(1) in Sweedler’s notation. If x ∈
Mco H ′

, we have

x(0) ⊗ (idM ⊗ f)Δ(x(1)) = δx(0) ⊗ f(x(1)) = δ(x) ⊗ 1 = x(0) ⊗ x(1) ⊗ 1.

Now by assumption H co H ′ =co H ′
H , so for x ∈ Mco H ′

we have

(idM ⊗ f)δ(x(0)) ⊗ x(1) = x(0) ⊗ ( f ⊗ idH )Δ(x(1)) = x(0) ⊗ 1 ⊗ x(1),

so Mco H ′
is a subcomodule of M, hence f∗ is normal.

Note that if f∗ is normal, H co H ′ = co H ′
H = ker( f).

Part (2). Let (M, r) be a finite-dimensional left H ′-module. The largest trivial sub-

object of f∗(M, r) = (M, r( f ⊗ idM)) is

M0 = {m ∈ M | ∀x ∈ H, f(x)m = ε(x)m} = {m ∈ M | f(H+)m = 0}.

In particular, M0 = M if and only if M is a coker( f)-module.

If f(H) is a normal Hopf subalgebra of H ′, we have f(H+)H ′ = H ′ f(H+); hence,

M0 is a H ′-submodule of M and so, f∗ is normal, and coker( f) = H ′/H ′ f(H+). �

Lemma 3.11. Let f : H → H ′ be a morphism of Hopf algebras over a field. Then

(1) The tensor functor f∗ : comod-H → comod-H ′ is dominant if and only if

? �H ′
H : Comod-H ′ → Comod-H is faithful;

(2) The tensor functor f∗ : H ′- mod → H- mod is dominant if f is injective and

H ′ is finite dimensional. �

Remark 3.12. In particular, if f∗ is dominant, then f is surjective. Conversely, if f is

surjective and H is right H ′ coflat, then f∗ is dominant, with exact Ind-adjoint. If H is

finite dimensional, it is right H ′ coflat; and in that case, f∗ is dominant if and only if f

is surjective. �
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20 A. Bruguières and S. Natale

Proof. Part (1). If C is a coalgebra over a field, the category of Ind-objects of the cat-

egory of finite-dimensional right C -comodules is the category Comod-C of all right C -

comodules. The Ind-adjoint R of f∗ is the right adjoint of

Ind( f∗) :

{
Comod-H → Comod-H ′

(X, δ) �→ (X, (idX ⊗ f)δ),

that is, R=? �H ′
H . By Lemma 3.1, f∗ is dominant if and only if R is faithful.

Part (2). If H ′ is finite dimensional and f is injective, then H ′ is a free left H-

module [28]. If M is a finite-dimensional left H ′-module, then f ⊗H ′ M : M � H ′ ⊗H ′ M →
H ⊗H ′ M is a monomorphism M → f∗(H ⊗H ′ M), hence f∗ is dominant. �

Now let us conclude the proof of Proposition 3.9. Consider a strictly exact

sequence K
i−→ H

p−→ H ′ of Hopf algebras over a field k. By Lemma 3.11, p∗ is dominant

because H is right faithfully coflat over H ′. Set I = p−1(0). The fact that I is, by assump-

tion, a normal Hopf ideal of H means that the morphism p : H → H ′ � H/I is conormal.

By [31, Lemma 1.3] we have H co H ′ = co H ′
H , so by Lemma 3.10 the tensor functor p∗ is nor-

mal, and Kerp∗ = comod-K since K = ker(p). Hence, comod-K → comod-H → comod-H ′

is an exact sequence of tensor categories. Now assume H is finite dimensional. Then,

by Lemma 3.11, the tensor functor i∗ : H- mod → K- mod is dominant because i is injec-

tive, and by Lemma 3.10 it is normal, with Keri∗ = H ′- mod because H ′ = coker(i). Hence

H ′- mod → H- mod → K- mod is an exact sequence of tensor categories.

Remark 3.13. Let C ′ f→ C F→ C ′′ be an exact sequence of tensor categories over a field k

such that the Ind-adjoint of F is exact. Moreover, assume that C ′′ admits a fiber functor

ω : C ′′ → vectk. Then, setting H ′ = L(ω), H ′′ = L(ωF ), and K = L(ωF f), and denoting by

i : K → H and p : H → H ′, the Hopf algebra morphisms induced by f and F , respectively,

we obtain a strictly exact sequence of Hopf algebras over k:

K
i−→ H

p−→ H ′,

and we have an isomorphism of exact sequences of tensor categories

C ′

�
��

f
�� C

�
��

F
�� C ′′

�
��

comod-K
i∗

�� comod-H
p∗

�� comod-H ′′.
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Exact Sequences of Tensor Categories 21

Note that we must assume that the Ind-adjoint of F is exact because the definition of

strictly exact sequence of tensor categories implies that H is right coflat over H ′. �

Applying the proposition to exact sequences of group algebras, we obtain the

following corollary.

Corollary 3.14. An exact sequence of finite groups 1 → G ′′ ι→ G
π→ G ′ → 1 gives rise to

an exact sequence of tensor categories

rep G ′
π∗

�� rep G
ι∗

�� rep G ′′. �

3.3 Induced Hopf algebras

Let F : C → C ′′ be a tensor functor between tensor categories over a field k. The functor

ωF :

{
KerF → vectk,

X �→ Hom(1, F (X))

is a fiber functor for KerF because F (KerF ) ⊂ 〈1〉. Then

L(ωF ) =
∫ X∈KerF

ωF (X) ⊗k ωF (X)∨

is a Hopf algebra, and we have a canonical tensor equivalence

KerF
∼−→ comod-L(ωF ).

If F is a normal tensor functor, Ł(ωF ) is called the induced Hopf algebra of F .

If C ′ i→ C F→ C ′′ is an exact sequence of tensor categories over k, we have a canon-

ical tensor equivalence C ′ ∼−→ comod-L(ωF ). Then, L(ωF ) is called the induced Hopf

algebra of the short exact sequence.

Proposition 3.15. Let C ′ f−→ C F−→ C ′′ be an exact sequence of tensor categories, with

induced Hopf algebra H . The following assertions are equivalent:

(i) The functor F has adjoints;

(ii) The tensor category C ′ is finite;
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22 A. Bruguières and S. Natale

(iii) The Hopf algebra H is finite dimensional.

In particular, if C ′ and C ′′ are finite, so is C. �

Proof. We may assume C ′ = KerF , f being the inclusion. We have (ii) ⇔ (iii) because

KerF � comod-H . If F has a right adjoint R, then the fiber functor ω = Hom(1, F f) : C ′ →
vectk has a right adjoint ? ⊗ R(1), hence by adjunction

H =
∫ X∈C′

ω(X)∨ ⊗ ω(X) �
∫ E∈vectk

E∨ ⊗ E ⊗ ωR(1) = HomC′′(1, F R(1))

is finite dimensional. Hence, (i) ⇒ (iii). Conversely, assume H is finite dimensional, and

denote by R : Ind C ′′ → Ind C the Ind-adjoint of F , that is, the right adjoint of Ind F . The

functor F has a right adjoint if and only if, for any X in C ′′, R(X) is isomorphic to an

object of C. Now Ind F is strong monoidal, and in particular comonoidal, so its right

adjoint R is monoidal; hence, we have a natural transformation R2(X, Y) : R(X) ⊗ R(Y) →
R(X ⊗ Y). Let X be in C and let

HX = R2(1, F (X))(idR(1) ⊗hX) : R(1) ⊗ X → RF (X),

where h denotes the evaluation of the adjunction Ind F � R. We claim that HX is an

isomorphism. In order to verify this, it is enough to check that for all Y in C, HX

induces a bijection HomC(Y, R(1) ⊗ X) � HomC(Y, RF (X)). We have HomC(Y, R(1) ⊗ X) �
HomC(Y ⊗ X∨, R(1)) � HomC′′(F (Y ⊗ X∨), 1) � HomC′′(F (Y), F (X)) � HomC(Y, RF X), and

this bijection is the natural map induced by HX. Hence, HX is an isomorphism. Let Y

be an object of C ′′. Then, F being dominant, Y is a subobject of F (X) for some X in C.

Since RF (X) � R(1) ⊗ X, RF (X) belongs to D because R(1) � H ⊗ 1, and R(X), being a

subobject of RF (X) because R is left exact, is isomorphic to an object of D, so F has a

right adjoint; it also has a left adjoint by Remark 2.3, hence (iii) ⇒ (i). �

4 Exact Sequences of Fusion Categories

Let F : C →D be a tensor functor between fusion categories. Then F is dominant if and

only if any simple object Y of D is a direct factor of F (X) for some simple object X of C,

and F is normal if and only if, for any simple object X of C, F (X) contains a copy of the

unit of 1 then F (X) is trivial.

 at U
niversidad N

acional de C
?rdoba on January 25, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Exact Sequences of Tensor Categories 23

Example 4.1. Let K ⊂ H be an inclusion of finite-dimensional split semisimple Hopf

algebras. Then, the restriction functor from C = H- mod to D = K- mod is a dominant

tensor functor between fusion categories. We have FPdimD = dim K and FPdim C =
dim H , so that the quotient FPdim C/ FPdimD = dim H/ dim K is a natural integer, called

the index of K in H . �

This example motivates the following definition.

Definition 4.2. Let F : C →D be a dominant tensor functor between fusion categories.

The Frobenius–Perron index of F is the ratio FPdim C/ FPdimD; we denote it by FPind(F )

or FPind(C : D). �

It follows from [16, Corollary 8.11] that if F : C →D is a dominant tensor functor,

then FPdimD divides FPdim C, that is, the Frobenius–Perron index of a dominant tensor

functor F between fusion categories is always an algebraic integer. More precisely, we

have the following proposition.

Proposition 4.3. If F : C →D is a dominant tensor functor between fusion categories,

then

FPind(F ) = FPdim G(1),

where G is a left (or a right) adjoint of F . �

Proof. For any fusion category C, let R(C) = K0(C) ⊗Z R denote the R-algebra obtained

by extension of scalars from the Grothendieck ring K0(C) of C. Consider the element

RC :=
∑

X∈ΛC

FPdim X [X] ∈ R(C).

We have FPdim RC = FPdim C.

Lemma 4.4. [16] Let F : C →D be a dominant tensor functor between fusion categories.

Then

F!(RC) = FPdim C
FPdimD RD, (4.1)
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24 A. Bruguières and S. Natale

where F! : R(C) → R(D) is the algebra map induced by F , and for all Y ∈ ΛD,

∑
X∈ΛC

mY(F (X)) FPdim X = FPdim C
FPdimD FPdim Y. (4.2)

�

Proof. Equation (4.1) is proved in [16, Proposition 8.8], and (4.2) is obtained by compar-

ing the multiplicities of Y in both sides of (4.1). �

Now for any simple object X of C, if G is a right adjoint of F , we have

by adjunction HomC(G(1), X) � HomD(1, F (X)), hence m1 F (X) = mXG(1). The same

equation holds if G is a left adjoint. Thus, Equation (4.2) for Y = 1 reads: FPind(F ) =∑
X∈ΛC FPdim X mXG(1) = FPdim G(1). �

Lemma 4.5. Let F : C →D be a tensor functor between fusion categories and X be an

object of C. Then, X belongs to KerF if and only if FPdim X = m1 F (X), and in this case

F (X) � 1FPdim X. �

Proof. An object Y of D is trivial if and only if FPdim(Y) = m1(Y). Besides, F preserves

Frobenius–Perron dimensions. Thus, X is in KerF if and only if FPdim(X) = FPdim F (X) =
m1 F (X). �

4.1 Exact sequences of pointed categories

Recall that a pointed category is a fusion category C whose simple objects are invertible,

so that G = ΛC is a finite group for the tensor product called the Picard group of C
and denoted by Pic C. If C is pointed, then C is equivalent to the category C(G, α) of G-

graded vector spaces with associativity constraint given by a three-cocycle in a class α ∈
H3(G, k×). It is well known that this correspondence yields a bijection (G, α) → C(G, α)

between pairs (G, α), where G is a finite group and α ∈ H3(G, k×), and pointed categories

over k up to equivalences of tensor categories. Note that if a pointed category C is tensor

equivalent to H- mod for some Hopf algebra H , then in fact H � kG , where G = Pic C, so

that C � C(G, 1) = kG- mod.

Proposition 4.6. Let C ′ f→ C F→ C ′′ be an exact sequence of fusion categories over a field

k, and assume that C is pointed. Then, C ′ and C ′′ are pointed too, and we have an exact
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sequence of groups

1 → G ′ → G → G ′′ → 1,

where G, G ′, and G ′′ denote the Picard groups of C, C ′, and C ′′, respectively. Moreover, up

to equivalence, such an exact sequence of fusion categories is of the form

C(G ′, 1) → C(G, infl(α)) → C(G ′′, α),

where 1 → G ′ → G → G ′′ → 1 is an exact sequence of finite groups, α is a cohomology

class in H3(G ′′, k×), and infl : H3(G ′′, k×) → H3(G, k×) denotes the inflation map. �

Proof. The category C is of the form C(G, β), where G = Pic C and β ∈ H3(G, k×). Being a

full tensor subcategory of C, C ′ is of the form C(G ′, β ′) where β ′ ∈ H3(G ′, k×) is the image

of β under the restriction morphism. Since C ′ = KerF , it is of the form H , H being the

Hopf algebra associated with our exact sequence of fusion categories (see Section 3.3).

Therefore, β ′ = 1 and C ′ = C(G ′, 1).

On the other hand, tensor functors preserve invertible objects. Since the tensor

functor F : C → C ′′ is dominant and C is pointed, so is C ′′. Therefore, C ′′ is of the form

C(G ′′, α) for some finite group G ′′ and ω′′ ∈ H3(G ′′, k×). Since F preserves the monoidal

structures, we have β = infl(α).

Conversely, given an exact sequence of finite groups 1 → G ′ → G → G ′′ → 1 and

a class α ∈ H3(G ′′, k×), we have a tensor functor F : C = C(G, infl α) → C(G ′′, α) such that

KerF = C(G ′, 1), hence an exact sequence of fusion categories C(G, 1) → C(G, infl α) →
C(G ′′, α). �

Remark 4.7. In an exact sequence of fusion categories C ′ → C → C ′′, such that C ′ and C ′′

are pointed, C need not be pointed. Indeed, let Γ and K be abelian groups endowed with

a nontrivial action of K on Γ by automorphisms, and let G = Γ � K be the semidirect

product (for instance, take G to be a dihedral group). Then the category rep G is not

pointed, since G is not abelian. On the other hand, there exists an exact sequence of

groups 1 → Γ → G → K → 1, which gives rise to an exact sequence of fusion categories

C(Γ, 1) → rep G → C(K, 1) by Proposition 3.9. �

Remark 4.8. Let 1 → G ′ → G → G ′′ → 1 be an exact sequence of finite groups such that

the inflation map H3(G ′′, k×) → H3(G, k×) is not injective, and let α ∈ H3(G ′′, k×) be a non-

trivial element of its kernel. Then, by Proposition 4.6, we have an exact sequence of
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26 A. Bruguières and S. Natale

fusion categories:

C(G ′, 1) → C(G, 1) → C(G ′′, α)

and C(G ′′, α) does not admit a fiber functor. �

Let C ′ f→ C F→ C ′′ be an exact sequence of fusion categories. If C ′′ admits a fiber

functor, then so does C. The converse is not true, as exemplified by the previous remark.

However, we have the following proposition.

Proposition 4.9. Let C ′ f→ C F→ C ′′ be an exact sequence of fusion categories. Then, C is

tensor equivalent to the category of representations of a quasi-Hopf algebra if and only

if C ′′ is. �

Proof. A fusion category is tensor equivalent to the representation category of a quasi-

Hopf algebra if and only if the Frobenius–Perron dimensions of its objects are natural

integers, see [16, Theorem 8.33]. Hence, the “if” Part because a tensor functor preserves

Frobenius–Perron dimensions (or by Tannaka reconstruction), and the “if” Part by [16,

Corollary 8.36]. �

4.2 Multiplicativity of Frobenius–Perron dimensions

Proposition 4.10. Let C, C ′, and C ′′ be fusion categories and i : C ′ → C, F : C → C ′′ be

tensor functors. Assume that F is dominant, i is full and i(C) ⊂ KerF . Then, FPdim C ≥
FPdim C ′ FPdim C ′′. Moreover, the diagram

C ′ i→ C F→ C ′′

is an exact sequence if and only if FPdim C = FPdim C ′ FPdim C ′′. If such is the case, then

for all simple object Y ∈ C ′′,

FPdim Y = 1

FPdim C ′
∑

X∈ΛC

mY(F (X)) FPdim X. (4.3)

�

Proof. First, notice that since the tensor functor i0 : C ′ → KerF is full, we have FPdim C ′ ≤
FPdim KerF , with equality if and only if i0 is an equivalence. Thus, we may assume that

C ′ = KerF , i being the inclusion.
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Equation (4.2), applied to the dominant functor F : C → C ′′ and the simple object

Y = 1, yields ∑
X∈ΛC

m1(F (X)) FPdim X = FPdim C
FPdim C ′′ . (4.4)

Since C ′ = KerF is a full subcategory of C, we may choose representatives of classes

of simple objects so that ΛC′ ⊂ ΛC . For X ∈ ΛC′ , we have F (X) = 1FPdim X, and therefore∑
X∈ΛC′ m1(F (X)) FPdim X = FPdim C′. Thus,

FPdim C
FPdim C ′′ = FPdim C ′ + E . (4.5)

where E = ∑
X∈ΛC\ΛC′ m1(F (X)) FPdim X. Now we have E ≥ 0, and E = 0 if and only if F

is normal, hence the proposition is proved. �

Remark 4.11. Relation (4.3) implies the identity F!(RC) = 1
FPdimC′ RC′′ . �

Corollary 4.12. Consider a diagram of tensor functors between fusion categories with

exact rows, and commutative up to tensor isomorphisms:

C ′ f−−−−→ C F−−−−→ C ′′⏐⏐�l

⏐⏐�λ

⏐⏐�r

D′ g−−−−→ D G−−−−→ D′′.

If l and r are equivalences, then λ is an equivalence. �

Proof. Since r and l are equivalences, we may assume that they are identities, C ′ =D′,

C ′′ =D′′, and the diagram commutes. By Proposition 4.10, we have FPdim C = FPdimD.

Now denote by E the dominant image of λ, that is, the full subcategory of D whose

objects are direct factors of objects belonging to the image of λ. The tensor functor

λ factors as jλ0, where λ0 : C → E is dominant, and j : E →D is a replete inclusion. In

particular, FPdim E ≤ FPdimD. In the diagram of tensor functors

C′
λ0 f

�� E
Gj

�� C ′′,
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the functor Gj is dominant because F = Gjλ0 is dominant, λ0 f is fully faithful because

g = jλ0 f and j are fully faithful, and λ0 f(C ′
1) ⊂ KerGj because Gjλ0 f = F f . By Proposi-

tion 4.10, we have FPdim E ≥ FPdim C ′ FPdim C ′′ = FPdimD. Hence, FPdim E = FPdimD,

so that E =D and therefore λ is dominant. Applying again Proposition 4.10, this time to

the sequence

Kerλ
�� C

λ

�� D

we find that FPdim Kerλ ≤ 1, hence Kerλ = 〈1〉, and the sequence is exact, so λ is an equiv-

alence. �

4.3 Functors of Frobenius–Perron index 2

It is well known that if H is a split semisimple Hopf algebra and K is a Hopf subalgebra

of index 2, then K is a normal Hopf subalgebra and there is a cocentral exact sequence

of Hopf algebras K → H → kZ2. See [22, 25, Corollary 1.4.3]. Hence, an exact sequence of

fusion categories rep Z2 → H- mod → K- mod.

We extend this result to general fusion categories. Recall that the the Frobenius–

Perron index FPind F of a dominant tensor functor F : C →D between fusion categories

is the ratio FPind F = FPdim C/ FPdimD.

Proposition 4.13. Let F : C →D be a dominant tensor functor of Frobenius–Perron

index 2 between fusion categories. Then F is normal, and we have an exact sequence

of fusion categories

rep Z2 → C F→D. �

Proof. Equation (4.2), applied to Y = 1, yields

∑
X∈ΛC

m1(F (X)) FPdim X = FPdim C
FPdimD = 2.

Since FPdim X ≥ 1 for any simple object X, we conclude that there is exactly one element

J ∈ ΛC , J 
� 1, such that F (J) contains 1. Moreover, we have FPdim F (J) = FPdim J = 1

so F (J) � 1. Thus F is normal, and we have an exact sequence of fusion categories

KerF → C →D. Note that J is invertible. On the other hand, KerF is a pointed category

whose group of invertibles is of order 2 (because J is invertible). Therefore, KerF � H ,
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where H is a split semisimple Hopf algebra H of dimension 2, that is, H � kZ2, hence

the proposition holds. �

5 Hopf Monads and Exact Sequences

In this section, we study tensor functors and, in particular, exact sequences of tensor

categories in terms of Hopf monads. Recall that a tensor functor F : C →D is monadic if

and only if it has a left adjoint G (whose existence is equivalent to that of a right adjoint,

see Section 2.3). If such is the case, the monad T = F G of G is a Hopf monad on D, and C
is tensor equivalent to the category DT of T-modules in D.

Proposition 5.1. Let F : C →D be a tensor functor between tensor categories over a field

k, and assume F admits a left adjoint G. Let T = F G be the Hopf monad of F . Then the

following assertions are equivalent:

(i) The functor F is dominant;

(ii) The unit η of the monad T is a monomorphism;

(iii) The monad T is faithful;

(iv) The left adjoint of F is faithful;

(v) The right adjoint of F is faithful. �

Proof. The equivalence of the first four assertions results immediately from Lemma 2.2,

considering that, since F is monadic, we may assume that C =DT , F is the forgetful

functor U : DT →D and G is the free module functor. The right adjoint of F is R� ∨G(?∨),

hence (iv) ⇔ (v). �

Proposition 5.2. Let F : C →D be a tensor functor between fusion categories over a field

k, and let T be the Hopf monad of F . Then FPind(C : D) ≤ FPdim T(1), and F is dominant

if and only if

FPind(C : D) = FPdim T(1).

If such is the case, then for all X ∈ ΛC , FPdim T(X) = FPdim T(1) FPdim X. �

Proof. Let G be a left adjoint of F . If F is dominant, we have FPdim C =
FPdim T(1) FPdimD by Proposition 4.3, noting that T(1) = G(1). In general, let E be the

dominant image of F , that is, the full subcategory of D whose objects are direct factors

of objects belonging to the image of F . Denote by F0 the dominant tensor functor C → E
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induced by F , and i the full embedding E ⊂D. Then L|E is left adjoint to F0 so we have

FPdim C = FPdim T(1) FPdim E . We also have FPdim E ≤ FPdimD, with equality if and

only if E =D, that is, F is dominant. This proves both the inequality and the equivalence

of the proposition.

Now assume F is dominant. For X ∈ ΛD, we have by Equation (4.2):

FPdim(X) = dimD
dim C

∑
Y∈ΛC

mY(F (X)) FPdim Y

= 1

FPdim T(1)

∑
Y∈ΛC

mX(G(Y)) FPdim Y (by adjunction)

= 1

FPdim T(1)
FPdim G(X) = 1

FPdim T(1)
FPdim T(X),

hence the last assertion of the proposition holds. �

Definition 5.3. Let C be a tensor category. A k-linear right exact Hopf monad T on C is

normal if T(1) is a trivial object of C. �

Recall that a tensor functor F gives rise to a fiber functor ωF : KerF → vectk, X �→
Hom(1, F (X)), hence a Hopf algebra L(ωF ) such that there exists a canonical tensor

equivalence c : KerF
∼−→ comod-L(ωF ) (see Section 3.3).

Lemma 5.4. Let T be a k-linear right exact normal Hopf monad on a tensor category C,

with forgetful functor U : CT → C. Then the Hopf algebra L = L(ωU ) is finite-dimensional,

and we have a canonical tensor equivalence

KerU
∼−→ comod-L . �

The Hopf algebra L(ωU ) is called the induced Hopf algebra of the normal Hopf

monad T .

Proof. First, we show that L(ω) is finite dimensional. Since T is normal, we have

T(〈1〉) ⊂ 〈1〉, so that T restricts to a Hopf monad T|〈1〉 on 〈1〉, and KerU = 〈1〉T|〈1〉 . Thus,

we may assume C = 〈1〉 (that is, C � vectk). Then we have CU = CT , and by Lemma 2.5,

there exists a finite-dimensional Hopf algebra H on k such that T = H⊗?. We have a
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commutative triangle of tensor functors

CT

ωU ���
��

��
��

�

∼
�� H- mod

�����������

vectk

whose horizontal is an equivalence, hence L(ωU ) � H∗ is finite dimensional. �

Remark 5.5. The induced Hopf algebra of a normal Hopf monad T is the induced alge-

bra of the restriction of T to the trivial tensor subcategory 〈1〉 ⊂ C. �

We have by definition the following.

Proposition 5.6. Let F : C →D be a tensor functor admitting a left adjoint. Then F is

normal if and only if its Hopf monad T is normal. �

Example 5.7. Let C be a fusion category over a field k. It is shown in [8] that the forgetful

functor U : Z(C) → C is monadic, with monad Z defined by

Z(X) =
∑

Y∈ΛC

∨Y ⊗ X ⊗ Y.

The unit of the monad Z is the 1-component inclusion X ↪→ Z(X); it is therefore a

monomorphism. Hence, U is dominant by Proposition 5.1. However, U is normal if

and only if C is a pointed category, because Z(1) = ∑
Y∈ΛC

∨Y ⊗ Y is trivial exactly in

that case. �

5.1 Exact sequences and normal, faithful Hopf monads

The following theorem classifies extensions of tensor categories in terms of normal,

faithful Hopf monads.

Theorem 5.8. Let C ′, C ′′ be tensor categories over a field k, and assume that C ′ is finite.

Then the following data are equivalent:

(1) A normal, faithful, k-linear right exact Hopf monad T on C ′′, with induced

Hopf algebra H , endowed with a tensor equivalence K : C ′ ∼−→ comod-H ;

(2) An extension C ′ → C → C ′′ of C ′′ by C ′. �
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Proof. Let T be a normal, faithful, k-linear right exact Hopf monad on C ′′ with induced

Hopf algebra H . Denote by U : C ′′T → C ′′ the forgetful functor. Let q be a quasi-inverse of

the canonical tensor equivalence KerU → comod-H . According to Corollary 5.14, we have

an exact sequence:

comod-H
iq−→ (C ′′)T U−→ C ′′,

hence an extension C ′ iqK−→ (C ′′)T U−→ C ′′ of C ′′ by C ′.

Conversely, let C ′ f−→ C F−→ C ′′ be an extension of C ′′ by C ′. Then F has a left adjoint

by Proposition 3.15. Let T be the Hopf monad of F . Then T is k-linear, faithful (because

F is dominant) and normal (because F is normal). The tensor functor f induces a tensor

equivalence f0 : C ′ → KerF , and we also have a canonical tensor equivalence c : KerF
∼−→

comod-H , where H is the induced Hopf algebra of the Hopf monad T of F , hence a tensor

equivalence K = cf0 : C ′ ∼−→ comod-H .

These two constructions are mutually quasi-inverse. Indeed, if T and K are as in

(1), then the Hopf monad of the forgetful functor U : C′′T → C ′′ is T and the reconstructed

tensor equivalence C ′ → comod-H is cqK � K.

On the other hand, given an extension C ′ f→ C F→ C ′′, and denoting by T and K the

corresponding Hopf monad and tensor equivalence, we have an equivalence of exten-

sions:

C ′

=
��

f
�� C

κ

��

F
�� C ′′

=
��

C ′
iqK

�� C ′′T
U

�� C ′′,

where U denotes the forgetful functor and κ is the comparison functor of the monadic

functor F . Indeed, κ is a tensor equivalence, we have Uκ = F and iqK = iqcf0 � i f0 = f . �

Combining Theorem 5.8 with Proposition 4.13, we obtain the following corollary.

Corollary 5.9. Let F : C → C ′′ be a dominant tensor functor between fusion categories C
and C ′′ such that FPind F = 2. Then there exists a k-linear, faithful, normal semisimple

Hopf monad T on C ′′ having induced Hopf algebra kZ2 , such that C � (C ′′)T as fusion

categories. �
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Example 5.10. Let 1 → G ′′ ι→ G
π→ G ′ → 1 be an exact sequence of finite groups. Then we

have an exact sequence of tensor categories

rep G ′
π∗

�� rep G
ι∗

�� rep G ′′

as in Example 3.14. Let us describe the normal Hopf monad T on rep G ′′ associated with

this exact sequence. We may assume without loss of generality that G ′′ is a normal sub-

group of G, and that G ′ = G/G ′′, i being the inclusion and π the canonical surjection.

The induction functor IndG
G ′′ : rep G ′′ → rep G is left adjoint to the restriction functor

i∗ = ResG
G ′′ . Let Y be a kG ′′-module. As a consequence of Mackey’s Subgroup Theorem,

there is a natural isomorphism

ResG
G ′′ IndG

G ′′(Y) � ⊕γ∈G/G ′′γ Y,

where γ Y denotes the kG ′′-module conjugated to Y under the action of an element g ∈ G

representing the class γ . See [10, Remark (10.11)]. Then the Hopf monad T is given, as an

endofunctor of rep G ′, by

T(Y) = ⊕γ∈G ′ γ Y.

In fact, conjugation under elements γ ∈ G/G ′′ defines an action of the group G ′ on rep G ′′

by tensor autoequivalences. In subsequent subsections, we will study group actions on

tensor categories in terms of Hopf monads. �

5.2 Semisimplicity

A monad T on a category A is said to be semisimple if any T-module is a T-linear retract

of a free T-module, that is, of (T(X), μX), for some X ∈A. We have the following analogue

of Maschke’s semisimplicity criterion for Hopf monads.

Theorem 5.11 ([7, Theorem 6.5.]). Let T be a Hopf monad on a rigid category C. Then T

is semisimple if and only if there exists a morphism Λ : 1 → T(1) such that μ1Λ = ΛT0

and T0Λ = id1. �

Corollary 5.12. Let T be a Hopf monad on a rigid category C and let C ′ ⊂ C be a full rigid

subcategory of C such that T(C ′) ⊂ C ′. Then T is semisimple if and only if its restriction

T|C′ to C ′ is semisimple. �
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Proof. Apply the theorem to T and T|C′ , which is a Hopf monad on C ′. �

Proposition 5.13. Let C be a semisimple tensor category over a field k, and let T be

a k-linear Hopf monad on C. Then the tensor category CT is semisimple if and only if

the monad T is semisimple. In particular, if k is algebraically closed and C is a fusion

category, then CT is a fusion category if and only if T is semisimple. �

Proof. Observe that, since C is semisimple, T is exact. Let U : CT → C be the forgetful

functor, and L : C → CT be the free module functor, defined by L(X) = (T(X), μX), which

is left adjoint to U . If X is an object of C, then L(X) is a projective object of CT . Indeed,

let p : (Y, r) →L(X) be an epimorphism in CT ; then p is an epimorphism in C, so it has

a section i : T X → Y in C because C is semisimple. Then rT(i)T(ηX) is a T-linear section

of p.

In particular, if T is semisimple, any object of CT is projective, being a direct

factor of a projective object, so CT is semisimple.

Conversely, assume CT is semisimple, and let (X, r) be a T-module. Then r :

T(X) → X is an epimorphism because rηX = idX. It is also a morphism of T-modules

from to (X, r), which is an epimorphism in CT because the forgetful functor U : CT → C is

faithful exact. By semisimplicity of CT , r has a T-linear section so (X, r) is a direct factor

of L(X). Hence, T is semisimple. �

Corollary 5.14. Let C be a fusion category over an algebraically closed field k, and let T

be a k-linear, faithful, normal, semisimple Hopf monad on C, with induced Hopf algebra

H . Then we have an exact sequence of fusion categories

comod-H → CT U→ C.
�

Lemma 5.15. Let C be a tensor category over a field k, and let T be a k-linear right exact

normal dominant Hopf monad on C with induced Hopf algebra H . Then T is semisimple

if and only if H is cosemisimple. �

Proof. Let T0 be the restriction of T to 〈1〉. Then T is semisimple if and only if T0 is

semisimple by Corollary 5.12. On the other hand, 〈1〉T0 = KerU � comod-H , where U is the

forgetful functor, so T0 is semisimple ⇐⇒ 〈1〉T0 is semisimple (by Proposition 5.13) ⇐⇒
H is cosemisimple. �

Corollary 5.16. An extension of fusion categories over an algebraically closed field is a

fusion category. �
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Proof. Let C ′ f−→ C F−→ C ′′ be an exact sequence of fusion categories. Then C ′ is finite,

so by Proposition 3.15, F has a left adjoint and is therefore monadic, and C is finite. Its

monad T is normal, dominant and its induced Hopf algebra H is cosemisimple because

C ′ � comod-H , so T is semisimple by the previous lemma and C is semisimple. Since k is

algebraically closed, C is a fusion category. �

5.3 Equivariantization

Let C be a tensor category over a field k. Denote by End⊗C the monoidal category whose

objects are tensor endofunctors of C, the morphisms being monoidal natural transfor-

mations, the monoidal product being the composition ◦ of tensor functors, and the unit

object, the identity functor idC .

If G is a group, denote by G the strict monoidal category whose objects are the

elements of G and morphisms are identities, the monoidal product being the multipli-

cation of G.

Definition 5.17. An action of a group G on a tensor category C (by tensor autoequiva-

lences) is a strong monoidal functor

ρ : G → End⊗C. (5.1)

In other words, it consists of the following data:

(1) For each g ∈ G, a tensor endofunctor ρg : C → C;

(2) For each pair g, h∈ G, a monoidal isomorphism ρ
g,h
2 : ρgρh ∼−→ ρgh;

(3) A monoidal isomorphism ρ0 : idC
∼−→ ρ1;

such that for any g, h, k in G the following diagrams commute:

ρgρhρk
ρ

g,h
2 ρk

��

ρgρ
h,k
2

��

ρghρk

ρ
gh,k
2

��

ρg
ρgρ0

��

ρ0ρg

��

=

���
��

��
��

��
ρgρ1

ρ
g,1
2

��

ρgρhk

ρ
g,hk
2

�� ρghk ρ1ρg

ρ
1,g
2

�� ρg.

Observe that if G is a monoidal action of G on C, the ρg’s are in fact tensor

autoequivalences of C, ρg−1
being quasi-inverse to ρg for all g ∈ G. �
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Let ρ : G → Aut⊗C be an action of a group G on a tensor category C. A G-

equivariant object in C is a pair (X, u), where X is an object of C, and u is a family

(ug)g∈G , where for each g ∈ G, ug : ρgX → X is a morphism, satisfying

ugρg(uh) = ughρ
g,h
2X

for all g, h∈ G and u1ρ0 X = idX . (5.2)

Note that the morphisms ug are then actually isomorphisms.

A G-equivariant morphism f : (X, u) → (Y, v) between G-equivariant objects is a

morphism f : X → Y in C such that fug = vg f for all g ∈ G.

The G-equivariantization of C, denoted CG , is, by definition, the category of G-

equivariant objects and G-equivariant morphisms [2, 18, 29, 32]. It is a tensor category,

with monoidal product defined as follows: if (X, u) and (Y, v) are G-equivariant objects,

then

(X, u) ⊗ (Y, v) = (X ⊗ Y, w), where w = (wg = (ug ⊗ vg)ρ
g
2

−1
X,Y)g∈G,

the unit object being (1, (ρ
g
0

−1
)g∈G).

Moreover, if C is a fusion category, G is finite, k is algebraically closed and

char(k) does not divide the order of G, then CG is a fusion category. In that case, it

is shown in [29] that CG is dual to a crossed product fusion category C � G with respect

to the indecomposable module category C.

Example 5.18. Let G be a group and let ρ be the trivial action of G on vectk. Then

(vectk)
G = rep G. �

Definition 5.19. A tensor functor F : C →D between tensor categories is an equiva-

riantization if there exists a finite group G acting on D by tensor equivalences, and

a tensor equivalence C �DG over D, that is, such that the following triangle of tensor

functors commutes up to a natural isomorphism of tensor functors:

C
�

��

F ���
��

��
��

�
DG

U
��

D,

where U : DG →D is the forgetful functor. �
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5.4 Characterization of equivariantizations in terms of Hopf monads

In this section, we show that group actions on tensor categories and equivariantization

can be interpreted in the language of Hopf monads.

Definition 5.20. A normal k-linear right exact Hopf monad T on a tensor category C
is cocommutative if for any morphism g : T(1) → 1 and any object X of C, the following

square is commutative:

T(X)

T2(X,1)

��

T2(1,X)

��

T(X) ⊗ T(1)

idT(X) ⊗ g

��

T(1) ⊗ T(X)
g⊗ idT(X)

�� T(X).

�

Theorem 5.21. Let C be a tensor category over a field k, and let ρ be an action of a finite

group G on C by tensor autoequivalences. Then,

(1) The k-linear exact endofunctor

Tρ =
⊕
g∈G

ρg

admits a canonical structure of Hopf monad on C;

(2) There is a canonical isomorphism of categories:

CG � CT
ρ

over C, where CG denotes the equivariantization of C under G;

(3) The Hopf monad Tρ is faithful, normal, and cocommutative.

(4) The induced Hopf algebra of T is kG . In particular, Tρ is semisimple if and

only if char(k) does not divide the order of G. �

Proof. The endofunctor Tρ is k-linear exact by construction. Define natural transfor-

mations

μ : (Tρ)2 =
⊕
g,g′

ρgρg′ → Tρ =
⊕
h∈G

ρh and η : idC → Tρ =
⊕
g∈G

ρg
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componentwise by the collection of morphisms ρ
g,g′
2 : ρgρg′ → ρgg′

and by the morphism

ρ0 : idC → ρ1, respectively. The axioms of a group action imply that (Tρ, μ, η) is a monad

on C. Given an object X of C, the canonical bijection

∏
g∈G

HomC(ρgX, X)
∼−→ HomC(

⊕
g∈G

ρgX, X)

restricts to a bijection between families u= (ug) such that (X, u) is an object of CG on one

hand, and actions r : Tρ(X) → X of the monad Tρ on X, and this induces an isomorphism

of categories κ : CG → CT
ρ

over C. In particular, CT
ρ

is a tensor category over k, and the

forgetful functor U : CT
ρ → C is a tensor functor. This implies that Tρ is a Hopf monad on

C. The comonoidal structure of Tρ is as follows:

T
ρ

2(X, Y) :
⊕
g∈G

ρg(X ⊗ Y) →
⊕

g′,g′′∈G

ρg′
X ⊗ ρg′′

Y and T
ρ

0 :
⊕
g∈G

ρg1 → 1

are given componentwise by the strong (co)monoidal structure of the tensor functors ρg,

that is, by

ρ
g
2

−1
X,Y : ρg(X ⊗ Y)

∼−→ ρgX ⊗ ρgY and ρ
g
0

−1 : ρg1
∼−→ 1.

Hence, Parts (1) and (2). Now Tρ is faithful because η is a monomorphism. It is normal

because we have Tρ(1)
∼−→ 1G . The cocommutativity of Tρ results from the fact that the

endofunctor ρg being strong monoidal for all g ∈ G, for any object X of C the diagram of

isomorphisms:

ρgX
ρ

g
2

−1
X,1

��

ρ
g
2

−1
1,X

��

ρgX ⊗ ρg1

idρg X ⊗ρ
g
0

−1

��

ρg1 ⊗ ρgX
ρ

g
0

−1⊗idρg X

�� ρgX

is commutative, hence Part (3).

Let L be the induced Hopf algebra of Tρ . As noted previously (see Remark 5.5), L

is also the induced Hopf algebra of the restriction of Tρ to 〈1〉, that is, of Tρ ′
, where ρ ′

is the restriction to 〈1〉 of the action of G on C. In order to compute L we may therefore

assume that C is a trivial fusion category (that is, all objects of C are trivial). In that case,

the category of tensor endofunctors of C is equivalent to the point; we may consequently
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assume that ρ is the trivial action. We have a commutative triangle of tensor functors

CG
∼

��

HomC(1,U) ���
��������

vectk
G = rep G

�������������

vectk

whose horizontal arrow is an equivalence, hence L = L(HomC(1,U)) � kG . In particular,

Tρ is semisimple ⇐⇒ rep G is semisimple ⇐⇒ char(k) does not divide the order of G.

Hence, Part (4). �

The Hopf monad Tρ is called the monad of the group action ρ. We also denote it

by TG when the action is clear from the context.

Corollary 5.22. An action of a finite group G on a tensor category C by tensor autoe-

quivalences gives rise to an exact sequence of tensor categories:

rep G → CG → C.

It is is an exact sequence of fusion categories if k is algebraically closed, C is a fusion

category, and char(k) does not divide the order of G. �

Proof. Results from Theorem 5.21 and Corollary 5.14. �

Remark 5.23. The fusion category Cp constructed in [29, Subsection 4.1] is group theo-

retical and admits an action of the group Z2, such that CZ2
p is not group theoretical [29,

Corollary 4.6]. The resulting exact sequence rep Z2 → CZ2
p → Cp shows that an extension

of group-theoretical categories need not be group-theoretical. �

The converse of Theorem 5.21 is true.

Theorem 5.24. Let T be a k-linear right exact, faithful, normal, cocommutative Hopf

monad on a tensor category C over a field k, whose induced Hopf algebra H is split

semisimple. Then H is isomorphic to kG for some finite group G, and there exists an

action of G on C by tensor autoequivalences ρ : G → End⊗C such that T � Tρ . �
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Proof. The restriction T0 of T to 〈1〉 is isomorphic to L⊗? as a Hopf monad, where L is

the Hopf algebra H∗. Since T is cocommutative, so is L, that is, H is commutative. Being

split semisimple, H is of the form kG for some finite group G.

For g ∈ G, denote by eg : T(1) → 1 the morphism corresponding to the map kG →
k, h �→ δg,h via an isomorphism T0 � kG⊗?

The morphisms eg : T(1) → 1 satisfy the following equations:

(1) (eg ⊗ eh)T2(1, 1) = δg,heg, (2)
∑

g

eg = T0,

(3) egμ1 =
∑

g′g′′=g

eg′
T(eg′′

), (4) egη1 = δg,1 id1,

which reflect the Hopf algebra structure of kG.

For g ∈ G, define a natural endomorphism πg of T by setting

π
g
X = (eg ⊗ idT(X))T2(1, X), for X object of C.

Note that we also have π
g
X = (idT(X) ⊗eg)T2(X, 1), T being cocommutative.

Using Equations (1) and (2) above and the comonoidality of T , one verifies easily

the following equations:

(5) π
g
Xπh

X = δg,hπ
g
X, (6)

∑
g

π
g
X = idT(X),

(7) T2(X, Y)π
g
X⊗Y = (π

g
X ⊗ idT(Y))T2(X, Y) = (idT(X) ⊗π

g
Y)T2(X, Y),

the last equation resulting from cocommutativity of T .

By Equations (5) and (6) above, for X object of C, the family (π
g
X)g∈G is a complete

orthogonal system of idempotents of T(X). Denote by ρ
g
X the image of the idempotent

π
g
X. This defines an endofunctor ρg of C, and we have

T =
⊕
g∈G

ρg.

The point is now to show that ρ : g �→ ρg is an action of G on C by tensor autoequiva-

lences, so that T = Tρ . From Equations (3) and (4) above, we deduce

(8) π
g
X =

∑
g′g′′=g

μXπ
g′
T(X)T(π

g′′
X ), (9) π

g
XηX = δg,1ηX.
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Indeed, we have

π
g
XμX = (eg ⊗ idT(X))T2(1, X)μX = (egμ1 ⊗ μX)T2(T(1), T(X))T(T2(1, X))

=
∑

g′g′′=g

(eg′
T(eg′′

) ⊗ μX)T2(T(1), T(X))T(T2(1, X)) =
∑

g′g′′=g

μXπ
g′
T(X)T(π

g′′
X );

π
g
XηX = (eg ⊗ idT(X))T2(1, X)ηX = egη1 ⊗ ηX = δg,1ηX.

Thus μ :
⊕

g,h ρg ◦ ρh → ⊕
k ρk is given componentwise by morphisms

ρ
g,h
2 : ρg ◦ ρh → ρgh,

and η : idC → ⊕
g ρg, by a morphism ρ0 : idC → ρ1. Since T is a monad, we have

ρ
g,hk
2 ρgρ

h,k
2 = ρ

gh,k
2 ρ

g,h
2 ρk and ρg,1ρgρ0 = idρg = ρ1,gρ0ρ

g.

Using Equations (5) and (7) above, we also have

(π
g
X ⊗ πh

Y)T2(X, Y) = δg,hT2(X, Y)π
g
X⊗Y.

Thus T2(X, Y) :
⊕

g ρg(X ⊗ Y) → ⊕
h,k ρh(X) ⊗ ρk(Y) is given componentwise by

morphisms

fg
2 (X, Y) : ρg(X ⊗ Y) → ρg(X) ⊗ ρg(Y).

Finally, T0 :
⊕

g ρg(1) → 1 is given by morphisms fg
0 : ρg(1) → 1. The fact that T is a

bimonad implies that (ρg, fg
2 , fg

0 ) is a comonoidal endofunctor of C for all g ∈ G, and

that the natural transformations ρ
g,h
2 : ρgρh → ρgh and ρ0 : idC → ρ1 are comonoidal.

Next we show that the structure morphisms ρ
g,h
2 , ρ0, fg

2 , fg
0 are isomorphisms.

The left fusion operator Hl of the bimonad T , introduced in [9] and defined as

Hl
X,Y = (idT(X) ⊗μY)T2(X, T(Y)) : T(X ⊗ T(Y)) → T(X) ⊗ T(Y),

is an isomorphism by [9, Theorem 3.10], because T is a Hopf monad. We have T(X ⊗
T(Y)) = ⊕

g,h∈G ρg(X ⊗ ρhY) and T(X) ⊗ T(Y) = ⊕
m,n∈G ρm X ⊗ ρnY, and Hl

X,Y is defined
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componentwise by isomorphisms

ω
g,h
X,Y = (idρg X ⊗ρ

gh
2 Y) fg

2 (X, ρh(Y)) : ρg(X ⊗ ρh(Y))
∼−→ ρgX ⊗ ρghY

Now for g ∈ G, fg
0 is an isomorphism because T0 = ∑

g eg. So

ρ
gh
2 Y = ( fg

0 ⊗ id
ρ

gh
Y

) ω
g,h
1,Y

is an isomorphism too. Now we check that ρ0 : idC → ρ1 is an isomorphism. Observe first

that ρ0 is a monomorphism because, T being faithful, η is a monomorphism, and η fac-

tors through ρ0. In particular, ρ1 is faithful; it is also k-linear right exact since it is

a direct summand of T . We have ρ11
2 ρ1(ρ0) = idρ1 , so ρ1(ρ0) = ρ11

2
−1 is an isomorphism.

Since ρ1 is faithful right exact, ρ0 is an epimorphism. The category C being abelian, ρ0 is

an isomorphism.

In particular, ρg is a k-linear autoequivalence of C, with quasi-inverse ρg−1
.

Now fg
2 (X, Y) is an isomorphism, because Y � ρ1Y, ωg,1 and fg

2 are isomorphisms.

Thus (ρg, fg
2 , f0) is a strong comonoidal functor, that is, (ρg, ( fg

2 )−1, ( fg
0 )−1) is a strong

monoidal functor. It is therefore a tensor autoequivalence of C. We have shown that ρ is

an action of G on C by tensor autoequivalences, and T = Tρ . �

Corollary 5.25. Let F : C →D be a tensor functor between tensor categories over a field

k admitting a left adjoint. Then F is an equivariantization if and only if F is domi-

nant normal, its Hopf monad T is cocommutative, and its induced Hopf algebra is split

semisimple. �

Proof. The functor F is monadic, with monad T . We may therefore assume C =DT , F

being the forgetful functor U . Let L be the induced Hopf algebra of T . We conclude by

Theorem 5.24, noting that if L is commutative, then it is the function algebra of a finite

group if and only if it is split semisimple. �

Example 5.26. Let Γ be a finite group and let L be a finite-dimensional Hopf algebra

over an algebraically closed field k endowed with a Γ -graduation L = ⊕
g∈Γ Lg such that

Lg 
= 0 for all g ∈ Γ . Let H = L∗. The Γ -graduation on L translates into an injective Hopf

algebra morphism i : kΓ → H whose image is central in H . This morphism is character-

ized by

〈i(ϕ), λ〉 =
∑
g∈Γ

ϕ(g)ε(λg)
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for all φ ∈ kΓ , λ ∈ L, ε denoting the counit of L. We have H = ⊕
g∈Γ Hg, where Hg = L∗

g.

The dominant tensor functor ResH
kΓ : H- mod → kΓ - mod is monadic, with Hopf monad

T = ResH
kΓ IndH

kΓ . The tensor category kΓ - mod is the pointed category C(Γ ) of Γ -graded

vector spaces, whose simple objects are indexed by the elements of Γ , and we have

T (g) = Hg ⊗ g; in particular, T is normal, with induced Hopf algebra H1. In particular, if

L is cosemisimple, H is semisimple and we have an exact sequence of fusion categories

H1- mod → H- mod → C(Γ ).

Moreover, T is cocommutative if and only if L1 is contained in the center of L. Now let

Γ act on a finite group G in a nontrivial way by Γ × G → G, (x, g) → x.g, and let L be the

abelian extension L = kG#kΓ corresponding with this action. Then the multiplication

and comultiplication in L are given by

(eg#x)(eh#y) = δg,x.heg#xy, Δ(eg#x) =
∑
st=g

es#x ⊗ et#x = Δ(eg)Δ(x),

where eg ∈ kG are defined as eg(h) = δg,h, g, h∈ G. Thus L1 = kG is a Hopf subalgebra which

is not central in L and kΓ is a central Hopf subalgebra in H = L∗.

Then L is a cosemisimple Γ -graded Hopf algebra, and L1 = kG is commutative,

but not central in L, hence for H = L∗ there is an exact sequence of fusion categories

rep G → H- mod → C(Γ )

which is not induced by an action of the group G on C(Γ ) by tensor autoequivalences. �

5.5 The braided case: modularization revisited

Definition 5.27. A bimonad T on a braided category C is braided if the following dia-

gram is commutative:

T(X ⊗ Y)

T2(X,Y)

��

T(cX,Y)

��

T(X) ⊗ T(Y)

cT(X),T(Y)

��

T(Y ⊗ X)

T2(Y,X)

�� T(Y) ⊗ T(X)

for any objects X, Y of C, where c denotes the braiding of C. �

 at U
niversidad N

acional de C
?rdoba on January 25, 2011

im
rn.oxfordjournals.org

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


44 A. Bruguières and S. Natale

Remark 5.28. This is equivalent to saying that RX,Y = (ηY ⊗ ηX)cX,Y defines a R-matrix

for T . �

Proposition 5.29. Let T be a bimonad on a braided category C, with forgetful func-

tor U : CT → C. There exists a braiding on CT such that U is braided if and only if T is

braided. �

Proof. Since U is faithful, a braiding c̃ on CT such that U is braided is necessarily

given by

c̃(M,r),(N,s) = cM,N for any T-modules (M, r), (N, s).

Now the morphism c̃ so defined is T-linear if and only if T is braided; and if such is the

case, it is a braiding on CT . �

Proposition 5.30. A braided k-linear right exact normal Hopf monad on a braided ten-

sor category C over a field k is cocommutative. �

Proof. Denoting by c the braiding of C, we have T2(X, 1) = cT(1),T(X)T2(1, X) for any object

X of C, hence (g ⊗ idT(X))T2(1, X) = (idT(X) ⊗ g)T2(X, 1) for any g : T(1) → 1 by functoriality

of c. �

Corollary 5.31. Let F : C →D be a braided tensor functor between braided tensor cate-

gories over an algebraically closed field k admitting a left adjoint, and assume that F is

normal and dominant. Assume that char k does not divide FPind F . Then F is an equiv-

ariantization. More precisely, there exists a finite group G acting on D by braided tensor

autoequivalences and a braided tensor equivalence C →DG over D, that is, such that the

following triangle commutes up to a natural isomorphism of tensor functors:

C
�

��

F ���
��

��
��

�
DG

U
��

D,

where U : DG →D is the forgetful functor. �
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Proof. The tensor functor F being monadic, with Hopf monad T , we have an equiv-

alence of tensor categories C →DT over C. The Hopf monad T is k-linear right exact,

faithful, normal, and by Proposition 5.30, it is cocommutative. By Corollary 5.25, T is

the Hopf monad of an action of a finite group G on D by tensor autoequivalences and

we have C �DG . Moreover, T is braided, which means that G acts by braided autoequiv-

alences. �

Example 5.32. Let 1 → G ′′ ι→ G
π→ G ′ → 1 be an exact sequence of finite groups, with its

associated exact sequence of tensor categories

rep G ′ π∗−→ rep G
ι∗−→ rep G ′′.

The tensor functor i∗ : rep G → rep G ′′ is symmetric, so its monad T is cocommutative

and i∗ is an equivariantization functor. In fact, T is the monad on rep G ′′ introduced

in Example 5.10, and it is the monad of the action of G ′ on rep G ′′ by conjugation. The

tensor equivalence rep G � (rep G ′′)G ′
is a special case of the one established in [27] for

cocentral extensions of finite-dimensional Hopf algebras. �

Example 5.33. Let C be a premodular category, that is, a ribbon fusion category. In

particular, C is braided. See Section 7.1. Recall that an object X of C is called transparent

if and only if cY,XcX,Y = idX⊗Y for all objects Y of C, where c denotes the braiding in C.

Let T ⊆ C be the category of transparent objects of C. Assume C is modularizable, and

let F : C → C̃ be its modularization (see [6]). The modularization functor is dominant and

normal, and we have KerF = T (see [6, Propositions 2.3 and 3.2]), hence an exact sequence

of fusion categories

T �� C
F

�� C̃.

Moreover, F is a braided functor; it is therefore an equivariantization by Corollary 5.31.

In fact, T is a tannakian category, so that we have a symmetric tensor equivalence T �
rep G, G being a finite group, G acts on C̃ and C = C̃G . Modularization is therefore a

special case of the de-equivariantization procedure described in [17, Subsection 2.6]. �

Proposition 5.34. Let D be a modular category over an algebraically closed field k of

characteristic 0, with twist θ . The following data are equivalent:

(A) A premodular category C and a modularization functor C →D;
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(B) A k-linear, faithful, normal braided semisimple Hopf monad T on D pre-

serving the twist, that is, such that θT = T(θ). �

Proof. Let T be a k-linear, faithful, normal braided semisimple Hopf monad on D, and

let U : DT →D be the forgetful functor. Then DT is a braided fusion category, and U is a

dominant braided tensor functor. One verifies easily that the condition that T preserves

the twist is equivalent to saying that there exists a twist θ̃ on DT which is preserved by

U . So if T preserves the twist, DT is premodular and U is a modularization. Conversely,

let F : C →D be a modularization. Its monad T is a k-linear, faithful, normal braided

semisimple Hopf monad, and since F preserves twist, T preserves the twist of D. �

6 Exact Sequences and Commutative Central Algebras

The modularization F : C → C̃ of a modularizable premodular category C is constructed

in [6] as the free module functor C → modC(A), A being a commutative algebra in the

braided category C. More precisely, A is a trivializing algebra of the full subcategory

T ⊂ C of transparent objects of C.

In this section, we show that, more generally, any dominant functor F : C →D
between tensor categories admitting an exact right adjoint is, up to tensor equivalence,

a free module functor C → modC(A), A being a certain commutative algebra in the center

of C called the induced central algebra of F . Such a functor is normal if and only if A is

self-trivializing.

6.1 Induced central algebra of a tensor functor

If A is an algebra in a tensor category C over k, with product m : A⊗ A→ A and unit

u: 1 → A, we denote by modC A the abelian k-linear category of right A-modules in C. The

forgetful functor VA : modC A→ C is k-linear exact, and has a left adjoint, namely the free

A-module functor FA : C → modC A defined by X �→ (X ⊗ A, idX ⊗m).

We say that A is semisimple in C if every right A-module in C is a direct factor

of F (X) for some object X of C. Note that if A is semisimple and C is semisimple, then

modC A is semisimple too.

A central algebra of C is an algebra A in C endowed with a half-braiding σ :

A⊗ idC
∼−→ idC ⊗A such that the pair (A, σ ) is an algebra in the categorical center Z(C)

of C. This means that the product m and unit u of A are morphisms of half-braidings,
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that is

σX(m ⊗ idX) = (idX ⊗m)(σX ⊗ idA)(idA ⊗σX) and σX(u⊗ idX) = idX ⊗u.

A central algebra (A, σ ) is commutative if mσA = m.

Now let (A, σ ) be a commutative central algebra of C. We define a tensor product

⊗A on modC A, as follows. Given two right A-modules M and N, with A-actions r : M ⊗
A→ M and s : N ⊗ A→ N, the tensor product M ⊗A N is the coequalizer of the pair of

morphisms

(r ⊗ idN, idM ⊗sσN) : M ⊗ A⊗ N ⇒ M ⊗ N.

It is a right A-module, with action t : M ⊗A N ⊗ A→ M ⊗A N defined by t(π ⊗ A) =
π(idM ⊗s), where π is the canonical epimorphism M ⊗ N → M ⊗A N.

One verifies that ⊗A defines a monoidal structure on modC A, with unit object

F (1) = A. We denote by modC(A, σ ) this monoidal category. The functor FA admits a

natural structure of strong monoidal functor from C to modC(A, σ ), which we denote

by FA,σ .

A tensor functor admitting a right adjoint defines a central coalgebra.

Proposition 6.1. Let F : C →D be a tensor functor between tensor categories over a field

k, admitting a right adjoint R. Then A= R(1) has a natural structure of commutative cen-

tral algebra in C, with half-braiding denoted by σ . Moreover, if R is faithful exact, then

modC(A, σ ) is a tensor category and we have a tensor equivalence K : D → modC(A, σ )

such that the following triangle of tensor functors commutes up to tensor isomorphism:

C
F

��

FA,σ
		�

��������� D

K
��

modC(A, σ ) �

Definition 6.2. The commutative central algebra (A, σ ) associated with a tensor func-

tor F admitting a right adjoint is called the induced central algebra of F . �

Proof. Let F : C →D be a strong monoidal functor between rigid categories, and let R :

D → C be a right adjoint of F . Note that R is unique up to unique isomorphism. Then the

adjunction F � R is monoidal, which means that R has a natural structure of monoidal

functor such that the adjunction morphisms are monoidal. Considering the opposite
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monoidal categories Cop and Dop (with opposite composition and tensor products), we

have a comonoidal adjunction Rop � F op, which is in fact a Hopf adjunction because Cop

and Dop are rigid. The induced coalgebra of this Hopf adjunction is, by [9, Theorem

6.5], a cocommutative central coalgebra in Cop, that is, a commutative central algebra

(A, σ ) in C.

As an algebra, A= R(1) with product R2(1, 1) and unit R0, where (R2, R0) denotes

the monoidal structure of R. The half-braiding σ : A⊗ idC
∼−→ idC ⊗A is defined by the

following commutative diagram:

R1 ⊗ X
σX

��

∼



													

idR1 ⊗ηX

��

X ⊗ R1

ηX⊗idR1

��

∼

��















R1 ⊗ RF X
R2(1,F X)

�� RF X RF X ⊗ R1,
R2(F X,1)

��

where X is an object of C, ηX : X → RF X is the adjunction unit, and the slanted arrows

are the Hopf isomorphisms of the Hopf adjunction, see [9].

Now assume that R is faithful exact. In particular, R and Rop are conservative.

By [9, Theorem 6.6], D is monoidally equivalent to modC(A, σ ) via the k-linear functor

K : D → modC(A, σ ), Y �→ (R(Y), R2(Y, 1)), and FA,σ � K F as tensor functors. �

Example 6.3. Let H be a finite-dimensional Hopf algebra over a field k. The forget-

ful functor U : comod-H → vectk admits a right adjoint R=? ⊗ H . The induced central

algebra (A, σ ) is a commutative algebra in Z(H- mod), that is, a commutative algebra in

D(H)- mod. As an algebra in comod-H , A= H with right coaction Δ. The half-braiding

σ is defined, in Sweedler’s notation, by

σ(V,∂) :

{
A⊗ V → V ⊗ A

h ⊗ x �→ x(0) ⊗ S(x(1)) hx(2)

for any right H-comodule (V, ∂). We have modcomod-H (A, σ ) � vectk as tensor

categories. �

Example 6.4. Let f : H → H ′ be a surjective morphism between finite-dimensional Hopf

algebras over a field k, and denote by F = f∗ : comod-H → comod-H ′ the dominant tensor

functor defined by f . It has a right adjoint R=? �H ′
H , which is exact because H is H ′-

coflat. The induced central algebra (B, σ ′) of F is a commutative algebra in Z(comod -H).

We have B = R(1) = k �H ′
H = H co H ′ ⊂ H , where H is seen as a commutative central alge-

bra of comod-H (see Example 6.3). According to Proposition 6.1, we have a tensor
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equivalence:

modcomod-H (B, σ ′) � comod-H ′.

See also [30, Theorem II]. �

Commutative central algebras define tensor functors.

Proposition 6.5. Let C be a tensor category over a field k, and let (A, σ ) be a commuta-

tive central algebra of C such that HomC(1, A) = k. Then:

(1) If modC(A, σ ) is rigid, it is a tensor category and the free module functor

FA,σ : C → modC(A, σ ) is a dominant tensor functor, whose induced central

algebra is (A, σ ).

(2) If A is semisimple as an algebra in C, then modC(A, σ ) is rigid.

(3) If C is a fusion category, A is semisimple and k is algebraically closed, then

modC(A, σ ) is a fusion category.
�

Proof. Since (A, σ ) is a commutative algebra in Z(C), modC A admits a monoidal struc-

ture denoted by modC(A, σ ), with tensor product ⊗A and unit object F (1) = A, hence a

strong monoidal functor FA,σ : C → modC(A, σ ). Set D = modC(A, σ ).

The category D is abelian k-linear, it has finite-dimensional Homs, and objects

have finite length in D. Moreover, its tensor product ⊗A is k-bilinear, and EndD(1) =
HommodC A(A, A) � HomC(1, A) � k by assumption. If D is rigid, it is a tensor category

and FA,σ is a dominant tensor functor. Its right adjoint R is the forgetful functor. Its

induced central algebra is R(1) = A, with the half-braiding defined in Proposition 6.1,

which is in fact σ , hence Part (1).

Since FA,σ is strong monoidal, all objects of the form FA,σ (X) have a left and a

right dual. If A is semisimple, then any object of D is a direct factor of FA,σ (X) for some

X in C, so it also has a left and a right dual, so D is rigid, hence Part (2).

If k is algebraically closed, C is a fusion category, and A is semisimple, then

D is semisimple and finite because FA,σ is dominant, so it is a fusion category, hence

Part (3). �

Corollary 6.6. Let C be a fusion category over an algebraically closed field k.

Then the following data are equivalent:

(A) A commutative central algebra (A, σ ) of C such that A is a semisimple

algebra in C and HomC(1, A) = k;

(B) A dominant tensor functor F : C →D, where D is a fusion category over k. �
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Proof. According to Proposition 6.5, a commutative central algebra (A, σ ) as in (A) gives

rise to a dominant tensor functor FA,σ : C → modC(A, σ ), and modC(A, σ ) is a fusion cate-

gory over k. Conversely, let D be a fusion category and let F : C →D be a dominant tensor

functor. Then F admits a right adjoint R, which is exact because D is semisimple, and

faithful because F is dominant. Thus we may apply Proposition 6.1. Let (A, σ ) be the

induced central algebra of F . Then F is equivalent to FA,σ , in the sense that there exists

a tensor equivalence K : D → modC(A, σ ) such that FA,σ � K F as tensor functors. �

6.2 Normal functors and trivializing algebras

We have seen that dominant tensor functors between fusion categories are classified by

their induced central algebras. We now characterize similarly normal tensor functors

between fusion categories.

Let Abe an algebra in a tensor category C. We say that Atrivializes an object X of

C if FA,σ (X) � FA,σ (1)n for some natural integer n, and A is self-trivializing if it trivializes

its underlying object.

The notion of trivializing algebra plays a central role in Deligne’s internal con-

struction of symmetric fiber functors [12] and supersymmetric fiber functors [13].

Proposition 6.7. Let F : C →D be an exact tensor functor between tensor categories

admitting an exact right adjoint, and let (A, σ ) be its induced central algebra (in C).

Then F is normal if and only if the algebra A is self-trivializing. If such is the case,

KerF = 〈A〉 ⊂ C so that we have an exact sequence of tensor categories:

〈A〉 −→ C −→D.
�

Proof. Denote by R a left adjoint of F , so that A is isomorphic to R(1). According to

Proposition 3.5, F is normal ⇐⇒ F R(1) is trivial ⇐⇒ FA(A) is trivial by Proposition 6.1.

Now assume A is self-trivializing. Since KerF is an abelian subcategory of C containing

A and stable under subobjects and quotients, it contains 〈A〉 by definition. Conversely,

if X is in KerF = KerFA,σ
, then X ⊗ A� An and 1 ↪→ A so X ↪→ An, hence X is in 〈A〉. �

Corollary 6.8. An exact sequence of tensor categories C′ −→ C F−→ C ′′ such that F has a

faithful right adjoint is equivalent to the exact sequence of tensor categories

〈A〉 �� C
FA,σ

�� MODC(A, σ ),

where (A, σ ) denotes the induced central algebra of F . �
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Proposition 6.9. Let F : C →D be a tensor functor between fusion categories, and let

(A, σ ) be its induced central algebra. Then any simple object of KerF is a direct factor of

A. The functor F is normal if and only if A is self-trivializing, and if such is the case,

then we have

A�
⊕

X∈ΛKerF

XFPdim X,

and in particular FPdim(KerF ) = FPdim(A). �

Proof. The functor F can be decomposed as F = iF0, where i : C ⊂D is the inclusion

of the dominant image of E , that is, the full subcategory of D whose objects are direct

summands of elements of the image of F , and F0 : C → E is the dominant tensor functor

induced by F . Then F is normal if and only if F0 is normal, and (A, σ ) is the induced cen-

tral algebra of F0, so by Proposition 6.7, F is normal if and only if A is self-trivializing.

For X ∈ ΛC we have by adjunction HomD(F (X), 1) = HomC(X, A). In particular, if

F trivializes X, then X is a direct factor of A. Assume that F is normal. Then F trivializes

A, so for any simple direct factor X of A, we have F (X) � 1n, with n= FPdim X. Also,

n= dim Hom(F (X), 1) = dim Hom(X, A) = mX,A. Hence, A= ∑
X XFPdim X, where X ranges

over the set of classes of simple factors of A, that is, ΛKerF . �

Corollary 6.10. Let C be a finite tensor category. The following are equivalent:

(A) Fiber functors for C;

(B) Commutative central algebras (A, σ ) of C such that A trivializes all objects

of C and satisfies HomC(1, A) = k. �

Proof. A fiber functor for C is just a tensor functor ω : C → vectk. Such a tensor func-

tor is automatically dominant and normal; it admits a right adjoint R, C being finite;

and R is faithful (because ω is dominant) and exact, vectk being semisimple. Thus,

by Proposition 6.1, ω is classified by its induced central algebra (A, σ ). Conversely, let

(A, σ ) be a commutative central algebra which trivializes all objects of C and satisfies

Hom(1, A) = k. Then D = MODC(A, σ ) is tensor equivalent to vectk, and

ω :

{
C → vectk,

X �→ HomD(1, FA,σ (X)) � HomC(1, X ⊗ A)

is a fiber functor for C. �
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Remark 6.11. In particular, let H be a finite-dimensional Hopf algebra, with product

m, unit u, coproduct Δ, and counit ε. The forgetful functor U : comod -(H) → vectk is a

fiber functor for comod -(H). The induced central algebra (A, σ ) of U is HH , seen as a

central algebra of comod-H (see Example 6.3), and we have U � Homcomod-H (1, ? ⊗ HH )

as fiber functors. �

6.3 Equivariantizations in terms of central commutative algebras

Let F : C →D be a dominant functor between tensor categories admitting an exact right

adjoint, and let (A, σ ) be its induced central algebra, so that D � modC(A, σ ). Denote by

G = Aut(A, σ ) the group of automorphisms of the central algebra (A, σ ) (that is, algebra

automorphisms compatible with the half-braiding σ ). The group G acts on the category

modC(A, σ ) by tensor autoequivalences (see [17, Proposition 2.10]), setting:

ρg :

{
modC(A, σ ) → modC(A, σ )

(X, r) �→ (X, r(idX ⊗a−1
g )).

Moreover, for each g ∈ G, let ug = idX ⊗a(g) : ρgFA(X)
∼−→ FA(X). This defines a tensor

functor over D:

F G
A :

{
C → MODC(A, σ )G

X �→ (FA(X), (ug)g∈G).

Hence, via the tensor equivalence D � modC(A, σ ), we get an action of Aut(A, σ )

on the tensor category D and a tensor functor F G : C →DG such that the following trian-

gle of tensor functors commutes:

C
F G

��

F 

�
��

��
��

�
DG

UG����
��

��
��

D

Lemma 6.12. Assume that F is normal. Denote by H its induced Hopf algebra, and by

G(H) the group of group-like elements of H . Then Aut(A, σ ) is isomorphic to a subgroup

of G(H), and in particular its order divides dimk H = dimk EndC(A). �
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Proof. Recall that F is monadic and, denoting by T its monad, we have a canonical

tensor equivalence C ∼−→DT which sends (A, σ ) to the left dual of the induced central

coalgebra (Ĉ , σ̂ ) of T . In particular, Aut(A, σ ) is isomorphic to the group of automor-

phisms of (Ĉ , σ̂ ), which is a subgroup of the group Aut(Ĉ ) of automorphisms of the

coalgebra Ĉ . Now, as a coalgebra of D, Ĉ = (T(1), T2(1, 1), T0), with T-action μ1. Since F

is normal, we have T(1) � H ⊗ 1, and, via the canonical tensor equivalence 〈1〉 � vectk,

Ĉ is just the coalgebra H with H acting by left multiplication, whose group of auto-

morphisms is G(H). Thus, Aut(A, σ ) ⊂ G(H), and since H is free as a kG(H) module,

then the order of G(H) divides dimk H . We also have by adjunction H � HomD(1, T(1)) �
EndDT (Ĉ ) � EndC(A), hence the lemma is proved. �

Definition 6.13. Let X be a trivial object of a tensor category C. There is a unique half-

braiding τ : X⊗? →? ⊗ X such that (X, τ ) is a trivial object in the center Z(C) of C. This

half-braiding is called the trivial half-braiding for X. �

Lemma 6.14. Let F : C →D be a dominant tensor functor between tensor categories

admitting a right adjoint, let (A, σ ) be its induced central algebra and T its monad.

Denote by τ the trivial half-braiding of the trivial object F (A) of D. Then the following

assertions are equivalent:

(i) The normal Hopf monad T is cocommutative;

(ii) For any X object of C, the following triangle is commutative:

T(X)

T2(1,X)

��

T2(X,1)

��

T(1) ⊗ T(X)

τ̂T(X)
��












T(X) ⊗ T(1)

(iii) For any object X of C, F (σX) = τF (X). �

Proof. Since T(1) is trivial, (ii) is equivalent to:

for all g : T(1) → 1, (idT(X) ⊗g)T2(X, 1) = (idT(X) ⊗g)τ̂T(X)T2(1, X),
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and (idT(X) ⊗g)τ̂T(X)T2(1, X) = (g ⊗ idT(X))T2(1, X) by functoriality, τ̂ being a trivial half-

braiding, hence (i) ⇐⇒ (ii).

Now let us prove (ii) ⇐⇒ (iii). Since F is monadic, we may assume that C =DT ,

F being the forgetful functor U : DT →D. Let (Ĉ , σ̂ ) be the induced central coalgebra

of T . Recall that (Ĉ , σ̂ ) is dual to (A, σ ). Thus, denoting by T̂ the trivial half-braiding of

U Ĉ = T(1), (iii) is equivalent to (iii)′: Fσ̂ = τ̂F . Since T is a Hopf monad, for every T-module

(M, r) we have isomorphisms

Hl
1,(M,r) = (idT(1) ⊗r)T2(1, M) : T(M)

∼−→ T(1) ⊗ M,

Hr
(M,r),1 = (r ⊗ idT(1))T2(M, 1) : T(M)

∼−→ M ⊗ T(1),

and by definition σ̂M,r = Hr
(M,r),1Hl −1

1,(M,r).

From the definition of σ̂ and the axioms of a bimonad, we deduce that for X in D
the following diagram is commutative:

T(1) ⊗ T(X)

σ̂T X,μX

��

T(X)

T2(1,T(X)) ��

T2(T(X),1)
��

T(ηX)

�� T2(X)

H
l
1,(T X,μX )

������������

H
r
(T X,μX ),1

������������

T(X) ⊗ T(1),

from which we deduce that (iii)′ ⇒ (ii). Conversely, if (ii) holds, the following diagram

commutes:

T(1) ⊗ T(M)

idT(1) ⊗r

��

τ̂T(M)

��

T(1) ⊗ M

τ̂M

��

T(M)

T2(1,M) �����������

T2(M,1)
�����������

T(M) ⊗ T(1)
r⊗idT(1)

�� M ⊗ T(1),

so τ̂M = Hr
(M,r),1Hl −1

1,(M,r) = σ̂(M,r), hence (iii)′ holds. Hence, the proposition is proved. �
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Proposition 6.15. Let F : C →D be a dominant tensor functor between tensor categories

admitting an exact right adjoint, and let (A, σ ) be its induced central algebra. Then F

is tensor equivalent to an equivariantization if and only if the following conditions are

met:

(1) The tensor functor F is normal, that is, F (A) is trivial;

(2) For every object X of C, F (σX) = τF (X), where τ is the trivial half-braiding of

F (A);

(3) The induced Hopf algebra H of F is split semisimple.

If such is the case, Aut(A, σ ) is isomorphic to G(H) and C �DAut(A,σ ) over D. �

Proof. Let T be the monad of F . Assume that F is equivalent to an equivariantization,

that is, there exists an action ρ of a finite group Γ on D by tensor autoequivalences,

and a tensor equivalence DΓ ∼−→ C over D. We may assume that T = TΓ , F being the for-

getful functor UΓ . Then, by Theorem 5.21, T is normal, cocommutative, and its induced

Hopf algebra is kΓ . The cocommutativity of T implies Condition (ii) in Lemma 6.14. The

induced Hopf algebra of UΓ is kΓ , and we have Γ = G(H). Let (A, σ ) be the induced

central algebra of TΓ . According to Lemma 6.12, the group of automorphisms of the

algebra A is Γ , and its order is the dimension of EndC(A). We show that the group of

automorphisms of (A, σ ) is Γ . Observe first that if F : C →D is a dominant tensor func-

tor between tensor categories admitting an exact right adjoint R, and φ : D →D′ is a

tensor equivalence, then the induced central algebra of φF is canonically isomorphic to

that of F , and we may therefore identify them. Secondly, by construction of the equiva-

riantization, we have for each γ ∈ Γ a canonical isomorphism ργUΓ � UΓ . This induces

an isomorphism between the induced central algebra of UΓ and that of ργUΓ , that is,

an automorphism of (A, σ ). Thus, we have Aut(A, σ ) = Aut(A) � G(H) and its order is the

dimension of EndC(A).

Conversely, assume Conditions (i), (ii), and (iii) are satisfied. Condition (ii) implies

that T is cocommutative by Lemma 6.14 and, by Theorem 5.24, T is the monad of a group

action on C. �

6.4 Normal fusion subcategories

Recall that every normal dominant tensor functor F : C → C ′′ between tensor categories

gives an exact sequence of tensor categories KerF → C F→ C ′′. This motivates the following

definition.
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Definition 6.16. Let C be a fusion category. A full fusion subcategory C ′ of C is called

normal if there exists a fusion category C ′′ and a normal dominant tensor functor

F : C → C ′′ such that the inclusion C ′ ⊆ C induces an equivalence C ′ � KerF . �

The next proposition characterizes normal subcategories in term of trivializing

algebras.

Proposition 6.17. Let C be a fusion category over an algebraically closed field k, and

let C ′ ⊂ C be a full fusion subcategory. Then, C ′ is a normal subcategory of C if and only

if there exists commutative central algebra (A, σ ) of C satisfying the following condi-

tions:

(1) A is a semisimple algebra in C;

(2) Hom(1, A) � k;

(3) A belongs to C′ and trivializes all objects of C ′.

In that case, modC A is a fusion category over k and we have an exact sequence of fusion

categories

C ′ → C F→ modC(A, σ ). �

Proof. This results immediately from Corollary 6.6 and Proposition 6.7. �

6.5 Simple fusion categories

We define a simple fusion category in terms of exact sequences, as follows.

Definition 6.18. A fusion category C is simple if C is not tensor equivalent to vectk and

for every exact sequence of fusion categories

C ′ → C → C ′′,

either C ′ or C ′′ is tensor equivalent to vectk. �

Remark 6.19. A fusion category C is simple if and only it C 
� vectk and for any normal

dominant tensor functor F : C →D, we have D � vectk or F is an equivalence. This is

because such a functor F fits in an exact sequence KerF → C →D. �
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Note that a different notion of a simple fusion category was introduced in [17,

Definition 9.10]: a fusion category is simple in the sense of [17] if it has no proper fusion

subcategories, that is, vectk and C are the only replete fusion subcategories of C. The

next proposition compares this definition and Definition 6.18.

Proposition 6.20. If a fusion category C is simple in the sense of [17], it is also simple

in the sense of Definition 6.18. �

Proof. Let C ′ f→ C F→ C ′′ be an exact sequence of fusion categories, with C 
� vectk. If C
has no proper fusion subcategories, then either C ′ � vectk or f : C ′ → C is an equivalence.

One concludes with Lemma 3.8. �

The converse of Proposition 6.20 is false. Indeed, we deduce directly from the

results of Section 4.1.

Proposition 6.21. Let C be a pointed fusion category, with Picard group G. Let α ∈
H3(G, k×) be the cohomology class defining C, so that C � C(G, α). Then

(1) The category C is simple in the sense of [17] if and only if G is a cyclic group

of prime order;

(2) The category C is simple if and only if there is no proper distinguished sub-

group H � G such that the restriction of α to H is trivial.

In particular, if G is simple, C is simple, but it is not simple in the sense of [17] except if

G � Z p, p prime. �

However, both notions coincide when restricted to categories of representations

of finite groups, as follows from the next proposition.

Proposition 6.22. Let G be a finite group such that k is a splitting field for G and char(k)

does not divide the order of G. Then the following assertions are equivalent:

(i) The group G is simple.

(ii) The fusion category C(G, 1) is simple.

(iii) The fusion category rep G is simple.

(iv) The fusion category rep G is simple in the sense of [17]. �
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Proof. The equivalence between (i) and (ii) is a special case of Proposition 6.21. We

have (iii) ⇒ (i) by Corollary 3.14. Now if G is a simple group, then rep G has no proper

fusion subcategories, hence (i) ⇒ (iv), and finally (iv) ⇒ (iii) by Proposition 6.20, hence

the proposition is proved. �

7 Braided Fusion Categories of Odd Square-free Dimension

7.1 Braided categories of odd Frobenius–Perron dimension

Let C be a fusion category over a field k. Recall that the Frobenius–Perron dimension of

C is FPdim C := ∑
X∈ΛC (FPdim X)2.

On the other hand, the global dimension of C is defined as dim C := ∑
X∈ΛC |X|2,

where |X|2 ∈ k× denotes the squared norm of the simple object X, see [16, Definition 2.2].

When FPdim C = dim C, C is called pseudo-unitary.

If C is a pivotal fusion category, one defines the the categorical left dimension

diml X and right dimension dimr X of an object X of C. For X simple, one has |X|2 =
diml X dimr X, so that dim C = ∑

X∈ΛC diml X dimr X. The category C is spherical if left

and right dimensions coincide; in that case, they are denoted by dim, and we have dimC =∑
X∈ΛC (dim X)2.

A premodular category is a braided spherical fusion category. Equivalently, it is

a ribbon fusion category, that is, a fusion category equipped with a braiding and a twist

(also called a balanced structure) [6].

Assume k = C. Then C is pseudo-unitary if FPdim C = dim C. If such is the case,

then by [16, Proposition 8.23], C admits a unique spherical structure with respect to

which the categorical dimensions of simple objects are all positive. We call it the canon-

ical spherical structure. For this structure, the categorical dimension of an object coin-

cides with its Frobenius–Perron dimension.

If C is a fusion category on C such that FPdim C is an integer, then C is pseudo-

unitary by [16, Proposition 8.24]. Moreover, FPdim C ′ is an integer for any full fusion

subcategory C ′ ⊆ C, because FPdim C ′ = ∑
X∈ΛC′ (FPdim X)2 and for each X, FPdim X is the

square root of a natural integer by [16, Proposition 8.27]. In particular, every full fusion

subcategory of C is pseudo-unitary.

Lemma 7.1. Let C be a symmetric fusion category over a field k whose Frobenius-Perron

dimension is an odd natural integer. Then any twist on C is trivial. �

Proof. Since C is symmetric, a twist θ on C is a monoidal automorphism of idC . Since

θ2 = idC , θ defines a {±1}-graduation on C, with C1 ⊂ C being the full tensor subcategory
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of objects X such that θX = 1. If C1 
= C, we have FPdim C = 2 FPdim C1, which contradicts

the fact that FPdim C is odd, hence C1 = C and θ = 1. �

Lemma 7.2. Let C be a braided fusion category over C such that FPdim C is an

odd natural integer. Then C, endowed with its canonical spherical structure, is

modularizable. �

Proof. The category C is pseudo-unitary. Equipped with its canonical spherical struc-

ture, it is a premodular category and we have dim X = FPdim X ≥ 0 for any object X of

C. Let T ⊂ C be the full tensor subcategory of transparent objects of C; it is a symmet-

ric fusion category [6, Section 2]. By [1, Theorem 7.2], the categorical dimensions of the

objects of T are integers. Since FPdim C is a natural integer, so is FPdim T . By [16, Propo-

sition 8.15], FPdim C/ FPdim T is an algebraic integer, so FPdim T divides FPdim C. Thus

FPdim T is an odd natural integer as well. By Lemma 7.1, we have θX = idX for all X in

T . By [6, Théorème 3.1], C is modularizable, hence the lemma is proved. �

7.2 Proof of Theorem 1.1

In order to prove the theorem, we may assume that the ground field is C. Indeed, if C is

a fusion category over a field k of characteristic 0, then C is defined over the algebraic

closure Q̄ ⊂ k of Q, which we may imbed into C. We deal first with the modular case.

Lemma 7.3. Let C be a modular category whose Frobenius–Perron dimension is a

square-free odd integer N. Then there exists an abelian group G of order N such that C
is equivalent to the category of G-graded vector spaces C(G, 1). �

Proof. By [17, Theorem 2.11 (ii)], for X ∈ ΛC we have FPdim X = 1, so X is invertible,

hence C is a pointed category. Thus C = C(G, α) for some finite group G and some coho-

mology class α ∈ H3(G, k×).

Now braided and ribbon structures on a pointed fusion category C = C(G, α) are

classified in [19, 7.5] in terms of group cohomology. (See also [14, 2.4].) The existence of a

braiding implies that G is abelian. Moreover, by [19, Proposition 7.5.3 iii)], given a twist

θ on C, the class α is trivial if and only if θ is equal to 1 on the subgroup 2G := {g ∈ G :

g2 = 1}.
In the present case, we conclude that G is an abelian group of odd order N, so

2G = 1 and therefore α is trivial, hence the lemma holds. �
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Lemma 7.4. A braided fusion category C whose Frobenius–Perron dimension is an odd

square-free integer N admits a fiber functor. �

Proof. By Lemma 7.2 the category C, endowed with its canonical spherical structure,

is modularizable. In particular, the full subcategory T ⊂ C of transparent objects of C
is tannakian; we have T � rep G as symmetric tensor categories, G being a finite group,

and we have an exact sequence

T �� C �� C̃ ,

where C̃ is a modular category, G acts on C̃ by braided tensor autoequivalences, and

C � C̃G as braided tensor categories, see Example 5.33.

By Proposition 4.10, FPdim C̃ = N/ FPdim T and FPdim T is a natural integer, so

FPdim C̃ is an odd square-free integer. By Proposition 7.3, C̃ admits a fiber functor, and

so does C. �

So, C is tensor equivalent to H- mod, where H is a quasitriangular Hopf algebra

whose dimension is odd and square-free. By [26, Theorem 1.2], such a Hopf algebra is

isomorphic to a group algebra, hence the theorem is proved.
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