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1. Introduction

In recent years, frame theory for Hilbert spaces has been thoroughly developed; see e.g. [1-4]. For a fixed Hilbert space
(#, (, )),aframe for # is a (generally overcomplete) family of vectors ¥ = {fi}i; in # which satisfies the inequalities

AllfI? < Z [(f.fi)l* < BIfI?, foreveryf e 7, (1)
iel

for positive constants 0 < A < B. The (bounded, linear) operator S : # — J# defined by

Sf=Y _(ffi)fi fex (2)
iel
is known as the frame operator associated to #. The inequalities in (1) imply that S is a (positive) boundedly invertible
operator, and it allows to reconstruct each vector f € # in terms of the family # as follows:

F=Y(FST )= (F ) S (3)
iel iel
The above formula is known as the reconstruction formula associated to ¥ . Notice that if # is a Parseval frame, i.e. if S = I,
then the reconstruction formula resembles the Fourier series of f associated to an orthonormal basis 8 = {by}xex of #:

f=Y {f.b) b

keK
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but the frame coefficients {{f, f; ) }ic; given by & allow to reconstruct f even when some of these coefficients are missing
(or corrupted). Indeed, each vector f € # may admit several reconstructions in terms of the frame coefficients as a
consequence of the redundancy of #. These are some of the advantages of frames over (orthonormal, orthogonal or Riesz)
bases in signal processing applications, when noisy channels are involved; e.g., see [5-7].

Given a Krein space (#, [ , ]) with fundamental symmetry J, a J-orthonormalized system is a family & = {e;}i¢; such that
[ei,ej] = X8, fori,j € I. A J-orthonormal basis is a J-orthonormalized system which is also a Schauder basis for #. If
& = {e;}ics is a J-orthonormal basis of # then the vectors in # can be represented as follows:

f=) alf.ele [e (4)
iel
whereo; = [e;, e; | = 1.

J-orthonormalized systems (and bases) are intimately related to the notion of dual pair. In fact, each J-orthonormalized
system generates a dual pair, i.e. a pair (£, £_) of subspaces of # such that £, is J-nonnegative, .£_ is J-nonpositive
and £, is J-orthogonal to £_, i.e. [£Ly,L_] = 0. Moreover, if & is a J-orthonormal basis of #, the dual pair
associated to & is maximal (with respect to the inclusion preorder) and the subspaces £, and .£_ are uniformly J-definite,
see [8, Chapter 1, Section 10]. Therefore the dual pair (£, £_) is a fundamental decomposition of #¢. Notice that,
considering the Hilbert space structure induced by the above fundamental decomposition, the J-orthonormal basis & turns
out to be an orthonormal basis in the associated Hilbert space. Therefore, each J-orthonormal basis can be realized as an
orthonormal basis of # (respect to an appropriate definite inner product).

Given a pair of maximal uniformly J-definite subspaces M and M _ of a Krein space #, where .M, is J-positive and M _
is J-negative, if ¥, = {fi}ic/, is a frame for the Hilbert space (M4, £[ , ]), itis easy to see that

F=F, UF,

is a frame for #¢, which produces an indefinite reconstruction formula:

f=Y alf.glfi=) olf.filg fex, (5)
iel iel
where o; = sgn[ f;, fi ] and {g;}ic; is some (equivalent) frame for # (see Example 3.4).

The aim of this work is to introduce and characterize a particular family of frames for a Krein space (#, [ , ]) - hereafter
called J-frames - that are compatible with the indefinite inner product [ , ], in the sense that an indefinite reconstruction
formula as in (5) holds (see Proposition 5.4).

Some different approaches to frames for Krein spaces and indefinite reconstruction formulas are developed in [9,10],
respectively. As it will be seen along this work, neither of the definitions below is comparable with the J-frame concept
introduced here.

In [10], the authors studied when a set of vectors {¢;};; in a Hilbert space # can be scaled to obtain a tight frame {j;} e/,
and hence a representation of the form

F=Y qlf. &) fexn (6)

Jjel

It turns out that representations as in (6) can exist even when some of the ¢’s are negative, and these correspond to
what they call “signed frames”. Indeed, a Bessel family {v;};¢; in a Hilbert space # is called a signed frame with signature
o = (0))jer, 0j € {—1, 1}, if there exist A, B > 0 with

AN <Y o |(f. v5)]* <BIFIP foreveryf e .

jel
Then, each f € # can be represented as
F=alf vi)le =) ailf. o)
jel jel

where {g;}jes is the dual signed frame (see [10, Theorem 2.4] for the details). Observe that this idea can be interpreted as
introducing an indefinite inner product (associated to the signature o = (0j)jer) in £, (I). But the sampling space # does
not need to be a Krein space.

On the other hand, in [9] the authors consider Krein spaces as sampling spaces. They say that a family {f, },en of vectors
in #¢ is a “frame for the Krein space (#, [ , ])” if there exist constants A, B > 0 such that

ANFIF < D ILFfalP < BIFI}, foreveryf e,
neN

where || ||; stands for the norm of the associated Hilbert space (#, { , )). Then, they show that a family {f;}yen in # is a
“frame for the Krein space (#¢, [ , ])”if and only if it is a frame (in the usual sense) for the Hilbert space (#¢, ( , )).Thisis
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the major difference between J-frames and this concept, because there are frames for the associated Hilbert space (#, { , ))
which are not J-frames for the Krein space (#, [ , ]) (see Example 3.3).

The paper is organized as follows: Section 2 contains some preliminaries results both in Krein spaces and in frame theory
for Hilbert spaces.

Section 3 presents the motivation and what is meant by a J-frame. Briefly, a J-frame for the Krein space (#,[, ]) isa
Bessel family # = {f;}i; with synthesis operator T : £,(I) — J¢ such that the ranges of T, := TP, and T_ := T(I — P) are
maximal uniformly J-positive and maximal uniformly J-negative subspaces, respectively, where I, = {i € I : [f;, fi] > 0}
and P, is the orthogonal projection onto ¢, (1), as a subspace of £, (I). It is immediate that J-orthonormal bases are J-frames,
because they generate maximal dual pairs [8, Chapter 1, Section 10.12].

Also, if F is a J-frame for #, observe that R(T) = R(T;) + R(T-) and recall that the sum of a maximal uniformly
J-positive and a maximal uniformly J-negative subspace coincides with J¢ [11, Corollary 1.5.2]. Therefore, each J-frame
is in fact a frame for # in the Hilbert space sense. Moreover, it is shown that ¥ = {f;}ic;, is a frame for the Hilbert space
(R(TP), [, D and F_ = {fi}ier\, is a frame for (R(T_), —[ , ]), i.e. there exist constants B_ < A_ < 0 < Ay < B, such
that

Aslf.f1< Y IUFfIP <BeIf.f] foreveryf € R(T). (7)
iel4

The optimal constants satisfying the above inequalities can be characterized in terms of T,. and the Gramian operators of
their ranges.

This section ends with a geometrical characterization of J-frames, in terms of the (minimal) angles between the uniformly
J-definite subspace R(T..) and the cone of neutral vectors of the Krein space.

Section 4 is devoted to study the synthesis operators associated to J-frames. Given a bounded operator T : £,(I) — J#¢,
it is described under which conditions T is the synthesis operator of a J-frame for the Krein space .

In Section 5 the J-frame operator is introduced. Given a J-frame ¥ = {f;}ic;, the J-frame operator S : # — J is defined
by

Sf= oilf filfi fex
iel
where o; = sgn([ f;, fi ]). This operator resembles the frame operator for frames in Hilbert spaces (see (2)), and it has similar
properties, in particular S = TT+ where T : £,(I) — # is the synthesis operator of ¥ and T™ denotes the J-adjoint of T
(see Proposition 5.2). Furthermore, each J-frame # = {f;};c; determines an indefinite reconstruction formula, which depends
on the J-frame operator S:

f=) oilf,STfilfi=) oilf.fi1S7'fi, foreveryf e #. 8)
iel iel
In this case the family {S~f;};; turns out to be a J-frame too.
Finally, it will be shown that the J-frame operator of a J-frame # is intimately related to the projection Q = Pr(r,)//r()
determined by the decomposition # = R(Ty) + R(T-), see Theorem 5.6.

2. Preliminaries

Along this work #¢ denotes a complex (separable) Hilbert space. If X is another Hilbert space then L(#, X) is the algebra
of bounded linear operators from J into X and L(#) = L(J#, J¢). The groups of linear invertible and unitary operators
acting on # are denoted by GL(#) and U (#), respectively. Also, L(#) ™ denotes the cone of positive semidefinite operators
acting on # and GL(#)" = GL(#) N L(#)™T.

IfT € L(#, X)thenT* € L(X, #) denotes the adjoint operator of T, R(T) stands for its range and N (T) for its nullspace.
Also, if T € L(#, X) has closed range, Tt € L(X, #) denotes the Moore-Penrose inverse of T.

Hereafter, § + 7 denotes the direct sum of two (closed) subspaces § and 7 of #¢. On the other hand, 8 & 7 stands for
the (direct) orthogonal sum of them and § © 7 := 8 N (8 N 7). The oblique projection onto § along 7, denoted by P /T
is the unique projection with range 4 and nullspace 7. In particular, Py := Py, /41 is the orthogonal projection onto 5.

The following result due to Douglas [12], characterizes operator range inclusions. It is quite often used along the paper.

Theorem 2.1. Given Hilbert spaces #¢, K1, K, and operators A € L(K, #) and B € L(K>, #), the following conditions are
equivalent:

(i) the equation AX = B has a solution in L(K3, K1);
(ii) R(B) < R(A);
(iii) there exists A > O such that BB* < LAA*.

In this case, there exists a unique D € L(K,, K1) such that AD = B and R(D) < R(A*); moreover, N(D) = N(B) and
ID|| = inf{A > 0 : BB* < AAA*}. The operator D is called the reduced solution of AX = B.

Corollary 2.2. Let T € L(#)*.If R(T) = R(T'/?), then R(T) is closed.
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2.1. Krein spaces

In what follows we present the standard notation and some basic results on Krein spaces. For a complete exposition
on the subject (and the proofs of the results below) see the books by Azizov and Iokhvidov [8] and Bognar [13] and the
monographs by Ando [11] and by Dritschel and Rovnyak [ 14].

Given a Krein space (#, [ , ]) with a fundamental decomposition # = J, + F¢_, the direct (orthogonal) sum of the
Hilbert spaces (#,, [, ]) and (#_, —[ , ]) is denoted by (#, ( , )).

Observe that the indefinite metric and the inner product of J¢ are related by means of a fundamental symmetry, i.e. a
unitary selfadjoint operator ] € L(J¢) which satisfies:

[x,yl={xy), xyedH

If #¢ and X are Krein spaces, L(#, K) stands for the vector space of linear transformations which are bounded respect to
the associated Hilbert spaces (¢, { , )4) and (X, (, )x). Given T € L(#, K), the J-adjoint operator of T is defined by
T+ = J4T*]5, where J, and J 5 are the fundamental symmetries associated to # and X, respectively. An operator T € L(#)
is J-selfadjoint if T = T™.

A vector x € H is J-positive if [x, x] > 0. A subspace 4§ of J# is J-positive if every x € §,x £ 0, is a J-positive vector. A
subspace 4§ of # is uniformly J-positive if there exists « > 0 such that

[x,x]> a|x||?, foreveryx e 4,

where || || stands for the norm of the associated Hilbert space (#, ( , )).
J-nonnegative, J-neutral, J-negative, J-nonpositive and uniformly J-negative vectors and subspaces are defined
analogously.

Remark 2.3. If £, is a closed uniformly J-positive subspace of a Krein space (#, [ , ]), observe that (8., [, ])is a Hilbert
space. In fact, the forms [ , ]Jand ( , ) are equivalent inner products on 4§, because

allfI> < [f.f1<IIfI?, foreveryf € 8.
Analogously, if 8_ is a closed uniformly J-negative subspace of (#¢,[ , 1), (§_, —[, ]) is a Hilbert space.
Proposition 2.4 ([8, Corollary 7.17]). Let J¢ be a Krein space with fundamental symmetry ] and $ a J-nonnegative closed
subspace of #. Then, 4§ is the range of a J-selfadjoint projection if and only if 4 is uniformly J-positive.
Recall that, given a closed subspace M of a Krein space #, the Gramian operator of .M is defined by:
Gy = PadPu,

where P, is the orthogonal projection onto M and] is the fundamental symmetry of #. If M is J-semidefinite, then M N M
coincides with & := {f € M : [f, f ] = 0}. Therefore, it is easy to see that

G(M = G(MG.A/-
Given a subspace 4§ of a Krein space #, the J-orthogonal companion to 4 is defined by
s =(xex:[xs]= 0 for every s € §}.

A subspace 8 of # is J-non-degenerated if § N 81 = {0}. Notice that if § is a J-definite subspace of # then it is J-non
degenerated.

2.2. Angles between subspaces and reduced minimum modulus

Given closed subspaces § and 7 of a Hilbert space #, the cosine of the Friedrichs angle between $ and 7 is defined by
c8,7)=sup{l{x,y)l:xe 80T, |xl=1yeT o4 |yl=1}.
It is well known that
c(8,7) <1< S+ Tisclosed < c(8,71) < 1.

Furthermore, if P; and P are the orthogonal projections onto 8 and 7, respectively, thenc($, 7) < 1ifand only if (I —Ps)P+
has closed range. See [15] for further details.

The next definition is due to Kato, see [16, Chapter IV, Section 5].

Definition 2.5. The reduced minimum modulus y (T) of an operator T € L(#, X) is defined by
y(T) = inf(||Tx|| : x € N(T)™", ||x|| = 1}.
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Observe that y(T) = sup{C > 0 : C|jx|| < ||Tx|| forevery x € N(T)*, |x|| = 1}. It is well known that ¥ (T) = y(T*) =
y (T*T)1/2, Also, it can be shown that an operator T # 0 has closed range ifand only if ¥ (T) > 0.In this case, y(T) = | TT|~".
If #¢ and X are Krein spaces with fundamental symmetries J; and J, respectively, and T € L(#, K) then

y(TH) = yUxTx) = y(T*) = y(T),

because J (resp.Jx ) is a unitary operator on J¢ (resp. X ).

Remark 2.6. If M, is a closed J-nonnegative subspace of a Krein space #¢ then

y(GM+) = (¥+, (9)

where o € [0, 1] is the supremum among the constants « € [0, 1] such that «||f||> < [f, f | for every f € M. From now
on, the constant o™ is called the definiteness bound of M__. Notice that o™ is in fact a maximum for the above set and M7 is
uniformly J-positive if and only if ™ > 0.

Analogously, if M_ is a J-nonpositive subspace then y (G4_) = «~, where o~ is the definiteness bound of M_, i.e.

o =max{e € [0,1]: [f,f]1 < —a ||f||* forevery f € M_}.

2.3. Frames for Hilbert spaces

The following is the standard notation and some basic results on frames for Hilbert spaces, see [1,2,4].
A frame for a Hilbert space # is a family of vectors ¥ = {fi}ic; C # for which there exist constants 0 < A < B < o0
such that

ANFIP < DI f)> <BIfIP, foreveryf € #. (10)
iel
The optimal constants (maximal for A and minimal for B) are known, respectively, as the upper and lower frame bounds.
If a family of vectors & = {f;}ic satisfies the upper bound condition in (10), then F is a Bessel family. For a Bessel family
F = {fi}ie1, the synthesis operator T € L(£,(I), #) is defined by

Tx=Y (xe)fi
iel
where {e;}ic; is the standard orthonormal basis of £, (I). It holds that F is a frame for # if and only if T is surjective. In this
case, the operator S = TT™* € L(#) is invertible and is called the frame operator. It can be easily verified that

Sf:Z(f,ﬁ}f,-, forevery f € #. (11)

iel

This implies that the frame bounds can be computed as: A = ||S™!||~! and B = ||S||. From (11), it is also easy to obtain the
canonical reconstruction formula for the vectors in J:

F=Y(fSTfi)fi=) (f.fi)S'fi, foreveryf e ¥,

iel iel

and the frame {S™'f;}; is called the canonical dual frame of ¥ . More generally, if a frame ¢ = {g;} i satisfies

f=Y (f.g)fi=) (f.fi)g, foreveryfe i, (12)

iel iel

then § is called a dual frame of .

3. J-frames: definition and basic properties

Let (#, ( , )) be a separable Hilbert space that models a signal space. A common task in signal processing applications
is to take samples of the signals x € #, for instance to save or to transmit them. Mathematically, taking samples of a signal
can be represented as follows: given a frame § = {g;}icx that spans a closed subspace § (called the sampling subspace), the
samples of x € # are given by the family of coefficients {(x, g; ) }icx, see [17] and the references therein.

Assume that the signals carrying the desired information are those containing only high frequencies or only low
frequencies. In order to clarify the idea, suppose that x € J#¢ is a piece of music and it is intended to discriminate
those fragments where high frequencies are predominant (a trumpet) from those fragments where low frequencies are
predominant (a bass).

It turns out that some filters for the signals can be modeled as orthogonal projections acting on #. Hence, consider an
ideal low pass filter, i.e. an orthogonal projection P € L(#¢), and the complementary (ideal high pass) filter I — P. Therefore,
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the signals with the same energy at high and low band frequencies {x € # : ||Px|| = ||(I—P)x||} are considered disturbances,
see e.g.[18,19].

For this particular application, given an arbitrary signal x € #, the filtered signals Px and (I — P)x are sampled and x is
discarded in case that the modulus of the difference ||Px||?> — ||(I — P)x||? is small enough. Also, notice that sampling both
filtered signals y; = Pxandy, = (I —P)x with frames §1 = {gi}ic;; and §> = {hi}ic1,, which span R(P) and N (P) respectively,
is equivalent to samplingy = y1 + y, € # with the frame ¥ = {fi}ic; = {gi}ier; U {hi}icr, for H.

The space J¢ can be endowed with an indefinite inner product (depending on the filters) in order to characterize the set
of disturbances as the cone of J-neutral vectors € of #.Indeed,] = P — (I — P) = 2P — I is a fundamental symmetry which
turns # into a Krein space. Furthermore, a signal is a disturbance if and only if it is J-neutral with respect to the indefinite
inner product given by

[y,z] =(Py,Pz) — (U —P)y, (I —P)z),

where y, z € # are arbitrary signals.

Observe that the vectors of the frame # are away from the disturbances set C, i.e. the sampling vectors are not highly
correlated with the disturbances (see Remark 3.13 for a precise description of this fact). However, once that the cone of
disturbances is determined, the following questions naturally arise: Are there other frames whose sampling vectors are not
highly correlated with the disturbances? Given an arbitrary frame #' = {f/}i; for # x #, is ' good for this sampling
scheme? (in the sense that it stays away from the disturbances set). How correlated are the sampling vectors in ¥’ and the
cone of disturbances C?

The above discussion motivates the following definition. Let J#¢ be a Krein space with fundamental symmetry J. Given
a Bessel family # = {fi}ic; in J#¢ consider the synthesis operator T € L(¢;(I), #).Ifl. = {i € I : [f,fi] = 0} and
I_={iel:[f;fi] < 0}, consider the orthogonal decomposition of ¢, (I) given by

6(0) = (1) & 6 (1), (13)

and denote by P. the orthogonal projection onto ¢;(I+). Also, let Ty = TPy. If My = span{f;:i € I.}, notice that
span{f; :i € [L} € R(Ty) € M4 and

R(T) = R(T}) + R(T-).

Definition 3.1. The Bessel family & = {f;}ic; is a J-frame for #¢ if R(T,.) is a maximal uniformly J-positive subspace of #
and R(T_) is a maximal uniformly J-negative subspace of .

Notice that, in particular, every J-orthogonalized basis of a Krein space # is a J-frame for #, because it generates a
maximal dual pair, see [8, Chapter 1, Section 10.12].

If ¥ is a J-frame, as a consequence of its maximality, R(T4.) is closed. So, R(T+) = M4 and, by [11, Corollary 1.5.2],
My + M_ = F.Then, it follows that F is a frame for the associated Hilbert space (J¢, ( , )) because

R(T) = R(T.) + R(T_) = M, + M_ = H.

Given a Bessel family # = {fi}ic;, consider the subspaces R(T) and R(T_) as above. If Ky : &1+ — Hx is the angular
operator associated to R(T..), the operator of transition associated to the Bessel family # is defined by

F=K.P+K_(I—P): D +D_ — ¥,
where P = %(I + J) is the J-selfadjoint projection onto #¢, and D is a subspace of .. (the domain of K..), see [20].
Proposition 3.2. Let ¥ = {fi}ic; be a Bessel family in J¢. Then, ¥ is a J-frame if and only if F is everywhere defined
(ie. Dy +D_ = H)and ||F|| < 1.
Proof. See [20, Proposition 2.6]. O

It follows from the definition that, given a J-frame & = {f}ic; for the Krein space #, [f;, fi] # O foreveryi € I, i.e.
I. = {i el : £[fi,fi] > 0}. This fact allows to endow the coefficients space ¢, (I) with a Krein space structure. Denote
o; = sgn([ fi, fi]) = %1 for every i € I. Then, the diagonal operator J, € L(£,(I)) defined by

J,ei=oje;, foreveryicel, (14)

is a selfadjoint involution on £, (I). Therefore, ¢, (I) with the fundamental symmetry J, is a Krein space.
Now, if T € L(€,(I), #) is the synthesis operator of ¥, the J-adjoints of T, T, and T_ can be easily calculated, in fact if
f e .

Tif =+ [f.file,

iel+

andTHf =Ty +T)f =T+ T f = Ziehr [f.filei =D i [f.filei=D i ailf.file:.
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Example 3.3. It is easy to see that not every frame of J-nonneutral vectors is a J-frame: given the Krein space obtained by
endowing C> with the sesquilinear form

[(Xla X2, X3)3 (_Vl,.VZ, Y3)] = X]_W_l_xzﬁ _X3y_33

consider f; = (1,0, Jli),fz = (0,1, \/Li) and f; = (0, 0, 1). Observe that ¥ = {fi, f», f3} is a frame for C3 because it is a
(linear) basis for the space.
On the other hand, M, = span{fi, f} and M_ = span{fs}. If (a, b, Jii(a + b)) is an arbitrary vector in M then

1 1
[f.f1=lal® + |b]* — 5|a+b|2 = Ela—bl2 >0,

s0 M. is a J-nonnegative subspace of C3. But .M is not uniformly J-positive, because (1, 1, v/2) € M is a (non-trivial)
J-neutral vector. Therefore, # is not a J-frame for (C3, [ , ).

The following is a handy way to construct J-frames for a given Krein space. Along this section, it will be shown that every
J-frame can be realized in this way.

Example 3.4. Given a Krein space # with fundamental symmetry J, let M (resp. M_) be a maximal uniformly J-positive
(resp. J-negative) subspace of #. If 1. = {fi}ic;, is a frame for the Hilbert space (M4, [, ])then ¥ = F, U F_isa
J-frame for .

Indeed, by Remark 2.3, %, and #_ are Bessel families in #. Hence, # is a Bessel family and, if I = I, UI_ (the disjoint
union of I, and I_), the synthesis operator T € L(£,(I), #) of F is given by

Tx =Tyxy +T_x_ ifx=x, +x_€lr(Iy) D L) =:L,(]),

where Ty : ¢,(I+) — M4 is the synthesis operator of #.. Then, it is clear that R(TP+) = M4 is a maximal uniformly
J-definite subspace of #.

Proposition 3.5. Let ¥ = {f}ic; be a]-frame for F¢. Then, ¥1. = {fi}ic1, is a frame for the Hilbert space (M4, X[ , 1), i.e. there
exist constants B_ < A_ < 0 < A} < B, such that

ALlf.f1< ) ILFF1P < Belf.f1 foreveryf € M. (15)

iely

Proof. If # = {fi}ic; is aJ-frame for #, then R(T;) = M is a (maximal) uniformly J-positive subspace of #. So, T, is a
surjection from ¢, (I) onto the Hilbert space (M, [ , ]). Therefore, , is a frame for (M, [ , ]).In particular, there exist
constants 0 < A, < B, such that (15) is satisfied for M. The assertion on #_ follows analogously. O

Now, assuming that F is a J-frame for a Krein space (J#¢, [ , ]),asetof constants {B_,A_, A, B, } satisfying (15) is going
to be computed. They depend only on the definiteness bounds for R(T-.), the norm and the reduced minimum modulus of T-..

Suppose that F is a J-frame for a Krein space (#, [ , ]) with synthesis operator T € L(£5(I), #¢). Since R(T}.) = M is
a (maximal) uniformly J-positive subspace of #, there exists o, > 0 such that o, ||f||> < [f, f | for every f € M. So,

SUF I = ITHI? < ITIPIFIP < Bolf.f1. foreveryf € My,

iely
_ T g2 ~ L _ :
where B, = ™ T e Furthermore, since N(T)~ = J(My), if f € M4,

SOUFFIP = ITEH I = 1T P f 17 = v (T2 IR 17 = v (T IPa JF I

iely
= Y (TG, fI? = v (T)*y Gu)*IF I = AL, f 1,

where A, = y(T;)?y (Gu, )? = y(T})?*a2, see Remark 2.6.

17112
o

Analogously, A_ = —y(T_)?a? and B_ = —-— satisfy Eq. (15) for every f € R(T-) = M_, if o_ is the definiteness
bound of the (maximal) uniformly J-negative subspace M _.

Usually, the bounds A4 = :toziy(TjE)2 and B = :I:% are not optimal for the J-frame F.

Definition 3.6. Let ¥ be a J-frame for the Krein space #¢. The optimal constants B_ < A_ < 0 < A, < B, satisfying (15)
are called the J-frame bounds of F.
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In order to compute the J-frame bounds associated to a J-frame & = {f;};c;, consider the uniformly J-definite subspaces
M and M_. Recall that ;. = {f;}ic/, is a frame for the Hilbert space (M, [, 1). Then, if G = Gy |4, € GL(M), the

frame bounds for ¥, are givenby A, = || (SG+)_1 ||;1 and By = ||Sg, |I+, where Sg, = T, T} G, is the frame operator of ¥,
and ||f ||+ =[f,f1? = ||G¥2f||,f € M, is the operator norm associated to the inner product [ , ]. Therefore,

_ _ 1/2 —1y— —1/2 1y —
A=) T = IG AT TG ) T = 16 AT TH T,

and B, = IS¢, |l+ = ||G]+/2T+TJ’;G+||.Analogously, it follows that #_ = {f;}ic;_ is a frame for the Hilbert space (M_, —[ , ]).
So, the frame bounds for #_ are given by
Al = GCA@_1*)7"I" and B_ = |GV*T_T*G_||,

where G_ = Gy_|x_ € GL(M_).Thus, the J-frame bound associated to # can be fully characterized in terms of T;. and the
Gramian operators Gy .

3.1. Characterizing J-frames in terms of frame inequalities

Given a Bessel family # = {fi}i; in a Krein space #¢, the inequalities:
ALF.F1< Y ILf 1P <BIf.f] foreveryf e M = span(fi:ie ], (16)
iel
with B > A > 0, ensure that .M is a J-nonnegative subspace of #. However, they do not imply that .M is uniformly J-positive,
i.e. (M, [, ])isnotnecessarily a inner product space. See the example below.

Example 3.7. Consider again the Krein space (C3, [, ]) as in Example 3.3. As it was mentioned before, M = span{f; =
(1,0, 1/4/2), f» = (0, 1, 1/+/2)} is a J-nonnegative but not uniformly J-positive subspace of C3.
In this case, the orthogonal basis

(111) (1 —10> d (1 1 1)

V1 = e Uy = T = T = an V3 = T = T = )

222 V2 V2 V2 V2

is a basis of eigenvectors of G, corresponding to the eigenvalues .; = 0, A; = 1and A3 = 0, respectively. Moreover,

M = span{vy, v;}. Thus, if f € M there exists «, 8 € C such that f = av; 4+ Bv, and then, since G v; = 0 € C3, it is easy
to see that

L AP+ 1L R 1P = 18P (v, f) P+ K2, £)P) = 1B = L. f 1.

Therefore, (16) holds with A = B = 1, but {f, f,} cannot be extended to a J-frame, since M is not a uniformly J-positive
subspace. O

The next result gives a complete characterization of the families satisfying (16) for B > A > 0. It is straightforward to
formulate and prove analogues of all these assertions for a family satisfying (16) for negative constants B < A < 0.

Proposition 3.8. Given a Bessel family ¥ = {fi}ic; in a Krein space #, let M = span{f; :i € I} and N = M N M. If there
exist constants 0 < A < B such that

ALFF1Y I FIP <BIS.f1 foreveryf e M, (17)

iel
then M © N is a (closed) uniformly J-positive subspace of M. Moreover, if ¥ is a frame for the Hilbert space (M, { , )), the
converse holds.

Proof. First, suppose that there exist0 < A < Bsuchthat(17)holds. So, M is aJ-nonnegative subspace of #¢, or equivalently,
(M, [, ] isasemi-inner product space.

IfT e L(¢,(I), #) is the synthesis operator of the Bessel sequence # and C = ||T*||> > 0, then TT* < CP,,. So, using
(17) it is easy to see that:

A(Guf f) < ITTPuDI? = ((PuJTTHIPOS  f ) < C{(Gu)*f L f ), f e 3. (18)
Thus, 0 < Gy < % (Gx)?. Applying Theorem 2.1 it is easy to see that

R((G4)'?) S R(Ga) S R(U(G)").
Moreover, it follows by Corollary 2.2 that R(G,,) is closed because R(G ) = R((G4)'/?).
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Let M’ = M © N and notice that M’ is a closed uniformly J-positive subspace of J. In fact, since R(G,,) is closed, there
exists @ > 0 such that

L. f1=(Guf . F) = 1Gu) *fI* = «llf|* foreveryf € N(Gy)" = MO N.
Conversely, suppose that £ is a frame for (M, { , )), i.e. there exist constants B > A’ > 0 such that
APy <TT* <BPy,

where T € L(€>(I), M) is the synthesis operator of . If M’ = M © N is a uniformly J-positive subspace of #, then there
exists @ > 0 such that «P, < G, < P,¢.As a consequence of Theorem 2.1, R((G ) /?) = M’ = R(G). Since G = G,
it is easy to see that

A'(Gy)* = A'(Ga)® < PaJTT"JPy < B'(Gu)* = B'(Gu)*.

Therefore, R(P,JT) = R(G ) = R((G,)'/?), or equivalently, there exist B > A > 0 such that
AGy = AGyy < PyJTT*JP, < BG, = BGy,

ie ALf,f1< 2 Ilf.fill> <BILf.f1foreveryf € M. O

Theorem 3.9. Let F = {fi}ic; beaframefor #.If I = {i el : x[f;, fi] > 0} and My = span{f; : i € IL} then, ¥ is aJ-frame
ifand only if M4+ N M[i“ = {0} and there exist constants B_ < A_ < 0 < A, < B, such that

As[f f1< ) IF 1P <Bs(f.f] foreveryf € M. (19)

iely

Proof. If ¥ is a J-frame, the conditions on M follow by its definition and by Proposition 3.5. Conversely, if M is J-non
degenerated and there exist constants 0 < A, < B, such that

AcIf.F1< Y I FIP < By If.f] foreveryf € My,

iely
then, by Proposition 3.8, M, is a uniformly J-positive subspace of #. Therefore, there exist constants 0 < A < B such that
APy fII? < ITSPa fIIP < BIIPa, fI* foreveryf e #.
But these inequalities can be rewritten as
APy, <Py JTi TPy, <BPy,.
Then, by Theorem 2.1, R(P, JT.) = R(P4, ) = M. Furthermore, P4, )(R(T4)) = J(M) because
J(My) = J(R(Pu,JT+)) = R(UPa, DT+) = RPjay T+) = Pyoacy) (R(T4)).
Therefore, taking the counterimage of Py, )(R(Ty)) by Pj4, ), it follows that
H =R(Ty) +J(M)E S My + MH =50,

Thus, R(Ty) = M4 and F, is a frame for M. Analogously, F_ = {fi}ic;_ is a frame for M_. Finally, since ¥ is a frame for
H,

H = R(T) = R(T}) + R(T-),

which proves the maximality of R(T+). Thus, ¥ is a J-frame for #¢. O

3.2. A geometrical characterization of -frames

Let # = {fi}ic; be aJ-frame for # and consider £ = F, U ¥, the partition of ¥ into J-positive and J-negative vectors.
Moreover, let M be the (maximal) uniformly J-definite subspace of ¢ generated by #..

The aim of this section is to show that it is possible to bound the correlation between vectors in #, (resp. #_) and vectors
in the cone of neutral vectors € = {n € J¢ : [n,n] = 0}, in a strong sense:

Ifom)l < ce Ml linll, f e MenecC, (20)

for some constants % < ¢+ < 1.In order to make these ideas precise, consider the notion of minimal angle between a

subspace M and the cone C.
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Definition 3.10. Given a closed subspace .M of the Krein space #, consider
co(M, C) =supf|(m,n)|:me M,neC.ln| = |m| =1} (21)

Then, there exists a unique 6 (M, C) € [0, %] such that cos(6 (M, C)) = co(M, C).In this case, 6 (M, C) is the minimal angle
between M and C.

Observe that if the subspace M contains a non-trivial J-neutral vector (e.g. if M is J-indefinite or J-semidefinite) then
co(M, @) = 1, or equivalently, (M, @) = 0. On the other hand, it will be shown that the minimal angle between a
uniformly J-positive (resp. uniformly J-negative) subspace .M and C is always bounded away from 0.

Proposition 3.11. Let M be a J-semidefinite subspace of F with definiteness bound «. Then,

M@_] \/l-l—a \/1—05 -
CO(y)—E >+ ) (22)

In particular, M is uniformly J-definite if and only if co(M, C) < 1.

Proof. Let # = J¢, & F_ be a fundamental decomposition of # and suppose that .M is a J-nonnegative subspace of .
Let m € M with ||m|| = 1. Then, there exist (unique) m* € #. such that m = m™ 4+ m~. In this case,

1=|lm|* = Im*|> + Im™|* and o« <[m,m]=|lm"|*— [m~|*. (23)

Claim. Fora fixedm € M with |m|| = 1,sup{| (m,n)|:n€ G, |n|| =1} = %(Hm*” + [[m~ ).
Indeed, consider n € € with ||n|| = 1. Then, there exist (unique) ny € 4 such that n = n* + n™. In this case,
0=[nn]=[n*>—|n"* and 1=n|?=|n*|*+ [n"|?,
which imply that [[nT| = ||n~|| = %.Therefore,

1
| (m,n)| < |(m*, n" )|+ |(m™,n")| < 5 Um* )+ m=1D.

%

On the other hand, if m~ # O then let n,, := \%(% + ”ﬂ—:‘l), otherwise consider n,;, = Jli(m +z),withz € #_, |z| = 1.
Now, it is easy to see thatn,, € C and that | (m, n,; ) | = \/% (Jlm* || + |lm~||) which together with the previous facts prove
the claim.

Now, let My = {m =m" +m~ € M : m* € #,, |m|| = 1}. Using the claim above it follows that

1
Co(M, C) = 75 Sup Um™ 1+ Im= ). (24)

meMq

If « = 1 then M is a subspace of J,. Also, it is easy to see that co(M, C) = —=

Co(M, C) = \%(\/@4_@)

On the other hand, if ¢ < 1,let ky € N be such that I_T“ > ﬁ Observe that, by the definition of the definiteness bound,

for every integer k > ko there exists m = m; + m; € M such thata < [|m]||> — |m |> < « + 7. Then, it follows that

. Thus, in this particular case,

S

+12 1
a+1=<2|m/| <ot+1+E,

or equivalently, ,/ % < |mf|| < /% + .. Moreover, [m; || = \/1 — |lm ||? implies that
1—«o 1 _ 1—«o
—— <|m| = :
2 2k 2

Therefore, for every integer k > ko there exists my, € M such that

\/1—0{ 1+\/a+1 T a+1+1+\/1—a
- — —_— < <4 — + = .
2 2k 2 k k 2 2k 2

Thus, cp(M, C) = %2 (,/HT“ + ,/1_7“>.
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Assume now that .M is a J-nonpositive subspace of (¢, [ , ]) with definiteness bound «, for 0 < o < 1. Then, M is a
J-nonnegative subspace of the antispace (J¢, —[, ]), with the same definiteness bound «. Furthermore, the cone of J-neutral
vectors for the antispace is the same as for the initial Krein space (#, [ , ]).Therefore, we can apply the previous arguments
and conclude that (22) also holds for J-nonpositive subspaces.

Finally, the last assertion in the statement follows from the formula in (22). O

Let ¥ be a J-frame for # as above. Notice that (20) holds for some constant V2 < ¢4 < lifandonly if co(M4, C) < 1,

i.e. that the minimal angles 6 (M., @) are bounded away from 0. This is intimately related with the fact that the aperture
g

between the subspaces M (resp. M_) and #, (resp. #_) is bounded away from 7, whenever # = #, & #_ isa
fundamental decomposition.

Remark 3.12. Given a Krein space #, fix a fundamental decomposition # = #, @ F_. Then, if M is a J-nonnegative
subspace of #, the minimal angle between M and C is related with the aperture @ (M, #,) between the subspaces M and
J,, see [21] and Exercises 3-6 to [8, Chapter 1, Section 8]. In fact, if K € L(F#, #_) is the angular operator associated to
M then, by [8, Chapter 1, Section 8 Exercise 4],

Kl
V1+IK]?

Also, if « is the definiteness bound of M then [|K| = ‘/}_Tz' see [8, Chapter 1, Lemma 8.4]. Therefore, @ (M, #,) =

D(M, H,) =

KL — /1= since d(M, H,) = sing(M, H,) for an angle p(M, #,) € [0, Z] between M and F.., it is eas
V1K 2 (M, Hy) p(M, Hy) gle p(M, #) € [0, 7] " y
to see that

) 1—|—Ol
cos (M, Hy) =4/ 1 —sin® (M, H,) = o

Therefore, if ¢ = (M, H,),

COS(%—(p):?(Cosw+sin(p):%<\/1—|2—a +\/1;a>:cos(9(u\4,@)),

ie (M, H) +O(M, @) =2, O

Remark 3.13. Regarding the discussion at the beginning of Section 3, consider any (redundant) J-frame & = {f;}i for
(#,[, 1).Asusual,denote M and M _ the maximal uniformly J-definite subspaces generated by £ . Since M. is uniformly
J-definite, Proposition 3.11 shows that cy(My, C) < 1. That is, J-frames provide a class of frames for J¢ with the desired
properties, namely the correlation between the sampling vectors and the cone of disturbances is controlled by co(M4., C)
because

[{fi,n)] < co(Mx, @) |Ifill In]] wheneveri € I andn € C. (25)

Moreover, later in Proposition 5.4, it will be shown that the J-frame # admits a (canonical) dual J-frame that induces a
linear (indefinite) stable and redundant encoding-decoding scheme in which the correlation between both the sampling
and reconstructing vectors and the cone of neutral vectors is bounded from above. These remarks provide a quantitative
measure of the advantage of considering J-frames with respect to usual frames in this setting.

4. On the synthesis operator of a J-frame

If # is a J-frame with synthesis operator T, then QT = T, = TP, where Q = P, /;»_. Therefore,
Q = QIT" = TP, T'.

So, given a surjective operator T : £,(I) — #, the idempotency of TP, T' is a necessary condition for T to be the synthesis
operator of a J-frame.

Lemmad4.1. Let T € L(¢;5(I), #) be surjective. Suppose that P is the orthogonal projection onto a closed subspace $ of €;(I)
such that c(8, N(T)Y) < 1. Then, TP4T' is a projection if and only if

N(T) = 8 N N(T) & 8- N N(T).
Proof. Suppose that Q = TP4T' is a projection. Then, if P = PyryL, E = PP4P is an orthogonal projection because it is
selfadjoint and

E? = (PPgP)* = PPyPPsP = T1(TPsTY)?T = TT(TPsT")T = PP4sP = E.
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Therefore, (PPs)* = E¥"'Ps; = EP; = (PPy)? for every k > 2. So, by [15, Lemma 18],
PPy = Py A P = PyP.

Then, since Ps and P commute, it follows that N(T) = § " N(T) @ 8+ N N(T) (see [15, Lemma 9]).
Conversely, suppose that N(T) = 8 N\ N(T) @ $- N N(T). Then, P; and P commute and

(TPsTH? = TP(TTT)P,TY = TP4PP,TY = TPP,TT = TP,TY. O
Hereafter consider the set of possible decompositions of # as a (direct) sum of a pair of maximal uniformly definite
subspaces, or equivalently, the associated set of projections:

@ ={Q € L(#) : Q% = Q, R(Q) is uniformly J-positive and N(Q) is uniformly J-negative}.

Proposition 4.2. Let T € L(£,(I), F#¢) be surjective. Then, T is the synthesis operator of a J-frame if and only if there exists I, C I
such that €,(I,.) (as a subspace of £,(I)) satisfies c(N(T)*, £5(I)) < 1 and

TP.T' € @,
where P, € L(€,(1)) is the orthogonal projection onto £,(1,.).

Proof. If T is the synthesis operator of a J-frame, the existence of such a subset I has already been discussed before.
Conversely, suppose that there exists such a subset I of I. Then, since c(N(T)*, ¢5(I;)) < 1andQ = TP, T € @, it
follows from Lemma 4.1 that P, and P = Py, commute. Therefore,

QT = TP,P = TPP, = TP,,
and (I — Q)T = T( — P,).Hence, R(TP,) = R(Q) is (maximal) uniformly J-positive and R(T (I — P;.)) = N(Q) is (maximal)
uniformly J-negative. Therefore & = {Te;};c; is by definition a J-frame for #. O
Theorem 4.3. Given a surjective operator T € L(£,(I), F¢), the following conditions are equivalent:

(i) There exists U € U (£, (1)) such that TU is the synthesis operator of a J-frame.
(ii) There exists Q € @ such that
QIT*(I — Q)* = 0. (26)
(iii) There exist closed range operators T, T, € L(€,(I), #¢) such that T = T; + T, R(Ty) is uniformly J-positive, R(T,) is
uniformly J-negative and T T; = T,T; = 0.

Proof. (i) = (ii): Suppose that there exists U € U(£,(I)) such that V = TU is the synthesis operator of a J-frame. If
I+ = {i el : £[Ve;,Ve;] > 0} and P+ € L(¢,(I)) is the orthogonal projection onto #,(I+), define V. = VP,. Then,
V =V, +V_and M4 = R(V4) is a maximal uniformly J-definite subspace. So, considering Q = P, //4_ € @, itis easy to
seethatQV =V,,(I —Q)V =V_and

QIT*(I — Q)* =QW*(I —Q)* =V, V* =VP,P_V* =0.
(ii) = (iii): Suppose that there exists Q € @ such that QIT*(I — Q)* = 0. Defining T; = QT and T, = (I — Q)T, it follows
that T = Ty 4+ Ty, R(T;) = R(Q) is uniformly J-positive, R(T;) = N(Q) is uniformly J-negative and

1T, = T,T; =0,
because (26) says that R(T}) = R(T*(I — Q)*) € N(QT) = N(Ty).
(iii) = (i): If there exist closed range operators Ty, T, € L(€,(I), #) satisfying the conditions of item 3., notice that T, T, = 0
implies that N(T,)* C N(T;), or equivalently, N(T;)* € N(T>).

Consider the projection Q = Pgr))//rr,) € @ and notice that QT = Ty and (I — Q)T = T,. If 81 = {uj}ie, is an

orthonormal basis of N(T)*, consider the family {f.* };c;, in # given by f;" = Tu;. But, ifi € I,

ft=QTui + (I — Q)Tu; = Tyy; € R(Ty),

because u; € N(T1)* € N(Ty). Therefore, {f" }ic;, € R(T1). Since Ty is an isomorphism between N(T1)* and R(Ty), it follows
that R(T;) = span{f*}icy,.

Analogously, if 8, = {bi}ic, is an orthonormal basis of N(T1), the family {f;” }ic, defined by f;” = Tb; (i € I;)lies in R(T).
Since T, is an isomorphism between N(T,)* and R(T»), it follows that

R(Ty) = TR(N(Ty1)) < span{f;” }ier, € R(T3).
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Finally, consider U € U(¢,(I)) which turns the standard orthonormal basis {e;}ic; into 8; U B,. Then, if V = TU and
F = {Veitier = {f }ier, U {f; }ien,., it is easy to see that
I, ={iel:[Ve,Ve;] >0}=1; and [_={iel:[Ve,Ve;] <0} =1L.
So, R(V) = R(T;) is maximal uniformly J-positive and R(V_) = R(T,) is maximal uniformly J-negative. Therefore, ¥ is a

J-frame for J¢ with synthesis operator V = TU. O

5. The J-frame operator

Definition 5.1. Given a J-frame ¥ = {f}ic;, the J-frame operator S : ¢ — J¢ is defined by
Sf =) alf.filfi, foreveryf e J,

iel
where o; = sgn([ f;, fi ).
The following proposition compiles some basic properties of the J-frame operator.

Proposition 5.2. Let ¥ = {fi}ic; be a J-frame with synthesis operator T € L(£(I), #). Then, its J-frame operator S € L(#)

satisfies:
(i) S =TT*;
(ii) S =S, —S_, whereS; = T+Tf[ and S_ := —T_T" are J-positive operators;

(iii) S is an invertible J-selfadjoint operator;
(iv) ind+(S) = dim #¢, where ind..(S) are the indices of S.

Proof. If # = {f}i is aJ-frame with synthesis operator T € L({5(I), #),then Tf =Y. oi[f, f; ]e; for f € #. So,

iel

TTHf =T (Z oi[f,f,-]e,-) =Y oilf.fi1fi=Sf, foreveryf e .

iel iel
Furthermore, if . = {i € I : [ f;, fi] > 0}, consider T.. = TP, as usual. Then,
T = (T + T)(T + 1) =TT + T-T7 =TT — (-T-TD),
because T, T = T,ij = 0. Therefore, S = S, — S_ if Sy := +T. T} . Notice that S.. is a J-positive operator because
Sy = T T = £TL T = T THJ.
To prove the invertibility of S observe that, if Sf = OthenS,f = S_f.ButR(S;)NR(S_) € R(T,)NR(T_) = {0}. Thus, S is

injective. On the other hand, R(S) = S(ME]) + S(,M[_“) because ¥ = ,ME] + M Butitis easy to see that ,ME] C N(S1).

So, S(Mg_r“) = SJF(M[i“) and R(S) = S_(eMEFL]) + S+(M[_“) =R(S_) +R(Sy) = My + M_ = H.Therefore, S is invertible.

Finally, the identities ind+(S) = dim J#. follow from the indices definition. Recall that if A € L(#) is a J-selfadjoint
operator, ind (A) is the supremum of all positive integers r such that there exists a positive invertible matrix of the form
([Axj, X 1)j k=1,...r» Where x1,...,x € H (if no such r exists, ind_(A) = 0). Similarly, ind_(A) = ind,(—A) is the
supremum of all positive integers m such that there exists a negative invertible matrix of the form ([Ay;, yk D)j.k=1,...m
where yq,...,ym € J,see[14]. O

Corollary 5.3. Let ¥ = {fi}ic; be a J-frame for 3¢ with J-frame operator S € L(#). Then, R(S1+) = M+ and N(S+) = ME_L“.
Furthermore, if Q =Py, //m_,

S, =QSQ" and S_=—-(1I—-Q)SUI—-Q)". (27)

Proof. Recall that S, := T+ij = T, (JoT}J)) = T, T}]. Then, R(S;) = R(T T}J) = R(T, T}) = R(T;) = M, because R(T;)

is closed. Since S, is J-selfadjoint, it follows that N(S;) = R(S;)"! = ', Analogously, R(S_) = M_ and N(S_) = M.
Since S =Sy — S_,ifQ = Py, //4_ then

QS =Q(S+ —S-) =S4,

by the characterization of the range and nullspace of S . Therefore, SQ * = QS = QSQ ™. Analogously,S(I—Q)* = (I—-Q)S =
I-Qsi-Q)*. O

The above corollary states that S is the diagonal block operator matrix

s=(5 %) )

according to the (oblique) decompositions # = M 1 ,Mﬂr“ and # = M, + M_ of the domain and codomain of S,
respectively.
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5.1. The indefinite reconstruction formula associated to a J-frame

Given a J-frame & = {f;}ic; with synthesis operator T, there is a duality between ¥ and the frame § = {g;}ic; given by
g =S iff € H,

iel iel iel

=SS =TT"(S")=T (Z oi[s‘f,me,) =Y oS f1fi= ) oilf, ST 1fi

Analogously,

f=5TIsf =s71(ATH) = 57! <Z ai[f,filfi) =Y ailf.fils'f:

iel iel
Therefore, for every f € #, there is an indefinite reconstruction formula associated to £ :
f=Y alf &lfi=)_olf.filg (29)
iel iel
The following question arises naturally: is § = {S™'f;}ic; also a J-frame for #?

Proposition 5.4. If ¥ = {f;}ic is a J-frame for a Krein space # with J-frame operator S, then § = {S™f}i¢; is also a J-frame
for F¢.

Proof. Given aJ-frame F = {f;};c; for # with J-frame operator S, observe that the synthesis operator of § = {S™'fi}i is

V :=S7T e L({y(I), #). Furthermore, by Corollary 5.3, S(,MEF“) = M. Then, S~ (M) = QMQE“ and it follows that
[S7',S7!fi]1>0 ifandonlyif [f,fi]> 0.

Thus, V. = VPy = S™'Ty and R(V,) (resp. R(V_)) is a maximal uniformly J-positive (resp. J-negative) subspace of #. So, §

is aJ-frame for #. O

If # = {fi}ic; is a frame for a Hilbert space #¢ with synthesis operator T € L(¢5(I), #), then the family {(TT*)™f}ics is
called the canonical dual frame because it is a dual frame for F (see (12)) and it has the following optimal property: Given
feH,

Z| , (TT*)™ ]f, | Z|c,-|2, whenever f = Zcif,-, (30)
iel iel iel

for a family (c;)i¢; € £(I). In other words, the above representation has the smallest £;-norm among the admissible frame
coefficients representing f (see [22]).

Remark 5.5. If # = {fi}ic; is aJ-frame for #¢ then ¥ = {fi}ic;, is a frame for the Hilbert space (M4, [ , ]).Furthermore,
the frame operator associated to # is S, = T+ij and its canonical dual frame is given by ¢, = {S;1 fi}ier,.. Analogously,

the frame operator associated to #_ isS_ = —T_T™ and its canonical dual frame is given by §_ = {S”'fi}ic/_.
Then, since # = M + M_, # can be seen as the (outer) direct sum of the Hilbert spaces (M, [, ])and (M_, —[, ]),
i.e. the inner product given by

(f.g8lg=fr.8s1-1f-g8 ) f=f+f.g=8 +& .fr.8r eEM . f g €M,

turns (#, ( , )) into a Hilbert space and the projection Q = P ;/4_ is selfadjoint in this Hilbert space. So, if f € #,

SOIFSTRIP =D IQf ST RIP+ Y0 —Qf, ST'R 1P

iel iely iel_
+2 -2
<Y IGTP D e P
iely iel

whenever f, = Qf = Z,e,+ ¢ fiandfo = (I — Q)f = Y, ¢ fi, for families (¢5)ier, € €o(I1). Therefore,
DL SR <Y lal,
iel iel

whenever f = ), c;fi for some (c;)ic; € £>(I). In other words, the J-frame § = {S~!fi}ie is the canonical dual frame of ¥
in the Hilbert space (#, (, )#).
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5.2. Characterizing the J-frame operators

In a Hilbert space #, it is well known that every positive invertible operator S € L(J#) can be realized as the frame
operator of a frame F = {fi}i; for #, see [4]. Indeed, if B = {x;}ic; is an orthonormal basis of #, consider T : ¢,(I) — #
given by Te; = S'/?x; for i € I. Then, for every f € #,

T =) (f.8"°x) "% =" (Z(S”zf, Xi ) x,-) = Sf.

iel iel

Therefore, # = {S'/%x;}ic; is a frame for #¢ and its frame operator is given by S.
The following paragraphs are devoted to characterize the set of J-frame operators.

Theorem 5.6. Let S € GL(J#) be a J-selfadjoint operator acting on a Krein space 3 with fundamental symmetry J. Then, the
following conditions are equivalent:

(i) S is aJ-frame operator, i.e. there exists a J-frame & with synthesis operator T such that S = TT™.
(ii) There exists a projection Q € @ such that QS is J-positive and (I — Q)S is J-negative.
(iii) There exist J-positive operators S,S, € L(J¢) such that S = S; — S, and R(Sy) (resp. R(S;)) is a uniformly J-positive
(resp. J-negative) subspace of J¢.

Proof. (i) — (ii): Follows from Proposition 5.2 and Corollary 5.3.

(i) — (iii): If there exists a projection Q € @ such that QS is J-positive and (I — Q)S is J-negative, consider the J-positive
operators S; = QS and S, = —(I — Q)S. Then, S = S; — S, and, by hypothesis, R(S;) = R(Q) is uniformly J-positive and
R(S3) = R(I — Q) = N(Q) is uniformly J-negative.

(iii) — (i): Suppose that there exist J-positive operators S, S; € L(#) such that S = S; — S; and R(S7) (resp. R(S3)) is a
uniformly J-positive (resp. J-negative) subspace of #. Denoting X; = R(S;) forj = 1, 2, observe that A; = SjJ | x; € GL(X)™T.
Therefore, there exists a frame #; = {fi}ic;; C X for X such that A; = T,T;" if T; € L(¢2(Ih), ;) is the synthesis operator of
Fj,forj=1,2.

Then, consider £, (1) := £5(I7) & £5(I;) and T € L(£,(I), #) given by

Tx =Tix1 + Toxy, ifx e (), x =x1+x,% € £p(I) forj =1, 2.

It is easy to see that T is the synthesis operator of the frame # = #; U %,. Furthermore ¥ is a J-frame such that I, = I
andI_ = I,.
Finally, endow ¢, (I) with the indefinite inner product defined by the diagonal operator J, € L(¢5(I)) given by

e =oie;,

where 0; = 1ifi € Iy and 0; = —1ifi € L. Notice that T;J, = T; and T,J, = —T,. Furthermore, T;T; = T,T;{ = 0 because
R(Ty) = N(T,)* € €,(I)* = £2(I) € N(Ty). Thus,

T = T),T* = (T, + )T —T)] =TT{] —LT;] =A] —A)J=5—-5=S. O

Given aJ-frame F = {f;}i¢; for # with J-frame operator S € L(#), it follows from Corollary 5.3 that

SMSYy =M, and S(ML) = M (31)

i.e. S maps a maximal uniformly J-positive (resp. J-negative) subspace into another maximal uniformly J-positive
(resp. J-negative) subspace. The next proposition shows under which hypotheses the converse holds.

Proposition 5.7. Let S € GL(#¢) be a J-selfadjoint operator. Then, S is a J-frame operator if and only if the following conditions
hold:

(i) there exists a maximal uniformly J-positive subspace 7 of F# such that S(7") is also maximal uniformly J-positive;
(ii) [Sf,f 1= Oforeveryf € T;
(iii) [Sg,g] < Oforeveryg € S(7)*1.

Proof. If S is a J-frame operator, consider 7 = M) which is a maximal uniformly J-positive subspace 7 of J¢. Then,
S(T) = M, is also maximal uniformly J-positive. Furthermore,

[Sf,f1=1SQ7f,Q*f1=1Q5Q"f,f1=1[S4f.f1=0 foreveryfeT,
where Q = Py, /4. Also, S(T)" = M1 = N(Q*) = R((I — Q)). So,

[Sg,g]1=[SU-Q'g, 0 -QTgl=[U-QSUI—-Q)"g,g]1=[-S_g,g1 <0 foreveryg e S(7).
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Conversely, suppose that there exists a maximal uniformly J-positive subspace 7 satisfying the hypotheses. Let M =
S(7), which is maximal uniformly J-positive. Then, consider Q = PM//T[LJ. It is well defined because 71! is maximal
uniformly J-negative, see [11, Corollary 1.5.2]. Moreover, Q € @.

Notice that R(S(I — Q)1) = S(MH) = s(S(THH) = s(s~1 (7)) = 7. Therefore, QS(I — Q)" = 0 and

QS =QQ" + QS —-Q)" =QsQ*.

Furthermore, if [ Sf, f ] > 0 for every f € 7 then QS is J-positive. Analogously, if [ Sg, g ] < 0 for every g € S(7)*! then
(I — Q)S is J-negative. Then, by Theorem 5.6, S is a J-frame operator. O

As it was proved in Proposition 5.2, if an operator S € L(#) is a J-frame operator then it is an invertible J-selfadjoint
operator satisfying ind. (S) = dim(#5.). Unfortunately, the converse is not true.

Example 5.8. Consider the Krein space obtained by endowing C? with the sesquilinear form

[(xla XZ), (.V]».VZ)] = xly_l - sz»

and the invertible J-selfadjoint operator S, whose matrix in the standard orthonormal basis is given by

(0 1)

Then, S satisfies ind1 (S) = dim(#¢+), but it maps each J-positive vector into a J-negative vector. Then, by Proposition 5.7, S
cannot be a J-frame operator.
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