
SENSORS 1 1/12 TRANSDUCERS

Nanosensors and Nanodevices

Sensors & Transducers

Volume 146, Issue 11 November 2012

www.sensorsportal.com

ISSN 1726-5479

Editors-in-Chief: professor Sergey Y. Yurish, tel.: +34 696067716, e-mail: editor@sensorsportal.com

Editors for Western Europe

Meijer, Gerard C.M., Delft University of Technology, The Netherlands Ferrari, Vittorio, Universitá di Brescia, Italy

Editors for North America

Datskos, Panos G., Oak Ridge National Laboratory, USA Fabien, J. Josse, Marquette University, USA Katz, Evgeny, Clarkson University, USA

Editor South America

Costa-Felix, Rodrigo, Inmetro, Brazil

Editor for Eastern Europe

Sachenko, Anatoly, Ternopil State Economic University, Ukraine

Ohyama, Shinji, Tokyo Institute of Technology, Japan

Editor for Africa

Maki K.Habib, American University in Cairo, Egypt

Editor for Asia-Pacific

Mukhopadhyay, Subhas, Massey University, New Zealand

Editorial Advisory Board

Abdul Rahim, Ruzairi, Universiti Teknologi, Malaysia

Ahmad, Mohd Noor, Nothern University of Engineering, Malaysia

Annamalai, Karthigeyan, National Institute of Advanced Industrial Science and Technology, Japan

Arcega, Francisco, University of Zaragoza, Spain

Arguel, Philippe, CNRS, France

Ahn, Jae-Pyoung, Korea Institute of Science and Technology, Korea

Arndt, Michael, Robert Bosch GmbH, Germany Ascoli, Giorgio, George Mason University, USA Atalay, Selcuk, Inonu University, Turkey Atghiaee, Ahmad, University of Tehran, Iran

Augutis, Vygantas, Kaunas University of Technology, Lithuania Avachit, Patil Lalchand, North Maharashtra University, India

Ayesh, Aladdin, De Montfort University, UK

Azamimi, Azian binti Abdullah, Universiti Malaysia Perlis, Malaysia

Bahreyni, Behraad, University of Manitoba, Canada

Baliga, Shankar, B., General Monitors Transnational, USA

Baoxian, Ye, Zhengzhou University, China Barford, Lee, Agilent Laboratories, USA Barlingay, Ravindra, RF Arrays Systems, India Basu, Sukumar, Jadavpur University, India Beck, Stephen, University of Sheffield, UK

Ben Bouzid, Sihem, Institut National de Recherche Scientifique, Tunisia

Benachaiba, Chellali, Universitaire de Bechar, Algeria

Binnie, T. David, Napier University, UK

Bischoff, Gerlinde, Inst. Analytical Chemistry, Germany

Bodas, Dhananjay, IMTEK, Germany

Borges Carval, Nuno, Universidade de Aveiro, Portugal Bouchikhi, Benachir, University Moulay Ismail, Morocco Bousbia-Salah, Mounir, University of Annaba, Algeria

Bouvet, Marcel, CNRS - UPMC, France

Brudzewski, Kazimierz, Warsaw University of Technology, Poland

Cai, Chenxin, Nanjing Normal University, China Cai, Qingyun, Hunan University, China

Calvo-Gallego, Jaime, Universidad de Salamanca, Spain Campanella, Luigi, University La Sapienza, Italy Carvalho, Vitor, Minho University, Portugal

Cecelja, Franjo, Brunel University, London, UK

Cerda Belmonte, Judith, Imperial College London, UK Chakrabarty, Chandan Kumar, Universiti Tenaga Nasional, Malaysia

Chakravorty, Dipankar, Association for the Cultivation of Science, India

Changhai, Ru, Harbin Engineering University, China Chaudhari, Gajanan, Shri Shivaji Science College, India

Chavali, Murthy, N.I. Center for Higher Education, (N.I. University), India

Chen, Jiming, Zhejiang University, China

Chen, Rongshun, National Tsing Hua University, Taiwan

Cheng, Kuo-Sheng, National Cheng Kung University, Taiwan

Chiang, Jeffrey (Cheng-Ta), Industrial Technol. Research Institute, Taiwan Chiriac, Horia, National Institute of Research and Development, Romania

Chowdhuri, Arijit, University of Delhi, India

Chung, Wen-Yaw, Chung Yuan Christian University, Taiwan Corres, Jesus, Universidad Publica de Navarra, Spain

Cortes, Camilo A., Universidad Nacional de Colombia, Colombia

Courtois, Christian, Universite de Valenciennes, France

Cusano, Andrea, University of Sannio, Italy

D'Amico, Arnaldo, Università di Tor Vergata, Italy

De Stefano, Luca, Institute for Microelectronics and Microsystem, Italy

Deshmukh, Kiran, Shri Shivaji Mahavidyalaya, Barshi, India

Dickert, Franz L., Vienna University, Austria Dieguez, Angel, University of Barcelona, Spain

Dighavkar, C. G., M.G. Vidyamandir's L. V.H. College, India

Dimitropoulos, Panos, University of Thessaly, Greece

Ding, Jianning, Jiangsu Polytechnic University, China

Djordjevich, Alexandar, City University of Hong Kong, Hong Kong

Donato, Nicola, University of Messina, Italy

Donato, Patricio, Universidad de Mar del Plata, Argentina

Dong, Feng, Tianjin University, China

Drljaca, Predrag, Instersema Sensoric SA, Switzerland

Dubey, Venketesh, Bournemouth University, UK

Enderle, Stefan, Univ.of Ulm and KTB Mechatronics GmbH, Germany

Erdem, Gursan K. Arzum, Ege University, Turkey

Erkmen, Aydan M., Middle East Technical University, Turkey

Estelle, Patrice, Insa Rennes, France

Estrada, Horacio, University of North Carolina, USA

Faiz, Adil, INSA Lyon, France

Fericean, Sorin, Balluff GmbH, Germany

Fernandes, Joana M., University of Porto, Portugal

Francioso, Luca, CNR-IMM Institute for Microelectronics and Microsystems, Italy

Francis, Laurent, University Catholique de Louvain, Belgium Fu, Weiling, South-Western Hospital, Chongqing, China

Gaura, Elena, Coventry University, UK

Geng, Yanfeng, China University of Petroleum, China Gole, James, Georgia Institute of Technology, USA Gong, Hao, National University of Singapore, Singapore

Gonzalez de la Rosa, Juan Jose, University of Cadiz, Spain Granel, Annette, Goteborg University, Sweden

Graff, Mason, The University of Texas at Arlington, USA

Guan, Shan, Eastman Kodak, USA Guillet, Bruno, University of Caen, France

Guo, Zhen, New Jersey Institute of Technology, USA Gupta, Narendra Kumar, Napier University, UK Hadjiloucas, Sillas, The University of Reading, UK Haider, Mohammad R., Sonoma State University, USA

Hashsham, Syed, Michigan State University, USA Hasni, Abdelhafid, Bechar University, Algeria Hernandez, Alvaro, University of Alcala, Spain

Hernandez, Wilmar, Universidad Politecnica de Madrid, Spain

Homentcovschi, Dorel, SUNY Binghamton, USA Horstman, Tom, U.S. Automation Group, LLC, USA Hsiai, Tzung (John), University of Southern California, USA

Huang, Jeng-Sheng, Chung Yuan Christian University, Taiwan

Huang, Star, National Tsing Hua University, Taiwan

Huang, Wei, PSG Design Center, USA

Hui, David, University of New Orleans, USA

Jaffrezic-Renault, Nicole, Ecole Centrale de Lyon, France

James, Daniel, Griffith University, Australia Janting, Jakob, DELTA Danish Electronics, Denmark

Jiang, Liudi, University of Southampton, UK

Jiang, Wei, University of Virginia, USA Jiao, Zheng, Shanghai University, China

John, Joachim, IMEC, Belgium

Kalach, Andrew, Voronezh Institute of Ministry of Interior, Russia

Kang, Moonho, Sunmoon University, Korea South

Kaniusas, Eugenijus, Vienna University of Technology, Austria

Katake, Anup, Texas A&M University, USA
Kausel, Wilfried, University of Music, Vienna, Austria

Kavasoglu, Nese, Mugla University, Turkey

Ke, Cathy, Tyndall National Institute, Ireland

Khelfaoui, Rachid, Université de Bechar, Algeria

Khan, Asif, Aligarh Muslim University, Aligarh, India

Kim, Min Young, Kyungpook National University, Korea South

Ko, Sang Choon, Electronics. and Telecom. Research Inst., Korea South

Kotulska, Malgorzata, Wrocław University of Technology, Poland

Kockar, Hakan, Balikesir University, Turkey Kong, Ing, RMIT University, Australia

Kratz, Henrik, Uppsala University, Sweden

Krishnamoorthy, Ganesh, University of Texas at Austin, USA Sandacci, Serghei, Sensor Technology Ltd., UK Kumar, Arun, University of Delaware, Newark, USA Saxena, Vibha, Bhbha Atomic Research Centre, Mumbai, India Kumar, Subodh, National Physical Laboratory, India Schneider, John K., Ultra-Scan Corporation, USA Kung, Chih-Hsien, Chang-Jung Christian University, Taiwan Sengupta, Deepak, Advance Bio-Photonics, India Lacnjevac, Caslav, University of Belgrade, Serbia Seif, Selemani, Alabama A & M University, USA Lay-Ekuakille, Aime, University of Lecce, Italy Seifter, Achim, Los Alamos National Laboratory, USA Shah, Kriyang, La Trobe University, Australia Lee, Jang Myung, Pusan National University, Korea South Lee, Jun Su, Amkor Technology, Inc. South Korea Sankarraj, Anand, Detector Electronics Corp., USA Lei, Hua, National Starch and Chemical Company, USA Silva Girao, Pedro, Technical University of Lisbon, Portugal Li, Fengyuan (Thomas), Purdue University, USA Singh, V. R., National Physical Laboratory, India Li, Genxi, Nanjing University, China Slomovitz, Daniel, UTE, Uruguay Smith, Martin, Open University, UK Li, Hui, Shanghai Jiaotong University, China Li, Sihua, Agiltron, Inc., USA Soleimanpour, Amir Masoud, University of Toledo, USA Li, Xian-Fang, Central South University, China Soleymanpour, Ahmad, University of Toledo, USA Li, Yuefa, Wayne State University, USA Somani, Prakash R., Centre for Materials for Electronics Technol., India Liang, Yuanchang, University of Washington, USA Sridharan, M., Sastra University, India Liawruangrath, Saisunee, Chiang Mai University, Thailand Srinivas, Talabattula, Indian Institute of Science, Bangalore, India Liew, Kim Meow, City University of Hong Kong, Hong Kong Srivastava, Arvind K., NanoSonix Inc., USA Lin, Hermann, National Kaohsiung University, Taiwan Stefan-van Staden, Raluca-Ioana, University of Pretoria, South Africa Stefanescu, Dan Mihai, Romanian Measurement Society, Romania Lin, Paul, Cleveland State University, USA Linderholm, Pontus, EPFL - Microsystems Laboratory, Switzerland Sumriddetchka, Sarun, National Electronics and Comp. Technol. Center, Thailand Liu, Aihua, University of Oklahoma, USA Sun, Chengliang, Polytechnic University, Hong-Kong Liu Changgeng, Louisiana State University, USA Sun, Dongming, Jilin University, China Liu, Cheng-Hsien, National Tsing Hua University, Taiwan Sun, Junhua, Beijing University of Aeronautics and Astronautics, China Liu, Songqin, Southeast University, China Sun, Zhiqiang, Central South University, China Lodeiro, Carlos, University of Vigo, Spain Suri, C. Raman, Institute of Microbial Technology, India Lorenzo, Maria Encarnacio, Universidad Autonoma de Madrid, Spain Sysoev, Victor, Saratov State Technical University, Russia Szewczyk, Roman, Industr. Research Inst. for Automation and Measurement, Poland Lukaszewicz, Jerzy Pawel, Nicholas Copernicus University, Poland Ma, Zhanfang, Northeast Normal University, China Majstorovic, Vidosav, University of Belgrade, Serbia Tan, Ooi Kiang, Nanyang Technological University, Singapore, Tang, Dianping, Southwest University, China Malyshev, V.V., National Research Centre 'Kurchatov Institute', Russia Tang, Jaw-Luen, National Chung Cheng University, Taiwan Marquez, Alfredo, Centro de Investigacion en Materiales Avanzados, Mexico Teker, Kasif, Frostburg State University, USA Matay, Ladislav, Slovak Academy of Sciences, Slovakia Thirunavukkarasu, I., Manipal University Karnataka, India Mathur, Prafull, National Physical Laboratory, India Thumbavanam Pad, Kartik, Carnegie Mellon University, USA Tian, Gui Yun, University of Newcastle, UK Maurya, D.K., Institute of Materials Research and Engineering, Singapore Mekid, Samir, University of Manchester, UK Tsiantos, Vassilios, Technological Educational Institute of Kaval, Greece Melnyk, Ivan, Photon Control Inc., Canada Tsigara, Anna, National Hellenic Research Foundation, Greece Mendes, Paulo, University of Minho, Portugal Twomey, Karen, University College Cork, Ireland Valente, Antonio, University, Vila Real, - U.T.A.D., Portugal Mennell, Julie, Northumbria University, UK Mi, Bin, Boston Scientific Corporation, USA Vanga, Raghav Rao, Summit Technology Services, Inc., USA Minas, Graca, University of Minho, Portugal Vaseashta, Ashok, Marshall University, USA Mishra, Vivekanand, National Institute of Technology, India Vazquez, Carmen, Carlos III University in Madrid, Spain Moghavvemi, Mahmoud, University of Malaya, Malaysia Vieira, Manuela, Instituto Superior de Engenharia de Lisboa, Portugal Vigna, Benedetto, STMicroelectronics, Italy Mohammadi, Mohammad-Reza, University of Cambridge, UK Molina Flores, Esteban, Benemérita Universidad Autónoma de Puebla, Vrba, Radimir, Brno University of Technology, Czech Republic Wandelt, Barbara, Technical University of Lodz, Poland Wang, Jiangping, Xi'an Shiyou University, China Moradi, Majid, University of Kerman, Iran Morello, Rosario, University "Mediterranea" of Reggio Calabria, Italy Wang, Kedong, Beihang University, China Mounir, Ben Ali, University of Sousse, Tunisia Wang, Liang, Pacific Northwest National Laboratory, USA Mrad, Nezih, Defence R&D, Canada Wang, Mi, University of Leeds, UK Mulla, Imtiaz Sirajuddin, National Chemical Laboratory, Pune, India Wang, Shinn-Fwu, Ching Yun University, Taiwan Nabok, Aleksey, Sheffield Hallam University, UK Wang, Wei-Chih, University of Washington, USA Neelamegam, Periasamy, Sastra Deemed University, India Wang, Wensheng, University of Pennsylvania, USA Watson, Steven, Center for NanoSpace Technologies Inc., USA Neshkova, Milka, Bulgarian Academy of Sciences, Bulgaria Oberhammer, Joachim, Royal Institute of Technology, Sweden Weiping, Yan, Dalian University of Technology, China Ould Lahoucine, Cherif, University of Guelma, Algeria Wells, Stephen, Southern Company Services, USA Pamidighanta, Sayanu, Bharat Electronics Limited (BEL), India Wolkenberg, Andrzej, Institute of Electron Technology, Poland Pan, Jisheng, Institute of Materials Research & Engineering, Singapore Woods, R. Clive, Louisiana State University, USA Park, Joon-Shik, Korea Electronics Technology Institute, Korea South Wu, DerHo, National Pingtung Univ. of Science and Technology, Taiwan Passaro, Vittorio M. N., Politecnico di Bari, Italy Wu, Zhaoyang, Hunan University, China Penza, Michele, ENEA C.R., Italy Xiu Tao, Ge, Chuzhou University, China Pereira, Jose Miguel, Instituto Politecnico de Setebal, Portugal Xu, Lisheng, The Chinese University of Hong Kong, Hong Kong Petsev, Dimiter, University of New Mexico, USA Xu, Sen, Drexel University, USA Pogacnik, Lea, University of Ljubljana, Slovenia Xu, Tao, University of California, Irvine, USA Post, Michael, National Research Council, Canada Yang, Dongfang, National Research Council, Canada Yang, Shuang-Hua, Loughborough University, UK Prance, Robert, University of Sussex, UK Prasad, Ambika, Gulbarga University, India Yang, Wuqiang, The University of Manchester, UK Prateepasen, Asa, Kingmoungut's University of Technology, Thailand Yang, Xiaoling, University of Georgia, Athens, GA, USA Pugno, Nicola M., Politecnico di Torino, Italy Yaping Dan, Harvard University, USA Pullini, Daniele, Centro Ricerche FIAT, Italy Ymeti, Aurel, University of Twente, Netherland Pumera, Martin, National Institute for Materials Science, Japan Yong Zhao, Northeastern University, China Radhakrishnan, S. National Chemical Laboratory, Pune, India Yu, Haihu, Wuhan University of Technology, China Rajanna, K., Indian Institute of Science, India Yuan, Yong, Massey University, New Zealand Ramadan, Qasem, Institute of Microelectronics, Singapore Yufera Garcia, Alberto, Seville University, Spain Rao, Basuthkar, Tata Inst. of Fundamental Research, India Zakaria, Zulkarnay, University Malaysia Perlis, Malaysia Raoof, Kosai, Joseph Fourier University of Grenoble, France Zagnoni, Michele, University of Southampton, UK Rastogi Shiva, K. University of Idaho, USA Zamani, Cyrus, Universitat de Barcelona, Spain Reig, Candid, University of Valencia, Spain Zeni, Luigi, Second University of Naples, Italy Restivo, Maria Teresa, University of Porto, Portugal Zhang, Minglong, Shanghai University, China Robert, Michel, University Henri Poincare, France Zhang, Qintao, University of California at Berkeley, USA

Zhang, Weiping, Shanghai Jiao Tong University, China Rezazadeh, Ghader, Urmia University, Iran Zhang, Wenming, Shanghai Jiao Tong University, China Royo, Santiago, Universitat Politecnica de Catalunya, Spain Rodriguez, Angel, Universidad Politecnica de Cataluna, Spain Zhang, Xueji, World Precision Instruments, Inc., USA Rothberg, Steve, Loughborough University, UK Zhong, Haoxiang, Henan Normal University, China Sadana, Ajit, University of Mississippi, USA Zhu, Qing, Fujifilm Dimatix, Inc., USA Sadeghian Marnani, Hamed, TU Delft, The Netherlands Zorzano, Luis, Universidad de La Rioja, Spain Zourob, Mohammed, University of Cambridge, UK Sapozhnikova, Ksenia, D.I.Mendeleyev Institute for Metrology, Russia Available in electronic and on CD. Copyright © 2012 by International Frequency Sensor Association. All rights reserved.

Contents

Volume 146 Issue 11 November 2012

www.sensorsportal.com

ISSN 1726-5479


Research Articles

Diffusion in Carbon Nanotubes: Details, Characteristics, Comparisons at Nanolevel Paolo Di Sia	1
Synthesis Characterization and Humidity Sensing Properties of Sol-gel Derived Novel	
Nanomaterials of LaSr _x Fe1- _x O _{3-δ} Mary Teresita V., Jeseentharani V., Avila Josephine B., Jeyaraj B., Arul Antony S	8
Gas Sensing Characteristics of ZnO Nanowires Fabricated by Carbothermal Evaporation Method Roghayeh Imani and Mohammad Orvatinia	17
In-Situ Decoration of Electrostatically Functionalized Multiwalled Carbon Nanotubes with β-Ni(OH) ₂ Nanoparticles for Low Temperature NO ₂ Detection	00
Richa Saggar, Vasuda Bhatia, Prashant Shukla, Nitin Bhardwaj, Vinod K Jain	28
Synthesis and Characterization of ZnO Nanoparticles as Prepared by Gel-combustion and ZnO Nanomorphologies by Sol-gel	
Mario F. Bianchetti, Marjeta Maček-Krzmanc, Ines Bracko, Sreco D. Skapin and Noemi E. Walsöe de Reca	36
Multiwalled Carbon Nanotubes Reinforced Cement Composite Based Room Temperature Sensor for Smoke Detection	
Prashant Shukla, Vasuda Bhatia, Vikesh Gaur, Nitin Bhardwaj, Vinod Kumar Jain	48
A Facile and Green Synthesis of Small Silver Nanoparticles in β–cyclodextrins Performing as Chemical Microreactors and Capping Agents Giorgio Ventimiglia and Alessandro Motta	59
Electrostatically Functionalized Multi-Walled Carbon Nanotubes Based Flexible	
and Non-Enzymatic Biosensor for Glucose Detection Bhawana Singh, Vasuda Bhatia, V. K. Jain	69
Amperometric Acetylcholinesterase Biosensor Based on Poly (Diallyldimethylammonium Chloride)/Gold Nanoparticles/Multi-walled Carbon Nanotubes-chitosans Composite Film-modified Electrode	
Xia Sun, Zhili Gong, Yaoyao Cao, Xiangyou Wang	78
Structural, Morphological and Optical Properties of Spray Deposited Nano-crystalline CdO	
Maqbul A. Barote, Elahipasha U. Masumdar	90
A Novel Amperometric Immunosensor Based on {MWCNTs-COOH-CHIT}₂/GNPs for Detection of Chlorpyrifos Xia Sun, Lu Qiao, Xiangyou Wang	96
	

Y ³⁺ Added Nanocrystallite Mg-Cd Ferrite LPG, Cl₂ and C₂H₅OH Sensors Ashok B. Gadkari, Tukaram J. Shinde, Pramod N. Vasambekar	110
Immunosensor Based on Gold Nanoparticles-multi-walled Carbon Nanotubes-chitosans Composite and Prussian Blue for Detection of Chlorpyrifos Xia Sun, Falan Li, Xiangyou Wang	121
Nanostructured CdFe₂O₄ Thick Film Resistors as Ethonal Gas Sensors S. V. Bangale, R. D. Prakshale, S. R. Bamane	133
A Novel Combustion Route for the Preparation of Nanocrystalline LaAlO3 Oxide Based Electronic NoseSensitive to NH3 at Room Temperature K. A. Khamkar, S. V. Bangale, V. V. Dhapte, D. R. Patil, S. R. Bamane	145
Gold Nanoparticle Amplification Combined with Quartz Crystal Microbalance DNA Based Biosensor for Detection of Mycobacterium Tuberculosis Thongchai Kaewphinit, Somchai Santiwatanakul and Kosum Chansiri	156
Structural, Morphological and Optical Properties of Spray Deposited Nanocrystalline ZnO Thin Films: Effect of Nozzle to Substrate Distance Elahipasha U. Masumdar, Maqbul A. Barote.	164
Zinc and Pyrrole-added Akaganeite (β-FeOOH) Films by Ultrasonic Spray Pyrolisis Assessed as Propane Sensors Carlos Torres Frausto, Alejandro Avila-Garcia	170
Potentiometric Determination of Low Content of Water in Different Organic Solvents Using NASICON Based Probe Parul Yadav and M. C. Bhatnagar	182
Development of Electrochemical Sensors for the Detection of Mercury by CNT/Li ⁺ , C ₆₀ /Li ⁺ and Activated Carbon Modified Glassy Carbon Electrode in Blood Medium Muhammed M. Radhi, Dawood S. Dawood, Nawfal K. Al-Damlooji and Tan W. Tee	191

Authors are encouraged to submit article in MS Word (doc) and Acrobat (pdf) formats by e-mail: editor@sensorsportal.com Please visit journal's webpage with preparation instructions: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

 $International\ Frequency\ Sensor\ Association\ (IFSA).$

The Fourth International Conference on Sensor Device Technologies and Applications

SENSORDEVICES 2013 25 - 31 August 2013 - Barcelona, Spain

Tracks: Sensor devices - Ultrasonic and Piezosensors - Photonics - Infrared - Gas Sensors - Geosensors - Sensor device technologies - Sensors signal conditioning and interfacing circuits - Medical devices and sensors applications - Sensors domain-oriented devices, technologies, and applications - Sensor-based localization and tracking technologies -Sensors and Transducers for Non-Destructive Testing

dline for papers: 30 March 20

http://www.iaria.org/conferences2013/SENSORDEVICES13.html

The Seventh International Conference on Sensor Technologies and Applications

SENSORCOMM 2013

25 - 31 August 2013 - Barcelona, Spain

Tracks: Architectures, protocols and algorithms of sensor networks - Energy, management and control of sensor networks - Resource allocation, services, QoS and fault tolerance in sensor networks - Performance, simulation and modelling of sensor networks - Security and monitoring of sensor networks - Sensor circuits and sensor devices - Radio issues in wireless sensor networks - Software, applications and programming of sensor networks -Data allocation and information in sensor networks - Deployments and implementations of sensor networks - Under water sensors and systems - Energy optimization in wireless sensor networks

http://www.iaria.org/conferences2013/SENSORCOMM13.html

The Sixth International Conference on Advances in Circuits, Electronics and Micro-electronics

CENICS 2013

25 - 31 August 2013 - Barcelona, Spain

Tracks: Semiconductors and applications - Design, models and languages -Signal processing circuits - Arithmetic computational circuits - Microelectronics -Electronics technologies - Special circuits - Consumer electronics - Applicationoriented electronics

http://www.iaria.org/conferences2013/CENICS13.html

Sensors & Transducers

ISSN 1726-5479 © 2012 by IFSA http://www.sensorsportal.com

Synthesis and Characterization of ZnO Nanoparticles as Prepared by Gel-combustion and ZnO Nanomorphologies by Sol-gel

¹ Mario F. BIANCHETTI, ² Marjeta MAČEK-KRZMANC, ² Ines BRACKO, ² Sreco D. SKAPIN and ¹ Noemi E. WALSÖE de RECA

¹ CINSO-CITEDEF (UNIDEF-MINCYT-CONICET), Juan Bautista de La Salle 4397, Villa Martelli (B1603ALO), Prov. Buenos Aires, Argentina ²Advanced Materials Department, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia E-mail: walsoe@citedef.gob.ar, marjeta.macek@ijs.si

Received: 21 May 2012 /Accepted: 23 November 2012 /Published: 30 November 2012

Abstract: The synthesis of ZnO nanoparticles by a modified gel-combustion method and the preparation of ZnO nanomorphologies using a combination of sol-gel and membrane template method are reported. Optimization of the synthesis parameters and characterization of the materials by X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM) and High-Resolution Transmission Electron Microscopy (HRTEM) were performed to evaluate the synthesized materials for potential application in optoelectronic devices and for gas sensors. *Copyright* © *2012 IFSA*.

Keywords: Zinc oxide, Nanoparticles, Gel-combustion, Nanotubes, Nano-morphologies, Sol-gel.

1. Introduction

The nanocrystalline semiconductor ZnO deserves a considerable interest since it is a very useful material for a valuable range of applications: LEDs, transparent transistors, lasers, gas sensors, luminescent devices, solar cells, exhibiting also quantum confinement because of its tuned bandgap [1-4]. It is important to control the parameters affecting the synthesis since electrical, optical, optoelectronic, photochemical and catalytic properties, among others, change considerably with the preparation method [5-8] and the morphology and nanocrystalline structure, being the checking of all these factors useful to develop reliable devices. Otherwise, because of the technological relevance of

this material, the nanotechnology has exerted an increasing control over the morphologies and characteristics of nanostructures [9]. An intensive research in ZnO tubular nanostructures has been performed to enhance the photon-to-electron efficiency, gas sensing and photonic performance related to the surface area increase and the quantum confinement effect [10]. In consequence, ZnO nanostructures have attracted much attention during the last decades and ZnO nanowires, nanobelts, nanorods and nanotubes have been prepared by different techniques [11-15]. However, controlled synthesis of large scale ZnO elongated nanomorphologies (nanotubes or nanowires) requires further investigation since a rational design and repeated fabrication of nanostructures is still needed. Resistivity and photoconductivity of nanocrystalline ZnO are actually studied at CINSO to be applied in sensors. Some authors of this paper have already proved for resistivity type gas sensors built with SnO₂ that replacing the conventional microcrystalline material with nanocrystalline SnO₂, leads to amazing results since sensors sensitivity increased in 30-37 % and the operation temperature decreased from 350-450 °C to 180 to 22 °C [16, 17]. Consequently, the aim of the first part of this work was to synthesize the nanocrystalline ZnO powder by an adapted gel-combustion method used before by the authors [18-20] characterizing the material by XRD and HRTEM and evaluating the quality of prepared ZnO. In order to grow the ZnO surface to enhance the gas absorption in sensors, nanomorphologies were studied and the aim of second part of this work was to synthesize by modified sol-gel template process [21, 22] ZnO nanomorphologies and to characterize them by XRD, FESEM and HRTEM. The evaluation of the parameters affecting the synthesis was considered to apply the material not only for gas sensors but also for optoelectronic devices.

2. Experimental

2.1. ZnO

ZnO exhibits a direct wide band-gap: 3.37 eV [23] and a large exciton binding energy: 60 MeV [24]. ZnO crystallizes in the wurtzite (B4 type) structure at ambient pressure and temperature, enabling to obtain several anisotropic nanomorphologies [25]. It exhibits a hexagonal lattice, belonging to the space group P6₃mc, which is characterized by two interconnecting sublattices of Zn²⁺ and O²⁻, in such a way that each Zn²⁺ is surrounded by a tetrahedra composed of O²⁻ and vice-versa giving rise this tetrahedral coordination to polar symmetry along the hexagonal axis. This polarity is responsible for several ZnO properties, piezoelectricity among them. The spontaneous polarization results also a very important factor in crystal growth, etching and defect generation. The lattice parameters of the hexagonal unit cell are: a = 3.2495 Å and c = 5.2069 Å, being its density: 5.605 g.cm⁻³ [26].

2.2. Synthesis by a Gel-combustion Method and Characterization of Nanocrystalline ZnO

The gel-combustion process to prepare ZnO nanoparticles (used before by the authors to prepare different nanoceramics particles [18-20]) consisted in the dissolution of the raw material (p/a Merck microcrystalline ZnO) in HNO₃ and water (ratio 1:2) in volume solution. The fuel, glycine, was added to the solution and the preparation was heated to form the gel till producing its complete combustion. The resulting material was calcinated to remove organic residues and ashes appearing in case of fuel excess. The oxide was identified and characterized by XRD with a Philips PW 3710 diffractometer using the Cu K α_1 radiation. The crystallite size was determined by the broadening of peaks applying the Scherrer equation [27]. HRTEM was performed with a JEM-2100-JEOL microscope enabling to observe the morphology and size distribution of crystallites.

2.3. Synthesis and Characterization of ZnO Nanomorphologies Prepared by the Combination of Sol-gel and Membrane Template Method

ZnO nanomorphologies were synthesized by a combined sol-gel [21, 22]. A solution in methanol with 15 wt% of precursor Zn (CH₃COO)₂. 2H₂O was prepared under continuous stirring. The concentration of solution resulted ~0.5 M (another diluted concentration: 0.25 M was also essayed). Aging was produced by heating at 60 °C for 4 h. Templates (polycarbonate membranes from Millipore with pores diameter 0.2 μ m or 0.8 μ m) were used. Membranes were impregnated with the solution and a pressure difference was applied (by vacuum or overpressure). The resulting material was dried at 50 °C (using IR lamp for ~ 1 h) and it was calcinated by a slow heating in a temperature range from 550°C to 750 °C. At first, the alcoxide (methoxide) was produced, being hydrolized to form the sol and condensed after drying to produce the gel.

Nanomorphologies were characterized by XRD under the same conditions described in 2.2. Morphology of the nanostructured materials was examined with a Philips 515 SEM microscope and, at higher magnification, with a FESEM, Supra 35 VP, Carl Zeiss). HRTEM was used for structural characterization being the analysis performed with a JEM-2100 (JEOL, Tokyo, Japan).

3. Results and Discussion

3.1. Nanocrystalline ZnO

Results of nanocrystalline ZnO specimens are reported in Table 1: oxidant/fuel ratio and crystallite size (nm). All the samples analyzed with XRD exhibited the wurtzite (B4 type) structure, with hexagonal lattice, belonging to the space group P6₃mc.

Specimen Batch	[Oxidant/fuel] Ratio (wt %)	Crystallite Size (nm)
1.	1.628	50 ± 4.2
2.	2.170	24 ± 2.0
3.	2.440	25.6 ± 2.2
4.	2.790	33 ± 2.75
5.	3.255	37 ± 3.10
6.	6.510	117 ± 9.75

Table 1. Calcination temperature: 600 °C.

Fig. 1 shows the XRD spectrum of nanoparticles appearing the peaks (100), (002), (101), (102), (110), (103), (200), (112 and (201) corresponding to the ZnO wurtzite structure (Card Number 36-1451) with a = 3.2495 Å and c = 5.2069 Å. It is a well known phenomenon that the spectrum peaks broaden as the particle size decreases [27] and peaks broadening was used to determine the crystallite size (s) by the Scherrer equation:

$$s = k \lambda / \beta \cos \theta$$
,

where k is the constant (usually taken as 0.89), λ is the wavelength of the X-ray beam, β is the full width at half maximum height (FWHM) of a given peak (after removal of the instrumental broadening) and θ is the diffracted angle of the peak. Scherrer equation represents the simplest treatment of peak broadening and it can be extended to include the effect of strain broadening of the

peaks [28]. Evidently, this method will only yield an average particle size (usually depending on the synthesis conditions) and it will not provide information on the dispersion of size or the quantity of grains agglomeration. Crystallite size for different [oxidant/fuel] ratio is reported in Table 1.

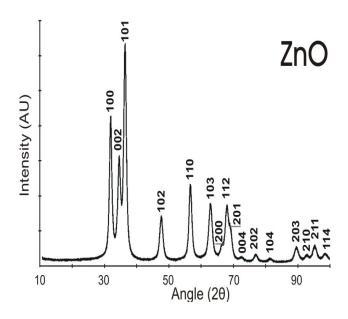


Fig. 1. XRD pattern of nanocrystalline ZnO.

The crystallite size variation with the [oxidant/fuel] ratio is shown in Fig. 2 and a remarkable minimum for crystallite sizes around 25 nm is observed for a low and critical [oxidant/fuel] ratio range between 2.17 and 2.44 wt%.

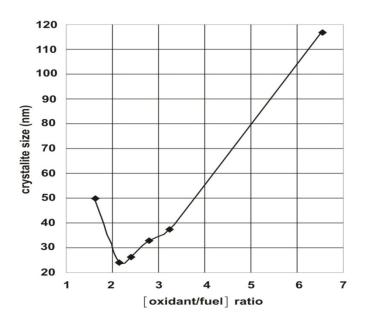
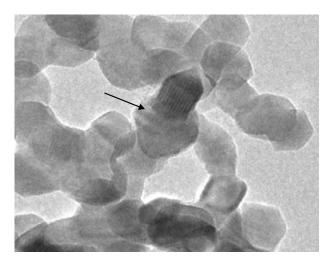



Fig. 2. Crystallites size (nm) vs. [oxidant/fuel] ratio (wt.%).

HRTEM observations enabled to conclude that the increasing calcinations temperature produced the change of crystallites size and shape, thus producing the faceting from spherical to hexagonal shape. Fig. 3a is a HRTEM micrograph of a cluster of ZnO particles showing a mixture of spherical and

faceted hexagonal ZnO nanocrystallites. Twins are observed in larger crystallites (shown by an arrow). Size of grains is between 25 and 67 nm in agreement with XRD measurements (Scherrer's method). Fig. 3b is the electron diffraction corresponding Fig. 3a, showing that particles are well crystallized and in the electron diffraction pattern, the (100), (002), (101), (102) and (110) planes can be indexed as wurtzite structure of ZnO in agreement with XRD spectrum of Fig. 1. The unit cell parameters were calculated [29] by the diffraction data minimizing the sum of the squares of 2θ residuals and the calculated values were: a = 3.3125 Å and c = 5.226 Å with an acceptable agreement with parameters values of the Card Number 36-1451.

Fig. 3a. HRTEM micrograph of a cluster of ZnO particles showing a mixture of nearly spherical and faceted hexagonal ZnO nanocrystallites. Twins are observed in larger particles (shown by arrow).

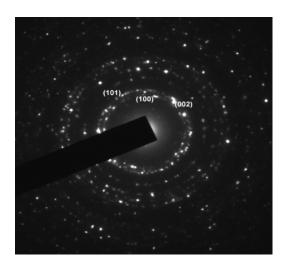
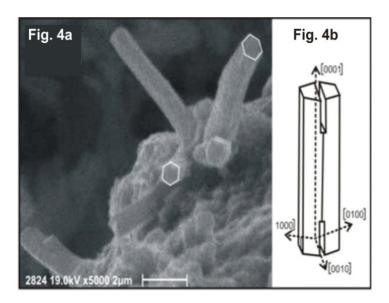



Fig. 3b. Electron diffraction corresponding to the same zone of Fig. 3a.

3.2. ZnO Nanomorphologies

Specimens have been prepared under the following conditions, concentration solution: ~ 0.25 M or 0.5 M; aging: by heating at 60 °C for 4 h; pores diameter of the membrane template: 0.2 μ m or 0.8 μ m; drying: at 50 °C for ~ 1 h and calcination at 600 °C. Optimal results to grow nanotubes were particularly obtained with a solution concentration: 0.25 M and using membranes with the smaller pores size (0.2 μ m). Crystallized, faceted, nearly transparent nanotubes appeared exhibiting polyhedric form with a hollow core (Fig. 4a). XRD spectra were in agreement with that of Fig. 1, corresponding

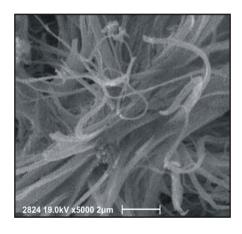

to the ZnO wurtzite structure (Card Number 36-1451). SEM observations enabled to prove the appearance of nanotubes with hexagonal cross section. In some areas of the same specimens, also tubes with square, rectangular or rounded cross sections appeared. Faceted nanotubes arranged in bundles were observed too. Tubes dimensions were measured in more than a hundred micrographs finding: mean diameter of tubes resulted from 85 nm to 170 nm, the mean thickness of nanotubes wall was from 8 nm to 20 nm and tubes were from ~800 nm to 2100 nm long. The ZnO nanotubular structure was tightly related to the hexagonal crystallography of this oxide as it is sketched in Fig. 4b. It has been observed a faceted morphology revealing strong evidence that nanotubes grow along the [0001] axis and, consequently, the open extremes of tubes are mostly hexagonal. Several nanotubes have been broken normally or along to the [0001] axis, exhibiting their parts a sheath aspect formed by breakage on the cleavage plane as shown on Fig. 4b. ZnO usually cleaves along the non polar prismatic planes of $\{1010\}$ though cleavage is also possible along polar surfaces like (0001) or $(000\overline{1})$ [29]. In few areas of the same specimen, the parallel arranged nanotubes presented rectangular or rounded hollow cores, other tubes appeared twisted, open in one extreme or changing their growth direction though maintaining straight sections (Fig. 5) or thinner nanotubes ending in tips appeared agglomerated in bundles (Fig. 6). FESEM enabled to observe the nanomorphologies with higher magnification and it was proved that they were formed by spherical or nearly hexagonal particles.

Fig. 4. (a) SEM image showing the nanotubes related to the ZnO hexagonal structures sketched in **Fig. 4b.**

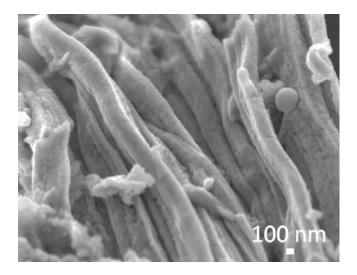


Fig. 5. Parallel ordering of faceted nanotubes (SEM).

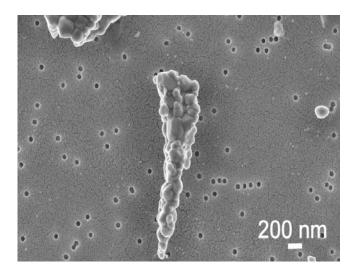


Fig. 6. Bundles of nanotubes and nanobelts (SEM).

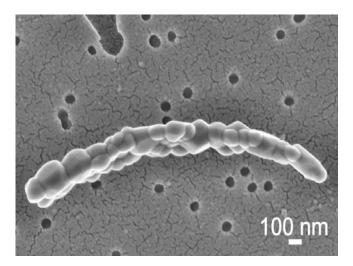

Fig. 7 shows with higher magnification (FESEM) flat tubes with hexagonal or rectangular section, arranged similarly to those of Figs. 5 and 6. Growth conditions were the same for nanotubes of Fig. 7 with the exception of the solution concentration (0.5 M). The nearly parallel array of flat tubes (with square or rectangular cross sections) was observed, which surface looked soft and free of agglomerated particles, being probably this aspect due to the smaller diameter size of particles forming the nanomorphologies. Isolated nanomorphologies, tubes or rods ending in a tip on one extreme and formed by particles, were also found and two of them have been chosen for comparison in Figs. 8 and Fig. 9. Both micrographs were obtained with the same magnification on specimen grown from 0.25M and 0.5M solution concentrations, respectively but with same pore diameter of polycarbonate membrane: 0.8 μm. Both, the increasing solution concentration and the major pores size of membrane, usually contribute to increase the crystallites diameter with mean values ranging from ~70 to 100 nm (Fig. 8) to ~90-200 nm (Fig. 9). However, the isolated formation of Figs. 8 and 9 are representative of the structure in which nanotubes exhibit a closed tip on one extreme and on the other the tube is open. It is also interesting to point out that these formations appeared superimposed with sheaths (probably formed as before explained) as shown in Figs. 10 and 11.

Fig. 7. FESEM micrographs of flat nanotubes arrays. ZnO nanomorphologies were prepared from 0.25 M solution concentration.

Fig. 8. ZnO nanotube ending in a tip and formed by clusters of nanoparticles (FESEM). Solution concentration: 0.25 M and membrane pores size: 0.8 μm.

Fig. 9. ZnO nanotube ending in a tip and formed by clusters of nanoparticles (FESEM). Solution concentration: 0.5 M and membrane pores size: 0.8 μm.

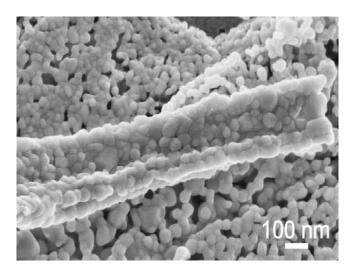
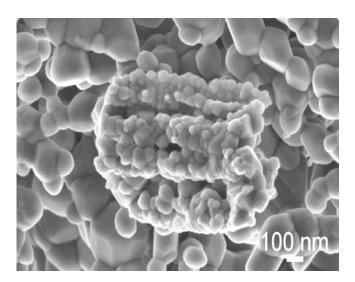
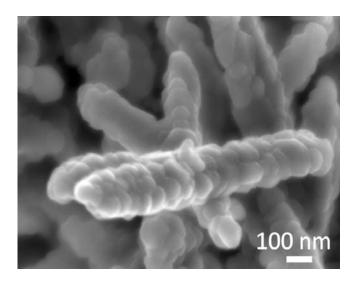
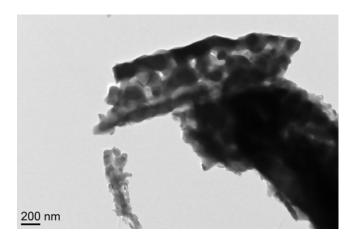


Fig. 10. ZnO sheath formed by clusters of nanoparticles (FESEM). Solution concentration: 0.25~M, membrane pores size: $0.8~\mu m$.


Fig. 11. Solution concentration: 0.5 M, membrane pores size: 0.8 μm (FESEM).

The nanomorphologies resulted irregular, formed by larger particles, showing rough surfaces and thicker walls. In spite of being the formations longer and wider, it was very difficult, even impossible, to measure their length and width because of the interaction of the different found nanomorphologies. In case of specimen grown from a more concentrated solution (0.5 M) and using a pore sized $(0.8 \mu\text{m})$ membrane, nanomorphologies were scarcely parallel arranged and often forming nanostar structures (Fig. 12). The nanostars were formed by nanorods produced by the stacking of round or hexagonal particles.

Fig. 12. ZnO nanostar formed by nanorods produced by the stacking of particles. Precursor solution concentration: 0.5 M (FE-SEM), membrane pore size: 0.8 μm.

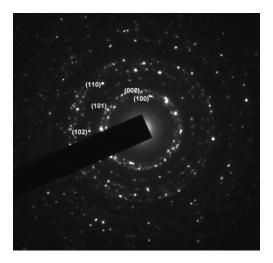

Fig. 13a: is the HRTEM image of a typical nanotube, formed by stacked particles ending in one side in a tip and broken on the other end, shown in the upper part of figure, exhibiting tubular structure with nearly uniform wall thickness. The walls exhibit a darker contrast because of the thickness of tubes which is homogeneous in this case, though usually the wall thickness looked non homogeneous.

Fig. 13a. HRTEM micrograph of a polycrystalline straight nanotube, ending in a tip on one extreme (upper right side) and being broken on the other extreme.

Nanotubes were generally straight and polycrystalline and they exhibited smooth surfaces. Fig. 13b: is the electron diffraction pattern of the same ZnO nanotube (Fig. 13a) showing the diffraction pattern:

(100), (002), (101), (102), (003) and (100) which corresponds to the ZnO wurtzite structure. On the image of the tube of Fig. 14a is shown the selected area electron diffraction (SAED) which inset is shown in Fig. 14b. The SAED pattern agrees with XRD pattern, being the only difference between both analyses, the relative intensities between the diffraction peaks.

Fig. 13b. Electron diffraction pattern of the ZnO nanotube of Fig. 13a, corresponding to the ZnO wurtzite structure.

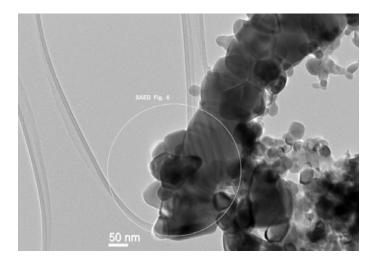


Fig. 14a. HRTEM micrograph of a polycrystalline nanotube.

4. Conclusions

A simple modified gel-combustion method is proposed to prepare ZnO nanoparticles controlling the [oxidant/fuel] ratio to grow crystallites with different diameters. The powder was initially formed by spherical particles evolving to faceted hexagonal platelets by thermal treatment. Characterization was performed by XRD and HRTEM being coincident both analysis indicating the ZnO hexagonal wurtzite structure. A simple modified sol-gel template method was proposed to grow ZnO nanomorphologies, evaluating the parameters affecting the synthesis and characterizing the material with XRD, FESEM and HRTEM it was possible to determine the strict required conditions to grow (nearly aligned) nanotubes with hexagonal cross section. The effect of the concentration solution, aging process, pores diameter of the template membrane, drying process and duration and temperature of calcinations were carefully evaluated, establishing the optimal conditions to the mostly growing of ZnO nanotubes.

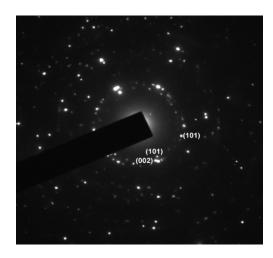


Fig. 14b. SAED pattern of the zone shown in Fig. 14a.

Acknowledgements

The authors are indebted to CONICET by the Grant PIP Ner.1122-00901-00355 (2010/13) granted for this research and to Eng. Ma. Emilia. F. de Rapp, Dr. Ismael Fábregas and Fernando Vázquez Rovere by their valuable assistance in XRD analysis and determination of crystallite size, BET measurements and drawings and design, respectively.

References

- [1]. H. J. Bolink, E. Coronado, D. Repetto, M. Sessolo, Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode, *Appl. Phys. Lett.*, 91, 2007, pp. 223501.
- [2]. M. A. Martínez, J. Herrero, M. T. Gutiérrez, Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells, *Solar Energy Materials and Solar Cells*, 45, 1997, pp. 75-86.
- [3]. P. Mitra, A. P. Chatterjee, H. S. Maiti, ZnO thin film sensor, *Materials Letters*, 35, 1998, pp. 33-38.
- [4]. L. Brus, Quantum crystallites and nonlinear optics, *Appl. Phys. A: Mater. Sci. Process.*, 53, 1991, pp. 465-474.
- [5]. J. S. Wang, K. M. Lakin, C-axis inclined ZnO piezoelectric shear wave films, *Appl. Phys. Lett.*, 42, 1983, pp. 352.
- [6]. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seeling, X. Liu, R. P. H. Chang, Spatial confinement of laser light in active random media, *Phys. Rev. Lett*, 84, 24, 2000, pp. 5584.
- [7]. F. C. M. Van de Pol, Thin-film ZnO properties and applications, *Amer. Ceram. Soc. Bull.*, 69, 1990, pp. 1959.
- [8]. Zhong L. Wang, Nanogenerators for self-powdered devices and systems, (Ed.), *Georgia Institute of Technology*, 2011.
- [9]. L. Schmidt-Mende, J. Mc Manus-Driscoll, ZnO-nanostructures, defects and devices, *Materials Today*, 10, 2007, pp. 40-49.
- [10].R. F. Severse, Will UV Lasers Beat the Blues?, Science, 276, 1997, pp. 895-898.
- [11].R. M. Wang, Y. J. Xing, J. Xu, D. P. Yu, Fabrication and microstructure analysis on zinc oxide nanotubes, *New J. Phys.*, 5, 2003, pp. 115-1 115-7.
- [12].J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, S. T. Lee, Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes, *Chemistry of Materials*, 15, 2003, pp. 305-308.
- [13].J. Zhang, L. Sun, C. Liao, C. Yan, A simple route towards tubular ZnO, *Chem. Commun.*, 3, 2002, pp. 262-263.
- [14].G. S. Wu, T. Xie, X. Y. Yuan, Y. Li, L. Yang, Y. H. Xiao, L. D. Zhang, Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process, *Solid State Communications*, 134, 2005, pp. 485- 486.

- [15].C. D. Bojorge, V. R Kent, E. Teliz, H. R. Cánepa, R. Henriquez, H. Gómez, R. Marotti, E. A. Dalchiele, Zinc oxide nanowires electrochemically grown onto sol-gel spin-coated seed layers, *Phys. Stat. Solidi A*, 1-8, 2011.
- [16].M. F. Bianchetti, I. Bracko, S. D. Skapin, N. E. Walsöe de Reca, Nanocrystalline tin dioxide to be applied for a gas sensor, *Sensors and Transducers*, 137, 2, 2012, pp. 155-164.
- [17].L. T. Alaniz, C. L. Arrieta, M. F. Bianchetti, C. A. Gillari, J. F. Giménez, H. A. Lacomi, D. F. Valerio, N. E. Walsöe de Reca, Gas sensor with a direct contact heating microdevice and the sensing method, *A. R. Patent PP-070105987*, granted on 28/12/2007.
- [18].R. E. Juárez, D. G. Lamas, G. E. Lascalea and N. E. Walsöe de Reca, Synthesis of nanocrystalline powders of TZP Ceramics by a nitrate-citrate combustion route, The Netherlands, *Journal of the European Ceramic Society*, Vol. 2, No. 2, 2000, pp. 133-138.
- [19].M. F. Bianchetti, R. E. Juárez, D. G. Lamas, N. E. Walsöe de Reca, L. Pérez, E. Cabanillas, Synthesis of nanocrystalline CeO₂-Y₂O₃ powders by a nitrate-glycine gel-combustion process, *Journal of Materials Research*, 17, 2002, pp. 2185-2188.
- [20]. Gustavo Lascalea, Preparation and study of properties of based on zirconia nanocrystalline powders and sub-micrometric ceramic materials by gel-combustion, Doctoral Thesis on Science and Technology of Materials, *Institute Jorge Sabato UNSAM*, CNEA, Buenos Aires, Argentina.
- [21].G. X. Wang, J. S. Park, M. S. Park and X. L. Goua, Synthesis and high gas sensitivity of tin oxide nanotubes, *Sensors and Actuators B*, 131, 2008, pp. 313-317.
- [22].M. G. Bellino, J. Sacanell, D. G. Lamas, A. G. Leyva, N. E. Walsöe de Reca, High-performance Solid-Oxide Fuel cells cathodes based on cobaltite nanotubes, *J. Am. Chem. Soc.*, 127, 2007, pp. 3066-3067.
- [23]. Landolt-Börnstein. New Series, Group III, Springer, Heidelberg, Germany, 1999, Vols. 17B, 22, 41B.
- [24].U. Özgür, Ya Alivov, C. Liu, A. Teke, M. A. Rehchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, *J. Appl. Phys.*, 98, 2005, Art. 41301, pp. 1-103.
- [25].A. B. Djurišić, Y. H. Leung, Optical Properties of ZnO Nanostructures, Small, 2006, pp. 944–961.
- [26]. D. R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 73rd Edition, CRC Press, New York, 1992.
- [27].H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures for polycrystalline and amorphous Materials, *Wiley Interscience Publication*, New York, 1974.
- [28].D. Balzar, Defect and Microstructure Analysis from Diffraction, *Oxford University Press*, London, New York, 1999.
- [29].H. Lüth, (Ed.), Surfaces and Interfaces of Solid Materials, 3rd Edition, *Springer Verlag*, Aachen-Jülich, 1992, pp. 35-61.

2012 Copyright ©, International Frequency Sensor Association (IFSA). All rights reserved. (http://www.sensorsportal.com)

Sensors & Transducers Journal (ISSN 1726-5479)

Open access, peer review international journal devoted to research, development and applications of sensors, transducers and sensor systems. The 2008 e-Impact Factor is 205.767

Published monthly by
International Frequency Sensor Association (IFSA)

Submit your article online: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm

Sensors & Transducers Journal

Guide for Contributors

Aims and Scope

Sensors & Transducers Journal (ISSN 1726-5479) provides an advanced forum for the science and technology of physical, chemical sensors and biosensors. It publishes state-of-the-art reviews, regular research and application specific papers, short notes, letters to Editor and sensors related books reviews as well as academic, practical and commercial information of interest to its readership. Because of it is a peer reviewed international journal, papers rapidly published in Sensors & Transducers Journal will receive a very high publicity. The journal is published monthly as twelve issues per year by International Frequency Sensor Association (IFSA). In additional, some special sponsored and conference issues published annually. Sensors & Transducers Journal is indexed and abstracted very quickly by Chemical Abstracts, IndexCopernicus Journals Master List, Open J-Gate, Google Scholar, etc. Since 2011 the journal is covered and indexed (including a Scopus, Embase, Engineering Village and Reaxys) in Elsevier products.

Topics Covered

Contributions are invited on all aspects of research, development and application of the science and technology of sensors, transducers and sensor instrumentations. Topics include, but are not restricted to:

- · Physical, chemical and biosensors;
- Digital, frequency, period, duty-cycle, time interval, PWM, pulse number output sensors and transducers;
- Theory, principles, effects, design, standardization and modeling;
- Smart sensors and systems;
- Sensor instrumentation;
- Virtual instruments;
- · Sensors interfaces, buses and networks;
- Signal processing;
- Frequency (period, duty-cycle)-to-digital converters, ADC;
- · Technologies and materials;
- Nanosensors;
- Microsystems;
- Applications.

Submission of papers

Articles should be written in English. Authors are invited to submit by e-mail editor@sensorsportal.com 8-14 pages article (including abstract, illustrations (color or grayscale), photos and references) in both: MS Word (doc) and Acrobat (pdf) formats. Detailed preparation instructions, paper example and template of manuscript are available from the journal's webpage: http://www.sensorsportal.com/HTML/DIGEST/Submition.htm Authors must follow the instructions strictly when submitting their manuscripts.

Advertising Information

Advertising orders and enquires may be sent to sales@sensorsportal.com Please download also our media kit: http://www.sensorsportal.com/DOWNLOADS/Media_Kit_2012.pdf

International Frequency Sensor Association Publishing

Call for Books Proposals

Sensors, MEMS, Measuring instrumentation, etc.

Benefits and rewards of being an IFSA author:

1 Royalties

Today IFSA offers most high royalty in the world: you will receive 50 % of each book sold in comparison with 8-11 % from other publishers, and get payment on monthly basis compared with other publishers' yearly basis.

2 Quick Publication

IFSA recognizes the value to our customers of timely information, so we produce your book quickly: 2 months publishing schedule compared with other publishers' 5-18-month schedule.

3 The Best Targeted Marketing and Promotion

As a leading online publisher in sensors related fields, IFSA and its Sensors Web Portal has a great expertise and experience to market and promote your book worldwide. An extensive marketing plan will be developed for each new book, including intensive promotions in IFSA's media: journal, magazine, newsletter and online bookstore at Sensors Web Portal.

Published Format: printable pdf (Acrobat).

When you publish with IFSA your book will never go out of print and can be delivered to customers in a few minutes.

You are invited kindly to share in the benefits of being an IFSA author and to submit your book proposal or/and a sample chapter for review by e-mail to editor@sensorsportal.com. These proposals may include technical references, application engineering handbooks, monographs, guides and textbooks. Also edited survey books, state-of-the art or state-of-the-technology, are of interest to us. For more detail please visit: http://www.sensorsportal.com/HTML/IFSA_Publishing.htm

International Frequency Sensor Association (IFSA) Publishing

Digital Sensors and Sensor Systems: Practical Design

Sergey Y. Yurish

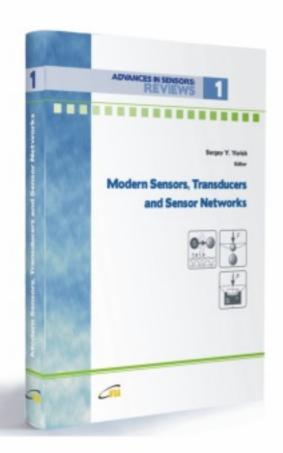
The goal of this book is to help the practicians achieve the best metrological and technical performances of digital sensors and sensor systems at low cost, and significantly to reduce time-to-market. It should be also useful for students, lectures and professors to provide a solid background of the novel concepts and design approach.

Book features include:

- Each of chapter can be used independently and contains its own detailed list of references
- Easy-to-repeat experiments
- Practical orientation
- Dozens examples of various complete sensors and sensor systems for physical and chemical, electrical and non-electrical values
- Detailed description of technology driven and coming alternative to the ADC a frequency (time)-to-digital conversion

Formats: printable pdf (Acrobat) and print (hardcover), 419 pages and at PhD students, eng

ISBN: 978-84-616-0652-8, e-ISBN: 978-84-615-6957-1 Digital Sensors and Sensor Systems: Practical Design will greatly benefit undergraduate and at PhD students, engineers, scientists and researchers in both industry and academia. It is especially suited as a reference guide for practicians, working for Original Equipment Manufacturers (OEM) electronics market (electronics/hardware), sensor industry, and using commercial-off-the-shelf components



ADVANCES IN SENSORS: REVIEWS

1

Sergey Y. Yurish Editor

Modern Sensors, Transducers and Sensor Networks

Modern Sensors, Transducers and Sensor Networks is the first book from the Advances in Sensors: Reviews book Series contains dozen collected sensor related state-of-the-art reviews written by 31 internationally recognized experts from academia and industry.

Built upon the series Advances in Sensors: Reviews - a premier sensor review source, the *Modern Sensors*, *Transducers and Sensor Networks* presents an overview of highlights in the field. Coverage includes current developments in sensing nanomaterials, technologies, MEMS sensor design, synthesis, modeling and applications of sensors, transducers and wireless sensor networks, signal detection and advanced signal processing, as well as new sensing principles and methods of measurements.

Modern Sensors, Transducers and Sensor Networks is intended for anyone who wants to cover a comprehensive range of topics in the field of sensors paradigms and developments. It provides guidance for technology solution developers from academia, research institutions, and industry, providing them with a broader perspective of sensor science and industry.

Order online:

http://sensorsportal.com/HTML/BOOKSTORE/Advance_in_Sensors.htm

www.sensorsportal.com