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We consider an interacting Lifshitz field with z ¼ 3 in a curved spacetime. We analyze the renormaliz-

ability of the theory for interactions of the form ��n, with arbitrary even n. We compute the running of the

coupling constants both in the ultraviolet and infrared regimes. We show that the Lorentz-violating terms

generate couplings to the spacetime metric that are not invariant under general coordinate transformations.

These couplings are not suppressed by the scale of Lorentz violation and therefore survive at low energies.

We point out that in these theories, unless the effective mass of the field is many orders of magnitude

below the scale of Lorentz violation, the coupling to the four-dimensional Ricci scalar �ð4ÞR�2 does not

receive large quantum corrections � � 1. We argue that quantum corrections involving spatial derivatives

of the lapse function (which appear naturally in the so-called healthy extension of the Hořava-Lifshitz

theory of gravity) are not generated unless they are already present in the bare Lagrangian.
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I. INTRODUCTION

As there is no hint about how the laws of physics are
modified at extremely high energies, it is reasonable to
explore the possibility of high-energy violations of the
low-energy symmetries and test how robust the predictions
in the infrared are when departures from those symmetries
in the ultraviolet are considered. In particular, in the last
years, there has been a growing interest in field theories
where Lorentz invariance is explicitly broken at high
energies [1].

There is an additional motivation to consider these kinds
of theories, which comes from gravity. In the theory pro-
posed by Hořava [2], one introduces a preferred foliation of
spacetime and allows for higher spatial derivatives in the
Lagrangian. The invariance under general changes of co-
ordinates is lost, but the higher spatial derivatives improve
the quantum version of the theory. It becomes a power-
counting renormalizable theory of gravity if one includes
2z spatial derivatives, with z � 3. At low energies, one
expects that there will be a region in the parameter space of
the theory in which the well-tested predictions of general
relativity are recovered.

When matter fields are coupled to Hořava’s gravity, in
principle, one has two options for their corresponding bare
Lagrangians: one could consider that they also have higher
spatial derivatives, breaking explicitly Lorentz invariance
in the matter sector, or that they do not have them. The
latter was considered in Ref. [3] with the main goal of
making the model phenomenologically viable in the sense
that the observational constraints on Lorentz-violating ef-
fects (which in this case, are induced only by the gravita-
tional couplings) could be naturally satisfied. However, as
was shown in Ref. [4], the renormalizability of the theory
implies that one must also include higher derivatives in the

matter sector. Indeed, even for free quantum matter fields
in a classical gravitational background, z � 3 is needed in
order to avoid the existence of divergences with more than
two time-derivatives of the metric [4]. Scalar fields with
such higher spatial derivatives, which obviously break
Lorentz invariance, are named Lifshitz fields and are the
main subject of the present paper.
Various investigations on the properties and applications

of Lifshitz fields with z ¼ 3 can be found in the literature;
see for instance Refs. [5–7] in the cosmological context,
and Refs. [8,9] for nonperturbative studies in flat space.
There is an important question that deserves to be ad-
dressed, which is whether one can recover the usual
Lorentz-invariant field theory predictions at low energies
or not, for Lifshitz fields. On this subject, in Refs. [10,11],
the authors considered models with z ¼ 2 scalar fields (and
also models with fermions as a Yukawa like model) in
higher spatial dimensions with the main goal of analyzing
the renormalization group (RG) evolution of the ‘‘speed-
of-light’’ couplings ci’s for one and more than one field
(see also Refs. [12,13]). The one-loop renormalized effec-
tive potential for a Lifshitz scalar field with z ¼ 2 at finite
temperature has been analyzed in Ref. [14]. One motiva-
tion for the choice of z ¼ 2 and higher dimensions is to
obtain nontrivial results without having to compute high-
loop contributions or diagrams with many legs. The results
in Refs. [10,11] indicate that the recovery of the usual
Lorentz-invariant theories at low energies is nontrivial,
requiring in general a fine-tuning of the parameters in the
ultraviolet. The requirement of such fine-tunings seems to
be generic in the sense that even thought the different ci’s
can run to the same value in the IR, in simple models, the
running is in general too slow to satisfy the phenomeno-
logical constraints. However, in Ref. [15], the authors have
pointed out that a faster running can be achieved in some
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scenarios containing a large number of hidden fields be-
yond the standard model ones. Clearly, the studies carried
out so far are still not conclusive, and this question should
be further addressed. Although this latter issue goes be-
yond the scope of the present paper, one of our goals is to
move forward in this direction by extending nonperturba-
tive RG techniques for z ¼ 3 Lifshitz fields.

The analysis of quantum field theory with z � 1 is
therefore of interest for several reasons. On the one hand,
if one considers Hořava’s gravity as a useful arena to
understand different aspects of quantum gravity, it is un-
avoidable to include these kinds of matter fields. On the
other hand, this analysis can be considered as a simplified
situation for the study of the renormalizability of Hořava’s
gravity beyond power-counting analysis. Finally, one
could address interesting questions as, for instance, the
emergence of the usual Lorentz-invariant theories at low
energies.

With these motivations in mind, in this paper, we study
the theory of self-interacting quantum Lifshitz fields with
z ¼ 3 in curved backgrounds. We will consider interac-
tions of the form ��n, with arbitrary n, that are allowed by
power counting. Looking at the Heisenberg equations for
the quantum field operator, we will discuss the one-loop
renormalizability of the theory. This turns out to be a rather
simple task, since the divergences are those of flat space-
time. It is also possible to compute the running of the
coupling constants in the ultraviolet regime. In order to
analyze the infrared behavior of the coupling constants, we
generalize a method based on the evolution equation for
the effective potential [16,17], to the case of Lifshitz fields.

We consider the quantum fields in a curved background
so as to analyze the couplings to the spacetime metric
induced by the self-interaction. It is well-known that, in
theories with z ¼ 1, it is necessary to include couplings to
the curvature of the form �R�2 in order to absorb the
divergences of the theory. We will see that, although these
kinds of terms are not necessary to renormalize for z ¼ 3,
the self-interaction induces finite couplings to both the
3-curvature and the extrinsic curvature. Somewhat surpris-
ingly, these couplings are not suppressed by the scale of
Lorentz violation, leaving a footprint of the ultraviolet
behavior of the theory in the infrared. We will also analyze
whether quantum corrections induce terms containing
derivatives of the lapse function or not, as needed in the
so-called healthy extension of Hořava’s theory [18].

II. INTERACTING LIFSHITZ FIELDS
IN CURVED BACKGROUNDS

As already mentioned, there are several reasons for
considering a z ¼ 3 scalar field in a curved background,
amongst which is to move forward in the understanding of
quantum effects in the framework of the Hořava-Lifshitz
theory. As was shown in Ref. [19], a power-counting
analysis similar to the usual one can be applied for any z,

provided one substitutes the standard scaling dimensions
of the operators by their ‘‘weighted scaling dimensions’’,
i.e. by the dimensions implied by the assignment ½x�w ¼
�1 and ½t�w ¼ �z. A simple power-counting argument
along the lines of Refs. [20,21] shows that, in this case,
the interacting theory is renormalizable for an interaction
of the form �n, with n arbitrary.
To review this, let us suppose the action of the scalar

field in Dþ 1 flat dimensions S ¼ Sfree þ Sint, with a free
part of the form

Sfree ¼
Z
f _�2 ��½m2 þ �þ . . .þ�2�2zð�Þz��gdtdDx;

(1)

where� is a parameter with momentum dimensions which
controls the Lorentz-violation scale. For the interaction
part of the action, we consider a polynomial in � of
degree nmax:

Sint ¼
Z

Pð�ÞdtdDx ¼
Z �Xnmax

n¼3

�n

n!
�n

�
dtdDx; (2)

where each coupling constant �n has dimensions

½�n� ¼ MDþ1�nððD�1Þ=2Þ: (3)

For a generic Feynman diagram with L loops and I
internal lines, the superficial degree of divergence [20] is

� ¼ LðDþ zÞ � 2Iz ¼ LðD� zÞ � 2zðI � LÞ: (4)

As I � L in general, for z ¼ 3, we can expect at most a
logarithmic divergence (� ¼ 0). Setting z ¼ 1 reduces this
expression to the standard result for Lorentz-invariant
theories. Considering, in particular, a given diagram with
only one type of vertex with n legs, and using Euler’s
theorem for graphs along with other identities regarding
the number of n-legged vertices and the number of external
lines E, the expression (4) can be rewritten as

� ¼
�
ðDþ zÞ

�
1� 2

n

�
� 2z

�
I þ

�
1� E

n

�
ðDþ zÞ: (5)

Now, for a given process, the number of external lines E is
constant, while the number of loops L and internal lines I
increase with every order in perturbation theory. Therefore,
� will not increase for further corrections if

ðDþ zÞ
�
1� 2

n

�
� 2z � 0; (6)

which translates to

n � 2ðDþ zÞ
D� z

; z < D; (7)

n � 1; z � D: (8)

This shows that for z � D, the theory is power-counting
renormalizable for any power of � in the interaction
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Lagrangian. In the Lorentz-invariant case (z ¼ 1), the

highest power allowed is nmaxðz ¼ 1Þ ¼ 2ðDþ1Þ
D�1 , which

gives the standard result nmax ¼ 4 in 3þ 1 dimensions.
We will consider a Lorentz-noninvariant action in a

curved spacetime. Using the Arnowitt-Deser-Misner for-
malism, the spacetime interval is written as

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (9)

where, as usual, Latin indices refer to the spatial coordi-
nates, i, j ¼ 1, 2, 3, N and Ni are the lapse and shift
functions, respectively, and gij is the spatial metric. The

explicit form of the action is given by

S� ¼
Z

dtd3xN
ffiffiffi
g

p �
1

2N2
ð _�� Ni@i�Þ2

� 1

2
m2�2 � b1@i�@i�� b2

�2
ð��Þ2

þ b3
�4

�2���� Xpmax

p¼2

�2p

ð2pÞ!�
2p

�
; (10)

where the operator � is the spatial Laplacian associated to
gij. The sources of Lorentz violation are the coefficients

b1, b2 and b3, while, as before, � is a parameter with
dimensions of mass that sets the scale at which this viola-
tion occurs. Furthermore, we included interactions of the
type �2p up to an arbitrary value of pmax ¼ nmax=2, which
are not renormalizable in the Lorentz-invariant case when
nmax > 4. Neither the kinetic terms nor the interaction
terms considered here are the most general; for instance,
as was emphasized in Ref. [18], the foliation-preserving-
diffeomorphism symmetry of the theory also allows the
inclusion of spatial derivatives of the logarithm of the lapse
function N. One could also consider interaction terms
containing derivatives of �. We restrict for the moment
to this particular choice and postpone the discussion about
more general Lagrangians until Sec. VIB.

The classical equation of motion derived from the
action (10) is

N
ffiffiffi
g

p �
ðhLðxÞ �m2Þ�� Xpmax

p¼2

�2p

ð2p� 1Þ!�
2p�1

�
¼ 0;

(11)

where we have defined the operator

hLðxÞ... � 1

N
ffiffiffi
g

p
�
�@t

� ffiffiffi
g

p
N

ð@t � Ni@iÞ...
�

þ @i

�
Ni ffiffiffi

g
p
N

ð@t � Nj@jÞ...
�
þ 2b1@iðN ffiffiffi

g
p

@i...Þ
(12)

� 2
b2
�2

ffiffiffi
g

p
�ðN�...Þ þ b3

�4

ffiffiffi
g

p
�ðN�2

...Þ

þ b3
�4

ffiffiffi
g

p
�2ðN�...Þg: (13)

Proceeding along the same lines as in Ref. [22], we write
the quantum field � as its mean value h�i plus quantum
fluctuations �̂ around that value, which is

� ¼ h�i þ �̂: (14)

For this decomposition to be consistent, the expectation

value of the fluctuations must vanish h�̂i ¼ 0. Replacing
Eq. (14) in the equation of motion (11) and taking its mean
value h. . .i, we are left with the evolution equation for
�0 � h�i:

N
ffiffiffi
g

p �
ðhLðxÞ �m2Þ�0

� Xpmax

p¼2

X2p�1

k¼0

�2p

k!ð2p� k� 1Þ! h�̂
ki�2p�k�1

0

�
¼ 0; (15)

while, on the other hand, subtracting this last equation to
the equation of motion (11), there remains the equation for

the fluctuation �̂:

N
ffiffiffi
g

p �
ðhLðxÞ �m2Þ�̂

� Xpmax

p¼2

X2p�1

k¼0

�2p

k!ð2p� k� 1Þ! ð�̂
k � h�̂kiÞ�2p�k�1

0

�
¼ 0:

(16)

In the 1-loop approximation, the contributions of the ex-

pectation values h�̂3i, h�̂4i, etc., are much smaller than

h�̂2i. Hence, only the terms with k ¼ 0 and k ¼ 2 of the
sum in Eq. (15) and the term with k ¼ 1 of the sum in
Eq. (16) are kept. Then the most important quantum
correction to the evolution equation for �0 is proportional

to h�̂2i,

N
ffiffiffi
g

p ��
hLðxÞ �m2 � �4

2
h�̂2i

�
�0

� Xpmax

p¼2

�
�2p þ

�2pþ2

2
h�̂2i

�
�2p�1

0

ð2p� 1Þ!
�
’ 0; (17)

while the fluctuation �̂ satisfies a free field equation with
variable mass

N
ffiffiffi
g

p ½hLðxÞ �M2ðxÞ��̂ðxÞ ’ 0; (18)

where

M2ðxÞ ¼ m2 þ Xpmax

p¼2

�2p

ð2p� 2Þ!�
2p�2
0 ðxÞ: (19)
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In Eq. (17), the sum has been rearranged to group the
terms proportional to the same power of �0.

III. ADIABATIC EXPANSION OF THE
QUANTUM CORRECTIONS

To study the renormalization of Eq. (17), it is sufficient
to calculate the quantum corrections in an adiabatic expan-
sion, i.e. derivatives of the metric. Each order in this
expansion is less divergent than the previous one, so the
full ultraviolet behavior of the corrections is exhibited in
the first orders of this expansion. In the case of z ¼ 3, as we
already mentioned, the only divergence we can get is
logarithmic, so in principle, only the zeroth adiabatic order
correction would be divergent so that the renormalization
procedure could take place exactly as in flat spacetime.
Nevertheless, it is interesting to calculate higher adiabatic
order corrections; on the one hand, to find the couplings
with the curvature generated by the quantum effects, and
on the other hand, to see whether the usual z ¼ 1 case is
recovered when the appropriate limit is taken. In this last
case, it is necessary to go up to second adiabatic order
when performing the renormalization procedure at the
level of the evolution equation [22].

The expectation value of �̂2 taken in the vacuum state
j0i can be calculated from the Feynman propagator
GFðx; x0Þ,

h0j�̂2ðxÞj0i ¼ � lim
x0!x

ImGFðx; x0Þ; (20)

for which it is necessary to solve the equation for the Green
function of the fluctuation, which is

N
ffiffiffi
g

p ½hLðxÞ �M2ðxÞ�GFðx; x0Þ ¼ �ðx� x0Þ: (21)

Throughout this paper, the mass M will be taken as
constant. An improvement on this approximation would
be to consider a derivative expansion on the mass, much
like the adiabatic expansion in derivatives of the metric,
which in this case, would be equivalent to a derivative
expansion on the mean value of the field �0. However,
the terms including derivatives of�0 will not be relevant to
analyze the renormalization.

We will consider, in turn, two different approximations

to simplify the calculation of h�̂2i up to second adiabatic
order. First (in this section) is a weak gravitational field
approximation, and after that, we will choose an ansatz
for the metric and perform a derivative expansion (see
Sec. VIA). In both cases, the goal is to solve for the
Green function in the adiabatic expansion.

We first consider small perturbations around flat
spacetime:

N ¼ 1þ �n; Ni ¼ �Ni; gij ¼ �ij þ hij; (22)

keeping terms up to linear order in these perturbations. The
Feynman propagator at zero order in the metric perturba-
tions reads

Gð0Þ
F ðx; x0Þ ¼ �

Z d4k

ð2�Þ4
eik�ðx�x0Þ

ð!2
k � k20 � i"Þ ; (23)

where

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2b1j ~kj2 þ 2

b2
�2

j ~kj4 þ 2
b3
�4

j ~kj6
s

: (24)

The first order contribution, following the steps from
Ref. [4], can be written as follows:

Gð1Þ
F ðx; x0Þ ¼

Z
d4x00

d4k1
ð2�Þ4

d4k2
ð2�Þ4

d4p

ð2�Þ4

� eik1�ðx�x00Þeip�x00eik2�ðx00�x0Þ

ð!2
k1
� k10

2Þð!2
k2
� k20

2Þ fk2ðpÞ; (25)

where fkðpÞ is a function of k0, ki, p0, and pi which is
linear in the metric perturbations and can be found in the
Appendix. To obtain the different orders of the adiabatic
expansion, the integrand of Eq. (25) must be expanded in
powers of pi and p0. The coincidence limit can be taken
trivially and, after Wick rotating to k4 ¼ �ik0, the integral
in k4 can be performed easily. After a straightforward but
tedious calculation, the following expression for the zeroth

adiabatic order of the coincidence limit of Gð1Þ
F ðx; x0Þ is

reached:

½Gð1Þ
F �ADð0Þ ¼ �

Z d3k

ð2�Þ3
�
D2

2ðkÞ
�
h

2
� �n

�

�D0
2ðkÞ

�
h

2
þ �n

�
!2

k þD0
2ðkÞhijkikj

d!2
k

dk2

�
;

(26)

where ½. . .� denotes the coincidence limit, and

Da
bðkÞ ¼

ðiÞaþ1

ð2�Þ !
aþ1�2b
k

Z 1

�1
dxxa

ð1þ x2Þb

¼
8<
:

ið�1Þa=2
ð2�Þ !aþ1�2b

k
�ðaþ1

2 Þ�ð�aþ1�2b
2 Þ

�ðbÞ ; a even;

0; a odd:
(27)

The corresponding expressions for the first and second
adiabatic orders can be found in the Appendix.
Finally, after a few more steps regarding the angular

integrals, taking the imaginary part and putting everything

together, the results for the adiabatic orders of h�̂2i give

h�̂2iADð0Þ ¼ ~I0
8�2

; (28)

h�̂2iADð1Þ ¼ 0; (29)
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h�̂2iADð2Þ¼ 1

96�2

�
I00ð@2t h�2@t@i�N

iÞþI0ð@i@jhij�@i@
ihÞ

�
�
2I0þ5

6
I3�5

3
I2

�
@2�n

�
; (30)

where we have defined the following integrals:

~I0 ¼
Z 1

0
du

uðD=2Þ�1

!u

; I0 ¼
Z 1

0
du

uðD=2Þ�2

!u

;

I00 ¼
Z 1

0
du

uðD=2Þ�1

!3
u

; I2 ¼
Z 1

0
du

uðD=2Þ

!3
u

d2!2
u

du2
;

I3 ¼
Z 1

0
du

uðD=2Þþ1

!3
u

d3!2
u

du3
; (31)

and u � k2. By simply power counting, one can verify that,
provided b3 � 0, ~I0 is logarithmically divergent, while the
remaining integrals are finite. Therefore, as expected from
power counting, only the zeroth adiabatic order correction
is divergent (which is the one involving ~I0), and hence is
the only one we need for analyzing the renormalization
process (see the next section). We will come back to the
result for the second adiabatic order in Sec. VI when we
study the quantum corrections to the couplings with the
curvature.

IV. RENORMALIZATION AND RUNNING OF THE
INTERACTION CONSTANTS

In the previous section, we obtained the 1-loop quantum
corrections to the evolution equation of h�i up to second
adiabatic order. We found that only the zeroth adiabatic
order correction is divergent. Hence, the renormalization
procedure only requires counterterms independent of the
curvature, which will cause the renormalization of the
interaction constants �2p and the field’s mass m.

At high energies, the behavior of the running couplings
can be obtained from the minimal subtraction renormal-
ization scheme. The divergent integral ~I0 is regularized to
give a finite expression using dimensional regularization,
and the counterterms are chosen to precisely cancel the
poles in D ¼ 3. This process requires the introduction of
an arbitrary mass scale � in order to keep the physical
couplings with the correct dimensions,

�B
2p ¼ �ðp�1Þ�ð�R

2p þ ��2pÞ; (32)

where the superscripts B and R stand for bare and renor-
malized, respectively, ��2p are the counterterms and

� ¼ 3�D. Replacing the bare quantities for the renor-
malized ones in the evolution equation, it reads

N
ffiffiffi
g

p ��
hLðxÞ �m2

R � �m2 � �R
4

2
��h�̂2i

�
�0

� Xpmax

p¼2

�ðp�1Þ�
�
�R
2p þ ��2p þ

�R
2pþ2

2
��h�̂2i

�

� �2p�1
0

ð2p� 1Þ!
�
¼ 0: (33)

The evaluation of ~I0 is more complex than for the usual
case, so we sketch here the main steps to extract the
divergent part. We start with the integral representation:

~I 0 ¼ 1ffiffiffiffi
�

p
Z 1

0
ds

Z 1

0
du

uðD=2Þ�1ffiffiffi
s

p e�s ~!2
ue�s�!2

u ; (34)

where ~!2
u ¼ M2 þ 2b3u

3=�4, �!2
u ¼ 2b1uþ 2b2u

2=�2.
Expanding the exponential in powers of �!2

u, it is easy to
see that only the leading term is divergent for D ! 3 and
can be explicitly evaluated. Then, performing a series
expansion on �, we can write

��h�̂2i ¼ �2

4�2
ffiffiffiffiffiffiffiffi
2b3

p
�
1

�
þ lnð�Þ

�
þ finiteþOð�Þ; (35)

where the finite terms are independent of both � and �.
Inserting this in Eq. (33), we choose the counterterms as

�m2 ¼ � �R
4�

2

8�2
ffiffiffiffiffiffiffiffi
2b3

p 1

�
; (36)

��2p ¼ � �R
2pþ2�

2

8�2
ffiffiffiffiffiffiffiffi
2b3

p 1

�
; (37)

so to cancel only the poles in � ¼ 0. Afterwards, the � ! 0
limit can be safely taken, and the renormalized evolution
equation reads

N
ffiffiffi
g

p ��
hLðxÞ�m2

R�
�R
4�

2

8�2
ffiffiffiffiffiffiffiffi
2b3

p lnð�Þ� finite

�
�0

� Xpmax

p¼2

�
�R
2pþ

�R
2pþ2�

2

8�2
ffiffiffiffiffiffiffiffi
2b3

p lnð�Þþ finite

�
�2p�1

0

ð2p� 1Þ!
�
¼ 0:

(38)

This equation inherits a � dependence from the renormal-
ization (or regularization) procedure, which remains even
after taking the � ! 0 limit. However, the physics must be
independent of the scale so introduced. Therefore, the
lnð�Þ derivative of the previous equation must vanish
term-by-term in the sum of powers of �0. Then, it follows
that renormalized couplings must satisfy the following
UV RG equations:

�
dm2

R

d�
¼ � �R

4�
2

8�2
ffiffiffiffiffiffiffiffi
2b3

p ; (39)

LIFSHITZ SCALAR FIELDS: ONE LOOP . . . PHYSICAL REVIEW D 85, 024051 (2012)

024051-5



�
d�R

2p

d�
¼ � �R

2pþ2�
2

8�2
ffiffiffiffiffiffiffiffi
2b3

p : (40)

To conclude this section, we introduce the notation

h�̂2iren ¼ h�̂2i � h�̂2iADð0Þ
div for the finite part of h�̂2iADð0Þ

and the contributions of higher adiabatic order. Then, the
renormalized evolution equation is

N
ffiffiffi
g

p ��
hLðxÞ �m2

R � �R
4

2
h�̂2iren

�
�0

� Xpmax

p¼2

�
�R
2p þ

�R
2pþ2

2
h�̂2iren

�
�2p�1

0

ð2p� 1Þ!
�
¼ 0: (41)

This expression will be picked up later in Sec. VI to discuss
the type of couplings with the curvature that come from the

second-adiabatic-order part of h�̂2iren.

V. INFRARED REGIME

The minimal subtraction scheme cannot be used to study
the infrared behavior of the running couplings, but a more
physical renormalization scheme must be used instead,
such as the momentum subtraction scheme. Another pos-
sibility to study this problem is to use the so-called
RG-flow equation for the effective action [16]. As we
will see, this approach is useful not only for obtaining
the RG equations for the coupling constants of the potential
in the UV and IR regimes, but also to extend the analysis
beyond the one-loop approximation.

We will therefore generalize here the methods presented
in Ref. [17] to the Lifshitz case. In this formalism, the 1-
loop correction to the effective potential can be written as

Uð1Þ
� ð�Þ ¼ 1

2�
ln

�
det

�
@2S�

@�ðxÞ@�ðyÞ
���������

��
(42)

¼ 1

2

Z
�<jkj<�UV

d4k

ð2�Þ4
�
ln½k2 þ V00ð�Þ� � lnðk2Þ

�

¼ 1

16�2

Z �UV

�
dkk3 ln

�
1þ V00ð�Þ

k2

�
; (43)

where the integral is performed over the Euclidean mo-
mentum space k. The renormalization scale � is identified
with the IR momentum cutoff, so that the integration

region is the volume contained between two concentric
3-spheres of radii � and �UV.
The main difference with the Lifshitz case is the aniso-

tropic scaling. This is evidenced in the integrand,
which, with the modified dispersion relation (24), gets
the replacement

k2 ! �k20 þ ~!2ð ~kÞ ¼ k24 þ ~!2ð ~kÞ; (44)

with ~!2ð ~kÞ ¼ !2ð ~kÞ �M2 [the effective mass term M2

is included in the potential Vð�Þ], and then it is no
longer spherically symmetric in 4 dimensions. Hence, the
anisotropic scaling should be taken into account by mod-
ifying also the integration region, using different cutoffs in
the spatial and temporal directions.
We motivate one way of performing this generalization

by first looking at the integral over the 3-sphere from the
usual Lorentz-invariant case. This integral can be writtenZ �UV

�
dkk3 ¼

Z �UV

0
dkk3 �

Z �

0
dkk3

¼
Z �UV

0
dkj ~kj2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

UV�j ~kj2
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

UV�j ~kj2
p dk4

�
Z �

0
dkj ~kj2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�j ~kj2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�j ~kj2

p dk4: (45)

In this form, we can introduce the anisotropy by modifying
the limits of the k4 integral in the following manner:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
UV � j ~kj2

q
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�UVÞ � ~!2ð ~kÞ

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � j ~kj2
q

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�Þ � ~!2ð ~kÞ

q
:

(46)

This leads to an integral over the volume contained be-
tween two sort of prolate 3-spheroids, with their major
axes aligned in the k4 direction, and whose cross sections
in the plane perpendicular to k4 are concentric 2-spheres.
This 3-‘‘rugby-ball’’ can be continuously deformed into a

3-sphere when ~!2ð ~kÞ ! j ~kj2, which is expected to happen
in the IR.
Putting all this together, and taking into account that the

integrand now only depends on j ~kj and k24, the expression
(43) is generalized to

Uð1Þ
� ð�Þ ¼ 1

4�3

Z �UV

0
dkj ~kj2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�UVÞ� ~!2ð ~kÞ

p

0
dk4 ln

�
1þ V00ð�Þ

k24 þ ~!2ð ~kÞ
�

� 1

4�3

Z �

0
dkj ~kj2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�Þ� ~!2ð ~kÞ

p

0
dk4 ln

�
1þ V00ð�Þ

k24 þ ~!2ð ~kÞ
�
: (47)

We cannot go much further from here to obtain Uð1Þ
� ð�Þ because of calculational difficulties. Nevertheless, in order to

calculate the RG equations, we can take the lnð�Þ derivative of Uð1Þ
� ð�Þ before performing the integrals, which greatly

simplifies the computations.
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The renormalized constants are obtained by taking a
given number of� derivatives of U�ð�Þ and then evaluat-
ing at � ¼ 0:

m2
Rð�Þ ¼ @2U�

@�2

���������¼0
; (48)

�R
4 ð�Þ ¼ @4U�

@�4

���������¼0
; (49)

and, in general,

�R
2pð�Þ ¼ @2pU�

@�2p

���������¼0
: (50)

From the expression (47), the first term is independent of�
and is dropped, while in the second, there are two nested
integrals whose limits depend on �. Performing the de-
rivatives, we get

�
@U�ð�Þ

@�
¼ � �

4�3

d ~!2

dk2

��������k¼�

�
8<
:
Z �

0
dkj ~kj2 ln

�
1þ V00ð�Þ

k24 þ ~!2ð ~kÞ
�

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�Þ � ~!2ð ~kÞ

q
9=
;

k4¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�Þ� ~!2ð ~kÞ

p : (51)

On the right-hand side, the logarithm becomes independent

of j ~kj once we evaluate k4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�Þ � ~!2ð ~kÞ

q
. Hence, we

can take it out of the integral. What remains is quite simple:

�
@U�ð�Þ

@�
¼ �fð�; fbigÞ ln

�
1þ V 00ð�Þ

~!2ð�Þ
�
; (52)

where we have defined

fð�; fbigÞ � �2

4�3

d ~!2ð�Þ
d�2

Z �

0
dk

j ~kj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~!2ð�Þ � ~!2ð ~kÞ

q :

(53)

For the dispersion relation ~!2ðkÞ ¼ 2b1k
2 þ 2b2k

4=�2 þ
2b3k

6=�4, this function fð�; fbigÞ cannot be calculated
analytically, making it difficult to reach expressions valid
for any value of �. However, it is possible to study its
asymptotic behavior in the UV and IR limits. On the one

hand, in the UV, we have � � � and therefore ~!2ðkÞ ’
2b3
�4 k

6, which leads to

fUV ’ fð�; b3Þ ¼
ffiffiffiffiffiffiffiffi
2b3

p
8�2

�6

�2
; (54)

while on the other hand, in the IR, � 	 � so that
~!2ðkÞ ¼ 2b1k

2, giving

fIR ’ fð�; b1Þ ¼
ffiffiffiffiffiffiffiffi
2b1

p
16�2

�4: (55)

Up to here, we have kept the 1-loop corrections to the
effective potential. A RG improvement [17] can be made
on Eq. (52) by replacing V00ð�Þ by @2�U� on the right-hand

side, leading to

�
@U�ð�Þ

@�
¼ �fð�; fbigÞ ln

�
1þ @2�U�

~!2ð�Þ
�
: (56)

When taking the � derivatives and evaluating at � ¼ 0 to
find the RG equations for m2

R, �
R
4 or any �R

2p, only the

logarithm in the previous expression comes into play.
Within the resulting expressions, there will be terms con-
taining different number of � derivatives of U�, which

might vanish upon evaluation at � ¼ 0. For instance, for
the potential considered here (10), odd derivatives of U�

will evaluate to zero, as also will any number of derivatives
greater than nmax.
We start by considering the RG equation for the renor-

malized mass m2
R. After the appropriate derivation and

evaluation at � of Eq. (56), it reads

�
dm2

R

d�
¼ �fð�; fbigÞ �R

4

ðm2
R þ ~!2ð�ÞÞ : (57)

The asymptotic behavior of this equation is obtained by
replacing ~!2ð�Þ and fð�; fbigÞ by their corresponding
expressions in the UVor in the IR. The results are

�
dm2

R

d�
¼ � �R

4�
2

8�2
ffiffiffiffiffiffiffiffi
2b3

p ; � 	 �ðUVÞ; (58)

�
dm2

R

d�
¼ �

ffiffiffiffiffiffiffiffi
2b1

p
16�2

�R
4�

4

ðm2
R þ 2b1�

2Þ ; � 	 �ðIRÞ:
(59)

While the first equation is the same that was obtained
earlier by dimensional regularization and minimal subtrac-
tion (39), the second equation reproduces the standard
result for the Lorentz-invariant case [17] for b1 ! 1=2.
In a similar fashion, we obtain the RG equation for �R

4 by
taking four derivatives prior to the evaluation at � ¼ 0.
The result is

�
d�R

4

d�
¼ �fð�; fbigÞ

�
�R
6

ðm2
R þ ~!2ð�ÞÞ �

3ð�R
4 Þ2

ðm2
R þ ~!2ð�ÞÞ2

�
;

(60)

and the corresponding UV and IR asymptotic expressions
are

�
d�R

4

d�
¼ � �R

6�
2

8�2
ffiffiffiffiffiffiffiffi
2b3

p þ 3ð�R
4 Þ2

8�2ð2b3Þ3=2
�
�

�

�
6
;

� 	 �ðUVÞ; (61)
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�
d�R

4

d�
¼�

ffiffiffiffiffiffiffiffi
2b1

p
16�2

�R
6�

4

ðm2
Rþ2b1�

2Þþ
3

ffiffiffiffiffiffiffiffi
2b1

p
16�2

ð�R
4 Þ2�4

ðm2
Rþ2b1�

2Þ2 ;

�	�ðIRÞ: (62)

As the second term in the right-hand side of the UV
equation can be neglected in this limit, it again coincides
with the one found previously (40) for p ¼ 2, while for the
IR equation, we recover the usual case provided b1 ! 1=2.

So far, we have dealt with the mass and a coupling that
are both renormalizable in the usual case. We would like to
see what happens with the new couplings that are not
renormalizable in that case. However, for couplings with
p > 2, the corresponding expressions get more and more
complicated as a higher number of� derivatives are taken,
generating increasingly more terms. This can be thought
diagrammatically as the increasing number of ways to
obtain a 2p-legged diagram at 1 loop for higher p’s,
because there are more types of vertices with fewer legs
available.

Nevertheless, let us consider �R
6 as the easiest example

of a coupling that it is not renormalizable in the usual case.
Its RG equation is

�
d�R

6

d�
¼ �fð�; fbigÞ

�
�R
8

ðm2
R þ ~!2ð�ÞÞ �

15�R
4�

R
6

ðm2
R þ ~!2ð�ÞÞ2

þ 30ð�R
4 Þ3

ðm2
R þ ~!2ð�ÞÞ3

�
; (63)

and the UV and IR limits are, respectively,

�
d�R

6

d�
¼ � �R

8�
2

8�2
ffiffiffiffiffiffiffiffi
2b3

p þ 15�R
4�

R
6

8�2ð2b3Þ3=2
�
�

�

�
6

� 30ð�R
4 Þ3

8�2ð2b3Þ5=2�2

�
�

�

�
10
;

� 	 �ðUVÞ; (64)

�
d�R

6

d�
¼�

ffiffiffiffiffiffiffiffi
2b1

p
16�2

�R
8�

4

ðm2
Rþ 2b1�

2Þþ
15

ffiffiffiffiffiffiffiffi
2b1

p
16�2

�R
4�

R
6�

4

ðm2
Rþ 2b1�

2Þ2

� 30
ffiffiffiffiffiffiffiffi
2b1

p
16�2

ð�R
4 Þ3�4

ðm2
Rþ 2b1�

2Þ3 ;

�	�ðIRÞ: (65)

Once more in the UVequation, the second and third terms
in the right-hand side can be dropped in this limit, and we
get the same as with dimensional regularization and mini-
mal subtraction, that is Eq. (40) for p ¼ 3. In the IR limit,
the equation is the usually encountered in effective field
theories at low energies, again for b1 ! 1=2.

Higher-order couplings get more and more complicated
expressions. A full analysis of the running of the coupling
constants would involve a solution of the coupled differ-
ential equations for all couplings.

VI. COUPLINGS TO THE CURVATURE

We will now consider the coupling of the scalar field to
terms containing second derivatives of the metric. In the

z ¼ 1 case, h�̂2i contains a divergence proportional to the
Ricci scalar, and therefore the corresponding counterterm

�ð4ÞR�2 should be introduced in the action. For z ¼ 3, the
second adiabatic order correction (30) is finite. These terms
can be grouped to form the linearized expressions for the
following curvature invariants:

ð3ÞR ’ @i@jh
ij � @i@

ih; (66)

K ’ 1
2ð _h� 2@i�N

iÞ; (67)

where ð3ÞR is the scalar of 3-curvature, and K is the trace of
the extrinsic curvature Kij. The dot stands for time deriva-

tive. With these identifications and using the following
relation valid at linear order on the metric perturbations

ð4ÞR ’ ð3ÞRþ 2ð _K � @i@
i�nÞ; (68)

we can rewrite Eq. (30) as

h�̂2iADð2Þ ¼ Að4ÞRþ B _K þ C

�
5

3
@2�n� 2 _K

�
: (69)

Here, the coefficients A, B and C come from the integrals
defined in Eq. (31), and their expressions are

A ¼ 1

96�2

Z 1

0
dx

x�1=2

½M2=�2 þ 2b1xþ 2b2x
2 þ 2b3x

3�1=2 ;
(70)

B¼ð1�2b1Þ
48�2

Z 1

0
dx

x1=2

½M2=�2þ2b1xþ2b2x
2þ2b3x

3�3=2 ;

(71)

C ¼ 1

96�2

Z 1

0
dx

x3=2ð4b2 þ 6b3xÞ
½M2=�2 þ 2b1xþ 2b2x

2 þ 2b3x
3�3=2 :
(72)

The renormalized evolution equation (41) then reads

N
ffiffiffi
g

p ��
hLðxÞ �m2

R � �R
4

2
h�̂2iADð0Þ

ren

�
�0

� Xpmax

p¼2

�
�R
2p þ

�R
2pþ2

2
h�̂2iADð0Þ

ren

�
�2p�1

0

ð2p� 1Þ!

� Xpmax

p¼1

�R
2pþ2

2

�
Að4ÞRþ B _K

þ C

�
5

3
@2�n� 2 _K

��
�2p�1

0

ð2p� 1Þ!
�
’ 0: (73)

Had we taken the parameters b1 ¼ 1=2, b2 ¼ b3 ¼ 0, or
� ! 1 from the beginning, the coefficients B andCwould
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be identically zero, and the correction (69) would have
been equal to the standard result for the Lorentz-invariant
theory (see Ref. [22]), that is

h�̂2iADð2Þ ¼ Ausual
ð4ÞR; (74)

where Ausual is A with its integrand evaluated for these
values of the parameters before integration, and it is a
divergent integral. However, if we consider a Lorentz-
noninvariant UV completion of the theory like the one
we are studying in this work, the situation is different.
When taking the infrared limit, which is
� ! 1, the coefficients A, B and C do not vanish, not
even in the particular case b1 ¼ 1=2, b2, b3 ! 0.

On the one hand, the coefficient B can take various
values depending on b1’s initial value. If b1 is precisely
1=2, then B ¼ 0, but for any other case, it will depend on
the particular running of b1, b2 and b3, with B ! 1 being a
possibility. To study this, the running of b1 should be
studied in more detail.

On the other hand, the coefficient C is given by an
integral that is finite regardless of the mass M, so it can
be calculated explicitly by taking the � ! 1 limit (or
M ! 0) prior to integration. The result is finite,

C ¼
ffiffiffi
2

p ð2b2 þ 3
ffiffiffiffiffiffiffiffiffiffi
b1b3

p Þffiffiffiffiffi
b1

p ðb2 þ 2
ffiffiffiffiffiffiffiffiffiffi
b1b3

p Þ ; (75)

and has nonvanishing limits even when b2 ! 0 and
b3 ! 0, effectively leaving a nongenerally-covariant rem-
nant in the 1-loop evolution equation of h�i that does not
vanish in the IR, in spite of the parameters taking their
Lorentz-invariant values. Similar effects have been ob-
served before, for example, in the case of a theory with a
Yukawa-type scalar-fermion interaction in flat spacetime
and with a generically modified dispersion relation for the
fermion at high energies [23].

Wewill now take a closer look to the integral (70), which
defines the A coefficient, to try to find out its behavior
when � ! 1. In this limit, the integral has an infrared
divergence; however, away from it, � � M=� acts as an
infrared cutoff. By noting that the integrand is sensitive to
the value of � � M=� only when x 	 1, we can separate
the integration interval in two parts, 0 � x � � 	 1 and
� � x <1. In the first region, we can drop x3 and x4 in
front of x2, while in the second region, we no longer have
the infrared divergence and, consequently, we can safely
take the limit � ! 0. Then the coefficient A approximately
reads

A ’ 1

96�2

�Z �

0
dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2xþ 2b1x

2
p

þ
Z 1

�
dx

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b1x

2 þ 2b2x
3 þ 2b3x

4
p �

; (76)

which now contains two integrals that can be performed
analytically, giving

A ’ 1

96�2
ffiffiffiffiffi
b1

p
2
4 1ffiffiffi

2
p ArcCosh

�
1þ 4b1�

�2

�

þ ln

�
2b1 þ b2�þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ðb1 þ b2�þ b3�

2Þp
b2�þ 2

ffiffiffiffiffiffiffiffiffiffi
b1b3

p
�

�35: (77)

The dependence in �, and ultimately on �, is contained
in the first part. As we are interested in the behavior for
� ! 0, we perform a series expansion in � around zero.
Meanwhile, the second part is finite and of order 1 for any
positive sufficiently small nonvanishing value of �, which
is when this treatment gives a closer estimate of A. Finally,
we can say that the behavior of this coefficient for large �
is approximately

A ’ 1

96�2
ffiffiffiffiffi
b1

p
� ffiffiffi

2
p

ln

�
�

M

�
þOð1Þ

�
; (78)

which shows that the constant A, divergent in the Lorentz-
invariant theory, is now finite with� acting as a cutoff. The
dependence is logarithmic, which means that the correc-
tions are not large unless M is many orders of magnitude
below �.

A. Coupling to ‘‘healthy’’ terms

According to Ref. [18], the Hořava-Lifshitz theory of
gravity is better behaved when invariants formed with
ai ¼ @i lnðNÞ are included in the gravitational action than
when they are not. The most relevant invariant is aia

i,
which is absent in general relativity.
It is interesting to see whether the self-interaction of the

scalar field induces couplings to such terms or not. In order
to do that, it is necessary to go beyond the weak field
approximation considered so far. Instead of tackling this
complicated calculation, we will follow a shortcut by
performing a derivative expansion on N, taking as a start-
ing point a metric of the form

ds2 ¼ �N2ð ~xÞdt2 þ d~x2; (79)

which is enough for our present purpose. The correspond-
ing equation for the Green function is

� 1

N
@2t Gðx; x0Þ � NM2Gðx; x0Þ þ 2b1@iðN@iGðx; x0ÞÞ

� 2b2
�2

@2ðN@2Gðx; x0ÞÞ þ b3
�4

@2ðN@4Gðx; x0ÞÞ

þ b3
�4

@4ðN@2Gðx; x0ÞÞ ¼ �ðx� x0Þ: (80)

After expanding in spatial derivatives of N up to second
order and then going to Fourier space, the equation reads
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�
k20
N2

�!2
k

�
~GðkÞ� i

��
k20
N2

þ!2
k

�
@ ~GðkÞ
@ki

þd!2
k

dk2
ki ~GðkÞ

�
ai

þ 1

2

��
k20
N2

þ!2
k

�
@2 ~GðkÞ
@ki@kj

þd!2
k

dk2

�
ki
@ ~GðkÞ
@kj

þ kj
@ ~GðkÞ
@ki

�

þ d2!2
k

dðk2Þ2 k
2�ij ~GðkÞþ d3!2

k

dðk2Þ3
�
2

3
kikj� k2

2
�ij

�
k2 ~GðkÞ

�
bij

� k20
N2

@2 ~GðkÞ
@ki@kj

aiaj ¼ 1

N
: (81)

To solve it, the solution is written as a sum of contributions
of ascending order in derivatives of N, noted with a sub-
script Ni, so

~GðkÞ ¼ ~GN0ðkÞ þ ~GN1ðkÞ þ ~GN2ðkÞ þ � � � ; (82)

and then the equation is solved iteratively order by order.

The expressions obtained for ~GN0ðkÞ, ~GN1ðkÞ and ~GN2ðkÞ
are given in the Appendix.

The calculation continues from this point in the same
manner as in the weak gravitational field approximation,
giving the following results:

h�̂2iN0 ¼
~I0
8�2

; (83)

h�̂2iN1 ¼ 0; (84)

h�̂2iN2 ¼ � 1

96�2

�
2I0 þ 5

6
I3 � 5

3
I2

�
@2N

N
; (85)

where the integrals ~I0, I0, I2 and I3 are the same as defined
earlier in Eq. (31). Notably, the coefficient accompanying
aia

i has vanished, so the result is just the same as the one
obtained in the previous section (30).

Evidently, the absence of this kind of correction is more
fundamental than a simple over-approximation. In fact, it
can be easily verified that the result would be the same if
we had taken the Lorentz-breaking terms in the action to be
slightly different, as we will now see.

B. More general Lagrangians

We already found in the previous section that couplings
between the scalar field and aia

i seem not to be generated.
However, one can ask if this is a consequence of the
particular form of the action we started with Eq. (10).
Indeed, we could have chosen any term of the form

N
ffiffiffi
g

p
@a�@b�; (86)

where the superscripts a and b denote the number of
spatial derivatives acting on the field which satisfy
aþ b ¼ 2n � z, regardless of how the indexes i; j; . . . of
each pair of derivatives are contracted. Performing a varia-
tion of the action, this kind of term leads to

�

��

�Z
d3xdtN@a�@b�

�

¼
Z

d3xdt½ð�1Þa@aðN@b�Þ þ ð�1Þb@bðN@a�Þ�

¼ ð�1Þa
Z

d3xdt½2N@aþb�þ ðaþ bÞ@iN@i@aþb�1�

þ ~L½�N;���
¼ ð�1Þa

Z
d3xdt½2N@2n�þ 2n@iN@i@2n�1�

þ ~L½�N;���; (87)

where ~L contains terms with second-order-or-higher spa-
tial derivatives of N, and its form will be dependent on a
and b. Nonetheless, the two terms relevant for this discus-
sion do not dependent on a nor b, but on the sum of both.
Therefore, it is irrelevant how we choose to distribute the
derivatives; the result will continue to be the same, i.e.
terms proportional to aia

i will not be generated.
We can also argue how the results will change if we

consider interactions with derivatives of the field in the
action. For example, if we add a term of the type
N

ffiffiffi
g

p
�3��, the 1-loop evolution equation of h�i will get

corrections proportional to h�̂��̂i, h�̂@i�̂i and h@i�̂@i�̂i,
besides the already known h�̂2i. These are calculated from
the imaginary part of the Feynman propagator, taking the
appropriate derivatives prior to taking the coincidence
limit. This will bring down powers of k in a Fourier space
representation, so the second adiabatic order part of these
expectation values can be expressed as

Z d4k

ð2�Þ4 fðk
iÞ ~GN2ðkÞ; (88)

where ~GN2ðkÞ is the same from Eq. (82) and is given in the
Appendix. As it happens in the calculation of Eq. (85), the
terms proportional to aia

i vanish before the d3k integrals
are performed. Hence, the presence of these extra ki factors
does not change that fact. Accordingly, interaction terms
with derivatives of the field seem not to generate correc-
tions with aia

i either.
It remains to be shown whether it is true in general that

Lagrangians of the form

L ¼ N
ffiffiffi
g

p
L; (89)

with L � Lð@iNÞ, do not generate quantum corrections
that couple h�i with aia

i. On the other hand, these correc-
tions are generated if the classical Lagrangian contains
explicit couplings of the quantum fields with @iN, see for
instance Ref. [24].

VII. CONCLUSIONS

In this paper, we studied some aspects of Lifshitz-type
field theories in curved spaces, towards the main goal of
assessing the phenomenological viability of theories with
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broken Lorentz invariance. We focused on two aspects:
1) the development of methods for analyzing the running
of the constants in the Lagrangian (and with that, the
eventual recovery of the Lorentz invariance at low ener-
gies); 2) the study of nonminimal couplings between mat-
ter fields and the spacetime metric. Regarding the second
point, we looked at two types of terms: couplings with the
spatial derivative of the lapse function (i.e., with aia

i

where ai ¼ @i lnN) and covariant and noncovariant cou-
plings with the curvature scalars.

We presented a detailed study of the 1-loop renormaliz-
ability of z ¼ 3 self-interacting Lifshitz fields in curved
spacetimes, for interactions of the form ��n. As the higher
spatial derivatives of the propagators improve the ultravio-
let behavior of the theory, the divergences appear only in
the zeroth adiabatic order; that is, they are essentially the
flat spacetime divergences. For the computation of the RG
equations for the coupling constants both in the UVand in
the IR, we generalized the exact RG methods to the
Lifshitz case. A full analysis of the running of these
couplings would require us to solve a complicated system
of coupled nonlinear differential equations. However, a
more interesting point would be to analyze the running
of the constants corresponding to the kinetic terms.
Therefore, it would be worth it to extend the method of
the exact RG we have implemented for the effective po-
tential to the effective action in order to study the IR
running of derivative couplings [16]. For this, one could
use a generalization of the derivative expansion methods
described in Refs. [25,26]. This would be a very useful tool
for analyzing the running of the couplings corresponding to
the IR-relevant terms with two (time and spatial) deriva-
tives and to study the eventual emergence of a universal
limiting speed.

We also computed the second adiabatic order contribu-
tions to the mean value equation of the Lifshitz field to
analyze the couplings to the curvature. We found that the
self-interaction induces couplings to the four-dimensional
Ricci scalar, the 3-curvature and to the extrinsic curvature,
but it does not generate couplings with aia

i. We argued that
the absence of quantum corrections involving such deriva-
tives of the lapse function seems to be general, provided the
Lagrangian is of the form given in Eq. (89).

The coupling with the four-dimensional Ricci scalar
diverges in the limit � ! 1, as expected from the fact
that it diverges in the usual theory. However, the diver-
gence is logarithmic in M=�. Therefore, unless the effec-
tive massM is many orders of magnitude below�, in these
theories, the coupling to the four-dimensional Ricci scalar
does not receive large quantum corrections � � 1. The
noncovariant couplings to the 3-curvature and the extrinsic
curvature are expected since general covariance is broken
already at the classical level. However, it is remarkable
that there is a nonvanishing finite remnant even in the
limit � ! 1.

The nonminimal couplings to the curvature may have
interesting consequences both in the early Universe and in
astrophysics, in regions of strong gravitational fields. For
example, there are proposals in which the Higgs boson is
supposed to be responsible for inflation [27]. In the stan-
dard (z ¼ 1) scenario, the key point of this proposal is the
nonminimal coupling of the Higgs field to gravity [27]. It
has been shown that �
 104 is required in order to suc-
cessfully obtain inflation and a power spectrum of the
primordial perturbations in good agreement with observa-
tional data [Higgs-inflationary models with realistic qua-
dratic Higgs self-interaction and minimal coupling (� ¼ 0)
generates an unacceptably large power spectrum of the
primordial perturbations] [27]. From our results, it is clear
that such large couplings could be generated ifM 	 �, or
in the presence of a mechanism similar to that proposed in
Ref. [15], in order to enhance the logarithmic dependence.

Like the usual coupling with ð4ÞR, the noncovariant ones
could also be relevant in inflationary models where a
Lifshitz field generates the primordial perturbations
[6,7,28]. These proposals have been questioned on the
ground that they might suffer from unitary problems, due
to the large value of the coupling to the curvature (see, for
instance, Refs. [29–33]). Recently, in the context of
Hořava-Lifshitz gravity, it has been shown that inflationary
models with a z ¼ 3 ‘‘Higgs’’ field with � ¼ 0 could be
constructed [28], so that one would not need to worry about
preventing unitarity problems. It would be interesting to
further analyze these kinds of models.
For a nonminimally coupled z ¼ 1 Higgs field, obser-

vational consequences in strong-gravity astrophysical
environments of the curvature dependence of the mass

generation have been analyzed in Refs. [34,35]. As ð4ÞR
vanishes for spherically symmetric sources described by
the Schwarzschild metric, in order to obtain nonvanishing
effects, the author assumed an unnatural coupling to the
square root of the Kretschmann invariant K1 ¼
R�	
�R

�	
�. For the case of z ¼ 3 Lifshitz fields, the

interactions generate couplings to ð3ÞR and K, which do
not vanish for the Schwarzschild metric. Therefore, it is not
necessary to assume a coupling to the Kretschmann invari-
ant. In Refs. [34,35] it was found that, unless one allows
quite large values for the associated coupling constant toffiffiffiffiffiffi
K1

p
, the effects are quite far from what can be achieved

with any foreseeable survey. Hence, we can expect a
similar conclusion for the noncovariant couplings.
Finally, as for future work, it would be interesting to

consider theories containing fermions and gauge fields.
From the phenomenological point of view, in addition to
studies of the running of the coupling constants in flat
space, it would also be of interest to analyze the non-
minimal couplings induced by quantum corrections—in
particular, in the context of electrodynamics in curved
spaces—and use astrophysical and cosmological observa-
tional data to constraint the parameters of the action,
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generalizing the analysis of Ref. [36] to the case of non-
covariant couplings to the spacetime metric.
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APPENDIX: FIRST- AND SECOND-ADIABATIC-
ORDER EXPRESSIONS FOR THE PROPAGATOR

In this Appendix, we provide some explicit expressions
for the adiabatic expansion of the propagator. In the case
of the weak gravitational field described in Sec. III, the
first order in this approximation involves the following
expression:

fkðpÞ¼
�~h
2
��~n

�
ðk20þk0p0Þþðp0kiþ2k0kiþpik0Þ� ~Ni�

�~h
2
þ�~n

�
!2

kþ ~hijk
ikj

d!2
k

dk2
þ ~hij�rsk

ikjkrps d
2!2

k

dðk2Þ2

�
��~h

2
þ�~n

�
�ijp

ikj� ~hijpikj

�
d!2

k

dk2
� d2!2

k

dðk2Þ2
�
�~n

2
p2k2þ

~h

2
ð�ijk

ipjÞ2�1

2
~hijk

ikjp2� ~hij�rsp
iprkjks

�
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k
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ipjþ
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3
ð�ijk

ipjÞ3
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3
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3
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ikjð�rsk
rpsÞ2

�
� d3!2

k

dðk2Þ3
�
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12
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3
p2ð�ijk
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~hijk

ikjp4�2
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2
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�
: (A1)

Then, the first and second adiabatic orders for the propagator are given by

½GðLÞ
F �ADð1Þ ¼ �i

Z d3k

ð2�Þ3
�
D0

2ðkÞki@t�Ni þD0
2ðkÞ@i

��
h

2
þ �n

�
�ij � hij

�
kj
d!2

k

dk2
�D0

2ðkÞki@ihjkkjkk
d2!2

k
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þ 2D2
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dk2
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�
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; (A2)
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On the other hand, for the metric considered in Sec. VIA, the expansion of the propagator in derivatives of the lapse
function N is
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~GN0ðkÞ ¼ � 1

Nð!2
k � ~k20Þ

; (A4)
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where ~k0 � k0=N.
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[2] P. Hořava, Phys. Rev. D 79, 084008 (2009).
[3] M. Pospelov and Y. Shang, arXiv:1010.5249v3.
[4] G. Giribet, D. L. Nacir, and F. D. Mazzitelli, J. High

Energy Phys. 09 (2010) 009.
[5] G. Calcagni, J. High Energy Phys. 09 (2009) 112.
[6] S. Mukohyama, J. Cosmol. Astropart. Phys. 06 (2009)

001.
[7] K. Izumi, T. Kobayashi, and S. Mukohyama, J. Cosmol.

Astropart. Phys. 10 (2010) 031.
[8] J. Alexandre, K. Farakos, and A. Tsapalis, Phys. Rev. D

81, 105029 (2010).
[9] J. Alexandre, K. Farakos, P. Pasipoularides, and A.

Tsapalis, Phys. Rev. D 81, 045002 (2010).
[10] R. Iengo, J. G. Russo, and M. Serone, J. High Energy

Phys. 11 (2009) 020.
[11] P. R. S. Gomes and M. Gomes, arXiv:1107.6040v1.
[12] R. Iengo and M. Serone, Phys. Rev. D 81, 125005

(2010).
[13] J. Alexandre, Int. J. Mod. Phys. A 26, 4523 (2011).
[14] M. Eune, W. Kim, and E. J. Son, Phys. Lett. B 703, 100

(2011); For z ¼ 3, see also K. Farakos and D. Metaxas,
arXiv:1109.0421v1.

[15] M.M. Anber and J. F. Donoghue, Phys. Rev. D 83, 105027
(2011).

[16] See C. Bagnuls and C. Bervillier, Phys. Rep. 348, 91
(2001), and references therein.

[17] S. B. Liao and J. Polonyi, Ann. Phys. 222, 122
(1993).

[18] D. Blas, O. Pujolas, and S. Sibiryakov, Phys. Rev. Lett.
104, 181302 (2010).

[19] D. Anselmi and M. Halat, Phys. Rev. D 76, 125011
(2007).

[20] M. Visser, Phys. Rev. D 80, 025011 (2009).
[21] M. Visser, arXiv:0912.4757v1.
[22] J. P. Paz and F. D. Mazzitelli, Phys. Rev. D 37, 2170

(1988).
[23] J. Collins, A. Perez, D. Sudarsky, L. Urrutia, and H.

Vucetich, Phys. Rev. Lett. 93, 191301 (2004).
[24] D. Nesterov and S. N. Solodukhin, Nucl. Phys. B842, 141

(2011).
[25] T. R. Morris and M.D. Turner, Nucl. Phys. B509, 637

(1998).
[26] T. R. Morris, Phys. Lett. B 329, 241 (1994).
[27] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,

703 (2008).
[28] T. Qiu and D. Maity, arXiv:1104.4386v1.
[29] R. N. Lerner and J. McDonald, J. Cosmol. Astropart. Phys.

04 (2010) 015.
[30] C. P. Burgess, H.M. Lee, and M. Trott, J. High Energy

Phys. 07 (2010) 007.
[31] F. Bezrukov, A. Magnin, M. Shaposhnikov, and S.

Sibiryakov, J. High Energy Phys. 01 (2011) 016.
[32] M. Atkins and X. Calmet, Phys. Lett. B 697, 37 (2011).
[33] G. F. Giudice and H.M. Lee, Phys. Lett. B 694, 294

(2011).
[34] R. Onofrio, Phys. Rev. D 82, 065008 (2010).
[35] R. Onofrio, Int. J. Mod. Phys. A 25, 2260 (2010).
[36] V. A. Kostelecky and M. Mewes, Phys. Rev. Lett. 87,

251304 (2001); A. R. Prasanna and S. Mohanty,
Classical Quantum Gravity 20, 3023 (2003); Y.-Z. Chu,
D.M. Jacobs, Y. Ng, and G.D. Starkman, Phys. Rev. D 82,
064022 (2010).

LIFSHITZ SCALAR FIELDS: ONE LOOP . . . PHYSICAL REVIEW D 85, 024051 (2012)

024051-13

http://dx.doi.org/10.1146/annurev.nucl.010909.083640
http://dx.doi.org/10.1146/annurev.nucl.010909.083640
http://dx.doi.org/10.1103/PhysRevD.79.084008
http://arXiv.org/abs/1010.5249v3
http://dx.doi.org/10.1007/JHEP09(2010)009
http://dx.doi.org/10.1007/JHEP09(2010)009
http://dx.doi.org/10.1088/1126-6708/2009/09/112
http://dx.doi.org/10.1088/1475-7516/2009/06/001
http://dx.doi.org/10.1088/1475-7516/2009/06/001
http://dx.doi.org/10.1088/1475-7516/2010/10/031
http://dx.doi.org/10.1088/1475-7516/2010/10/031
http://dx.doi.org/10.1103/PhysRevD.81.105029
http://dx.doi.org/10.1103/PhysRevD.81.105029
http://dx.doi.org/10.1103/PhysRevD.81.045002
http://dx.doi.org/10.1088/1126-6708/2009/11/020
http://dx.doi.org/10.1088/1126-6708/2009/11/020
http://arXiv.org/abs/1107.6040v1
http://dx.doi.org/10.1103/PhysRevD.81.125005
http://dx.doi.org/10.1103/PhysRevD.81.125005
http://dx.doi.org/10.1142/S0217751X11054656
http://dx.doi.org/10.1016/j.physletb.2011.07.057,
http://dx.doi.org/10.1016/j.physletb.2011.07.057,
http://arXiv.org/abs/1109.0421v1
http://dx.doi.org/10.1103/PhysRevD.83.105027
http://dx.doi.org/10.1103/PhysRevD.83.105027
http://dx.doi.org/10.1016/S0370-1573(00)00137-X
http://dx.doi.org/10.1016/S0370-1573(00)00137-X
http://dx.doi.org/10.1006/aphy.1993.1019
http://dx.doi.org/10.1006/aphy.1993.1019
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://dx.doi.org/10.1103/PhysRevLett.104.181302
http://dx.doi.org/10.1103/PhysRevD.76.125011
http://dx.doi.org/10.1103/PhysRevD.76.125011
http://dx.doi.org/10.1103/PhysRevD.80.025011
http://arXiv.org/abs/0912.4757v1
http://dx.doi.org/10.1103/PhysRevD.37.2170
http://dx.doi.org/10.1103/PhysRevD.37.2170
http://dx.doi.org/10.1103/PhysRevLett.93.191301
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.006
http://dx.doi.org/10.1016/j.nuclphysb.2010.08.006
http://dx.doi.org/10.1016/S0550-3213(97)00640-8
http://dx.doi.org/10.1016/S0550-3213(97)00640-8
http://dx.doi.org/10.1016/0370-2693(94)90767-6
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://arXiv.org/abs/1104.4386v1
http://dx.doi.org/10.1088/1475-7516/2010/04/015
http://dx.doi.org/10.1088/1475-7516/2010/04/015
http://dx.doi.org/10.1007/JHEP07(2010)007
http://dx.doi.org/10.1007/JHEP07(2010)007
http://dx.doi.org/10.1007/JHEP01(2011)016
http://dx.doi.org/10.1016/j.physletb.2011.01.028
http://dx.doi.org/10.1016/j.physletb.2010.10.035
http://dx.doi.org/10.1016/j.physletb.2010.10.035
http://dx.doi.org/10.1103/PhysRevD.82.065008
http://dx.doi.org/10.1142/S0217751X10049530
http://dx.doi.org/10.1103/PhysRevLett.87.251304
http://dx.doi.org/10.1103/PhysRevLett.87.251304
http://dx.doi.org/10.1088/0264-9381/20/14/304
http://dx.doi.org/10.1103/PhysRevD.82.064022
http://dx.doi.org/10.1103/PhysRevD.82.064022

