The Annals of Applied Statistics

2025, Vol. 19, No. 3, 1988-2004
https://doi.org/10.1214/25-A0AS2041

© Institute of Mathematical Statistics, 2025

INTEGRATED DEPTH FOR TRAJECTORIES OF AIRBORNE
MICROORGANISMS TO ANTARCTICA

BY LUCAS FERNANDEZ-PIANA!2 ANA JUSTELZ?® AND MARCELA SVARC>®

1Depurtamem‘o de Matemdtica y Ciencias, Universidad de San Andrés, ®fpiana@udesa.edu.ar
2Departmem‘ of Mathematics, Universidad Auténoma de Madrid, bana, Justel@uam.es

3Departamento de Matemdtica y Ciencias, Universidad de San Andrés and CONICET, “msvarc @udesa.edu.ar

Sets of trajectories that begin or end at the same point, in the form of a
bouquet, appear in several real-world problems, such as the dispersion of vol-
canic ash or forecasts of hurricane paths, among others. Our interest in this
type of trajectory focuses on studying the biogeography of airborne microor-
ganisms and their ability to colonise soils recently exposed due to climate
change. For these functional data, we introduce a new integrated depth mea-
sure (D) that allows finding central and outlier curves in a dataset. First, cir-
cular local depths (L D) are calculated in concentric circles around the com-
mon point, and in a second step, these values are integrated along the curves,
yielding the trajectory depth. Under mild conditions both LD and D have
good properties and are strongly consistent. In addition, we propose an effi-
cient algorithm for working with large datasets. Finally, we apply this new
technique to find the main routes followed by air masses carrying microor-
ganisms to Byers Peninsula (Livingston Island, Antarctica).

1. Introduction. Spread direction of a forest fire or the ash from an erupting volcano,
identification of areas potentially affected by radiation in a nuclear accident, or hurricane
paths that have historically hit a city are some examples of relevant problems in which the
data sets are trajectories followed over time (Srinivas et al. (2014), Mirzargar, Whitaker and
Kirby (2014), Su et al. (2014)). All these sets have in common that the trajectories describe
the position of air parcels or particles, and they all have the same initial or end point. They
are also characterised by spreading out in all directions from the common point. Typically,
each air parcel or particle travels at a different speed, so the distance travelled in each time
interval can vary considerably. We call to this type of set a bouquet of trajectories.

In the aerobiology literature, we also find bouquets of trajectories in the simulation of air
masses to study the origin or propagation of airborne microorganisms. Galban et al. (2021)
analysed five-day back-trajectories transporting microorganisms to the Iberian Peninsula sim-
ulated with the NOAA’s HYSPLIT modeling system (Stein et al. (2015)). Just by observing
the graph in the Figure 1A, different origins can be recognized from Europe, America, or the
North Atlantic Ocean. However, visual inspection is inadequate when trying to use the simu-
lated air masses trajectories with HY SPLIT in more global microbial biogeography problems.

Since the 1950s, the Antarctic Peninsula has experienced one of the largest temperature
increases on Earth. This warming has contributed to the retreat of glaciers in the region. New
ice-free terrains allow the establishment of airborne microorganisms and pave the way for
new exotic species that can transform Antarctic terrestrial habitats in a context of climate
change. In the study of the circulation patterns of air masses that transport microorganisms
to a specific location in Antarctica, the most relevant characteristics of the bouquet cannot be
retrieved solely by visual inspection of the map, even with a small fraction of the possible
back-trajectories (Figure 1B). Therefore, as in many other statistical problems, summarizing
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FI1G. 1. A Simulated five-day back-trajectories of the air masses arriving at a specific location in Madrid on
23 and 24 May 2018 (in grey). Concentric circles around the end point of the trajectories (in dashed lines). B
Bougquet of 600 simulated five-day back-trajectories of air masses with common end point, marked with a black
cross, at Byers Peninsula (Livingston Is., South Shetland Is., Antarctica). Arriving at this location between 2005
and 2016.

the trajectory data sets will be the first step to start extracting the information. We consider
that the most central trajectories will provide us with valuable information to understand
the origin and vulnerability of microbial communities in polar regions. We will attempt to
obtain an accurate description of the central trajectories using nonparametric statistics that
do not require assumptions about the data distributions. In the case of multivariate or infinite-
dimensional data, depth measures play a key role in exploratory data analysis, providing a
center-outer ordering of the data that extends the concept of the median.

The aim of this work is to propose a new depth measure for a bouquet of trajectories
that takes advantage of their particular geometry. This approach should provide us with new
insights into the dispersal of microorganisms in Antarctica as well as being applicable in
other studies.

In Section 2 we define new depths for bouquets of trajectories, and we also define a new
local depth in S!. Section 3 is devoted to the numerical implementation of the depths on
real and simulated data. Section 4 shows the application of the new tools in identifying the
transport patterns of airborne microorganisms to a location in the Antarctic Peninsula region.
Concluding remarks are given in Section 5. The study of the properties and asymptotic be-
haviour of the local depth in S! as well as all the proofs are given in Supplementary Material
A (Fernandez-Piana, Justel and Svarc (2025a)).

2. Depth for Bouquet of trajectories. A bouquet of trajectories is a set of plane ran-
dom curves I'(t) with common point of origin (or destination) and finite length. Although
trajectories are functional data, existing definitions of depths (Cuesta-Albertos and Nieto-
Reyes (2008), Cuevas and Fraiman (2009), Lépez-Pintado and Romo (2011), Dai and Miiller
(2018), Harris et al. (2021), among others) are not always appropriate since the curves move
in any direction from the common point. Furthermore, since all trajectories share the same
start/end point, in some regions all trajectories are very close to each other.

As our main interest lies in the position of the 2D curves in the plane independently of the
speed at which they move, it is natural to express the trajectories in polar coordinates taking
advantage of the common point and the dispersal in any direction. This will allow us to extend
to our context the idea behind integrated depths, where the infinite-dimensional problem is
reduced to the calculation of depths in low-dimensional projections (Fraiman and Muniz
(2001)). The depths will only be measured on the perimeter of concentric circles around the
common point and then integrated. An example of such circles can be observed in Figure 1
A. This approach simplifies the calculation of depths and saves computation time.
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2.1. Integrated circular depth. Using polar coordinates with reference point the common
begin or end, we can express the trajectories of finite length in a bouquet as I' = (P, T) €
C([0, 1], ([0, 2r) x [0, R])) with probability measure . In this notation, ®(¢) is the direction
or angle of the trajectory position at time ¢ with respect to the zero initial direction in coun-
terclockwise orientation, Y (¢) is the distance or radius to the reference point, I'(0) = (0, 0),
and R > 0 is such that the maximum distance of Y (¢) to I'(0) is smaller than or equal to R.

Assuming that Y is strictly increasing a.s., for each r € [0, R] there exists an unique ¢, such
that Y (¢,) = r a.s. Then P, will denote the distribution of the random variable ®(z,), which
is the projection of the trajectory in the circle of radius ». The trajectories do not depend on
the time parametrization (see Supplementary Material A, Fernandez-Piana, Justel and Svarc
(2025a)).

We define a depth measure for a bouquet of trajectories as follows.

DEFINITION 2.1. The integrated circular depth, D(-, P) : C([0, 1], [0, 27) x [0, R]) —
[0.5, 1], is defined as

R
@.1) D(y.P) = fo w(r)D($(r). P,)dr.

where D(¢(r), P,) is a depth measure in S' and w(-) is a nonnegative weight function such
that fOR w(r)dr =1.

The univariate depth function D evaluates the centrality of an angle ¢ () with respect to
the distribution P.. Lower values of D indicate that ¢ (r) is a potential outlier with respect
to P, while higher values of D indicate that ¢ (r) is central. The weight function w could
be chosen constant or having less weight at the begin of the trajectories, where they usually
intertwine, or may depend on the distribution P,, as indicated by Nagy et al. (2016).

The empirical counterpart of D is obtained by plug-in, that is, given y; = (¢1, v1), ...,
Vn = (¢n, Uy), a random sample of the process I',

R
2.2) Dy, Py) = fo W) D¢ (), Poy)dr,

where P, and P, , are the empirical distribution of P and the conditional distribution P,
respectively.

In the definition of the integrated circular depth, we note that D is the building block of
D. This means that, under regular conditions, as far as classical depth properties hold for D,
they are inherited by D. This follows from the application of the general theory introduced
by Nagy et al. (2016) bridging univariate depths with integrated depths for functional data.
This fact applies to measurability, consistency, and the classical properties (Zuo and Serfling
(2000)): [P.1] the depths of points are invariant under affine transformations; [P.2] given a
proper symmetry definition and a centre which is a symmetry point, then the depth function
attains its maximum value at that point; [P.3] depth values decrease as the distance from the
centre increases; [P.4] is the property of vanishing at infinity, which makes no sense for D
since S! is a compact space. In addition, properties [P.5], continuous as a function of ¢, and
[P.6], continuous as a functional of P,, are desirable.

There are several proposals for depth measures on circular or directional data, mostly
extending the classical ideas of univariate depths to the geometry of the circle. The first
definitions of depth measures for circular data date from the 1990s, when Liu and Singh
(1992) extended the concepts of simplicial and half-space depth, at the time they proposed the
arc distance depth. They defined the median in the context of circular data and proved some
of the classical depth properties, such as the maximisation at the centre and the decay along
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rays. For unimodal symmetric distributions, the three proposals coincide. The main drawback
of these depths is the high computational cost. The absence of a well-defined zero direction
and a single sense of rotation in circles and spheres led Agostinelli and Romanazzi (2013) to
propose a nonparametric approach as a natural framework to describe centrality, dispersion,
and outliers in this type of data. Other alternatives fall into the category of distance-based
depths, such as the angular Mahalanobis depth (Ley, Sabbah and Verdebout (2014)) and the
cosine, chord, and arc length distances defined by Pandolfo, Paindaveine and Porzio (2018).

2.2. Integrated circular local depth. All the previous proposals have in common their
good performance for unimodal and symmetric distributions and can be used as D in equation
(2.1). However, they are not suitable for multimodal or skewed data, such as that shown for
several of the circles in Figure 1A. In this case there are some circles in which the trajectories
are concentrated in separate groups. The points of the trajectories that cross the external circle
present two modes, while the points of the trajectories that cross the inner circle have three
modes. The possibility of dealing with this mixed behavior will also be considered in the
calculation of the depth restricted to circles.

We propose to measure locally the depth in the circles to reveal possible multimodality in
the underlying distribution following the ideas in the most recent literature on local depths.
We define the circular depth by restricting it to a local neighbourhood of the point. The main
idea is that a local depth should behave as a global depth in the neighbourhood of each
point. There are several proposals in the literature, most of them using the idea of restringing
a global depth to a local environment (Agostinelli and Romanazzi (2011), Agostinelli and
Romanazzi (2013) and Paindaveine and Van Bever (2013)). Another approach is to define
the depth with nonparametric kernel density estimates, which are suitable for retrieving the
several modes in the distribution (Cuevas, Febrero and Fraiman (2007), Sguera, Galeano
and Lillo (2014), Sguera, Galeano and Lillo (2016)). Finally, Fernandez-Piana and Svarc
(2022) propose an integrated local depth for data on Banach spaces and also analyse how to
adapt classical depth properties to local contexts. All these proposals are for multivariate or
functional data and need to be adapted for circular data.

Inspired by the ideas of Paindaveine and Van Bever (2013) and Fernandez-Piana and Svarc
(2022), we provide a new definition of a local depth in the circle based on the quantile func-
tion. Previous to define a circular local depth, we adopt the convention of angles [0, 27). Let
© be arandom variable in S! with distribution P with zero initial direction, counterclockwise
orientation, and cumulative distribution function Fy. For any 6 € [0, 277), we denote Fp to the
cumulative distribution function of ®g = ® — 6. Hence, for A € [0,27), P(0 < By <)) =
Fy(A). The quantile function is Q(u, Fp) =inf{x : Fy(x) >u} forO <u < 1.

DEFINITION 2.2. The circular local depth at locality level g € (0, 1] is a function
LDP(., P):[0,27) — [0.5, 1], given by

(2.3) LDA©O. P) = n?

' T m2 g,
where
(2.4) Agﬁ = Q(B/2,Fy) and
(2.5) hgo =21 — Q1 —B/2, Fp).

The definition of LD# (6, P) does not depend on the circle orientation since if it is oriented
in the clockwise direction )\7;9 would be given by equation (2.5) and Mg by equation (2.4).
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FIG. 2. Left and centre panels: 1000 observations generated with a von Mises distribution with centre at 7w /2
and concentration parameter k = 10. The clockwise arcs are in dark grey, and the counterclockwise arcs are in
light grey. The left (central) panel shows the arcs for the calculation of LD g1 0= /2 (0 =117 /6). Right
panel: 1000 observations generated with a mixture of von Mises distributions with centres at 7w /2 and 37 /2 and
concentration parameters k = 10 and k =5, respectively, the mixing fraction is 0.5. Using the same colour key,
we show the arcs for 0 = /2 and 37 /2 for the calculation ofLDO'1

In light of Definition 2.2, it can be seen that the depth of 6 is inversely proportional to the
square geometric mean of )»E g and Ag o. These are the shortest arcs that enclose a probability

B/2 to the right and to the left of 6. Since A;e and Ag 4 are bounded between 0 and 277 and

also A go T Ay B0 = 2, then it is easy to see that 0.5 < LDP@, P)<1.

When the dlstrlbutlon P is absolutely continuous, it is immediate to see that for 81 < 2,
then Aﬂ < )‘ﬂz g and Ago=*g o

To 1llustrate the concept, we generate 1000 random observations according to a von Mises
distribution with centre at 77 /2 and concentration parameter k = 10 (Figure 2 left and centre
panels). For computing the circular local depth, we use the empirical version of Definition 2.2

72

LDPM @, p,) =

245+t  5-— ’
T H A .0M .0
where P, is the empirical distribution of P and

2
B(n) = LB/ J’

xg(n) 9= Q(,B(n)a Fn,@)a

M. =27 — Q(1— B(n), Fup).

When we compute the local depth with g = 0.1 at the central symmetric point 77/2 and at
117 /6 in the tail of the distribution, A(J)r 1,72 and Aq 1, /2 (Figure 2 left) are smaller than

)‘01 1176 and )‘01 1176 (Figure 2 centre). Moreover, )‘0 1,72 and )‘01 /2 are equal, while

)‘0 1117/6 is smaller than )»o 1 117/6" Then 7t /2 is deeper than 1177/6, as expected.

The Figure 2 right panel shows a sample of 1000 observations generated following a bi-
modal distribution, a mixture of von Mises distributions with centres at /2 and at 37 /2,
concentration parameters 10 and 5, and mixing ratio 0.5. We show the arcs around the centres
needed to compute the circular local depth with 8 = 0.10. Since both centres are symmetry
points, the lengths of the clockwise and counterclockwise arcs are the same for each point
(Figure 2 right). As the data is more concentrated at 7 /2 than at 377/2, its arcs are shorter.

It is important to note that the new circular local depth in Definition 2.2 enjoys the pre-
viously mentioned properties [P.1]-[P.3] and [P.5]-[P.6], properly adapted to local depth
(Fernandez-Piana and Svarc (2022)) and circular data. The invariance is rotational, and the
maximality at the centre is local and depends on a 8-symmetry definition. A formal statement
and proofs of these properties appear in the Supplementary Material A (Fernandez-Piana,
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Justel and Svarc (2025a)) as well as the measurability and strong consistency theorems and
proofs.

In the case that the circular local depth is used as D in the equation (2.1), we define the
integrated circular local depth at locality level g as

R
(2.6) LDP(y,P) = fo w(r)LDP(¢(r), P)dr.

The empirical counterpart EDE () (y, Pp) is defined straightforward, as in equation (2.2).

A key consequence of proving the measurability and consistency of L D is that the prop-
erties that hold for L D? are inherited by LD# . This relevant result, established by Nagy et al.
(2016), was given for depth measures, and it can be extended to local depths, provided that
they are continuous and bounded. Then it holds that, L D? is invariant under rotations on ®,
LD?# is continuous as a function of y € I, and is weakly continuous as a functional of P.
For the maximality at the centre, we propose the next symmetry definition for a bouquet of
trajectories.

DEFINITION 2.3. The random element I' = (®, T) is § — symmetric in y if ®(r) is
B — symmetric in ¢ (r) for almost all 7.

_ Let y* € I such that y*(0,r) = y*(6y, r). For every r € [0, R] and ®, e S! satisfies that
6, (resp., 6, + m) is the unique mode (resp., antimode), then

LD (y*, P) = sup LDP (v, P).
yel

Hence, [P.2] and [P.3] hold. Measurability of LD# and that L’Df ™) s a consistent estimate of
LDP also holds (see Supplementary Material A, Fernandez-Piana, Justel and Svarc (2025a)).

3. Implementation. For the implementation of the new depths for bouquet of trajecto-
ries, it is necessary to address some practical issues about the weight function and the grid
as well as about the locality parameter for the integrated circular local depth. We propose
an automatic procedure for 8 selection, suggest how to fix the grid, and choose appropriate
weights to compute the equation (2.2).

3.1. Selection of the locality parameter. Local depth depends on a locality parameter,
which must be set to reveal different features of the data. In general, small values of 8 corre-
spond to local depths close to 1 for large sets. This makes the information provided not very
useful. Conversely, when S is close to 1, the local neighbourhoods have high probability, and
local features are ignored. For this reason it is crucial to determine a level of locality that
allows local structures to be captured.

To illustrate this fact, we generated 2000 random observations from five different distribu-
tions (Figure 3, top panel):

Ml © ~VM(u=r/2,«=10).

M2 ©~0.5VM(u=r/2,k=10) +0.5VM(u=37/2,k = 10).
M3 ©~0.7VM(u=7/2,k = 10) + 0.3V M(n = 37/2, k = 5).
M4 ©@~05VM(u=m/2,k=5)+05VM(u=m,k=>5).

M5 ©~03VM(u=m/2,k=0.5)+07VM(u=>57/4 Kk =2).

M1 is a unimodal von Mises distribution, while M2, M3, and M4 are mixtures of von
Mises distributions, with mixing and concentration parameters equal in the cases of M2 and
M4 and different in the case of M3. M5 is an asymmetric distribution. For each model, we
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M1 M2 M3 M4 M5

B—02--04-06-08

F1G. 3.  Top panel: Density functions for M1 to M5. Bottom panel: Circular local depths computed at locality
levels =0.2,0.4,0.6, and 0.8 for M1 to M5.

computed LD# with different values of B (0.2, 0.4, 0.6, and 0.8). The results are shown in
Figure 3 (bottom panel). As expected, for model M1 the L D? behaves as a global depth for
all values of B, reaching a maximum at the symmetry point. A similar pattern is shown for
MS5. In the case of mixture models M2, M3, and M4, when the value of 8 is less than the
mixing proportion, the local depth also reaches local maxima in the modes. However, if
is greater than the mixing parameter, the local depth breaks down and has local minima in
the modes. In M3 the maximum and/or minimum for each mode appears at different locality
levels, depending on the mixing proportions. For M4 the pattern is harder to see than for M2
because the modes are closer together.

Inspired by these examples, we propose a data-driven algorithm to select an appropriate
value of S so that L D? is both informative and able to capture local features. The main idea
is that an abrupt change in the function L D# () indicates that a local mode is no longer being
considered as a local central point. The Algorithm 1 is designed to detect the maximum value
of B before this happens. The first step is to compute LD?(0) in a grid of locality levels

Bo(n) < --- < By(n), for all 6y, ...,0, being a random sample in S!. In the second step,
the differences between the depths for two consecutive values of 8 are calculated at each 6;
point, and the ordered sequence sd = (sdy, ..., sdy) is obtained, where sd; is the standard

deviation of {LDBi+1") (g, P,y — LDBi™) (g, P,);i =1,...,n}.In the final step, Pettit’s
test (Verstraeten et al. (2006)), with significance level «, is used to estimate the change point
in the series sd. If the test does not reject the null hypothesis of no change point in sd, then
any locality parameter can be chosen. For simplicity, we suggest 8 = 0.2. For local depth
measures for other type of data, 0.2 is the usual recommendation (Paindaveine and Van Bever
(2013), Fernandez-Piana and Svarc (2022)).

When we apply Algorithm 1 to automatically select the locality parameter to compute
LDP on each of the five datasets in Figure 3, we obtain 8 = 0.45 for M1, M4, and M5,
B =0.49 for M2, and 8 = 0.32 for M3. In all cases we use the input grid 0.01, 0.02, ..., 0.99
and the p-values of the Pettit test smaller than o = 0.1.
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Algorithm 1: g selection
Input: 0 < Bo(n) <--- < By(n) <1, «a
Output: Bop
Data: 6 = {04, ..., 6,}
1 for j < 0tog do

2 fori < 1tondo
3| |G, i) =LDPI™ @, P,)

4 for j < 1tog do
differ; < 1d(j,-) —1d(j —1,")
6 | sd; <—Var(diﬂerj)1/2

7 pvalue < pettitt.test(sd)
8 if pvalue < o then
9 L Bopt <— pettitt.test(sd)(change.point)

10 else
11| Bopr < 0.2

3.2. Grid and weights selection. One of the outstanding characteristics of the bouquet is
that the trajectories can have different lengths and, therefore, different maximum distances
to the origin. The definition of the grid of concentric circles in which the depths will be
calculated and the choice of weights in equation (2.1) will play a predominant role in handling
this characteristic in the implementation of the integrated circular local depth in datasets. We
propose to give more weight to the depths calculated in the radii crossed by more curves. In
this way the weights will usually decrease for larger radii where fewer curves reach.

Given y1 = (¢1, V1), - - -, ¥n = (¢n, Uy) arandom sample of the process I', where trajectory
y; is observed at distances Uil, e vfi from the origin/end point, T = {Ull, e vil, e U,i,
ces vf,"} is the set of all radii in which at least one trajectory was observed in the correspond-
ing concentric circle. For the empirical integration of the circular local depth in LD#, we
suggest the grid r1 < --- < r[4], where ry;; are quantiles of Y. The number of concentric
circles ¢ should be smaller than #(Y) = >""_, I;; for large #(Y'), we suggest taking ¢ = 100.
For this grid the empirical probability that a radius belongs to (r], rjk+17] is equal for all
k=1,...,q — 1. Thus, if the trajectories are of different lengths, the distance between adja-
cent radii will increase as the radius increases.

Prior to empirically calculating y;, with equation (2.2), the trajectory is interpolated at all
radii of the quantile grid that are smaller than the maximum distance to the origin/end point.
Then

q
D(Yi, V1. s va)) = D wlrp) D(i (rixy), Sk).
k=1

lj . .
where Sg = {¢; (1)) : maxj<;<y; (le’ ) > rik)}, and the weights wy = w(rk]) are proportional
to the number of trajectories that cross each concentric circle of radius rg],

n

i=1 {U,{l >r[k]}

B ZZ:] il - ?:111'

L A
= > )

n
i=1 {Ul{l >r[k]}

wi

l4
If maxi<;<; (Uij) < rik], then D(¢; (rjxy), Sk) = 0.
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40°W 20°W 0 20°E

FI1G. 4. Madrid dataset with the 10% deepest back-trajectories (dark lines).

This proposal can be modified according to a subject matter expert might be most inter-
ested in with respect to a particular bouquet of trajectories.

Following the guidelines given in Sections 3.1 and 3.2, we calculate £LD? for the dataset
presented in the Introduction, where the trajectories in the bouquet arrived to Madrid from
three different regions. In Figure 4 the 10% deepest curves (dark), reveal this behaviour. It
is important to note that these three groups are not separated in all concentric circles. For
example, the western and northwestern air masses merge at about 25°W 44°N.

3.3. Depth computation in simulated examples. In the following we calculate the inte-
grated circular local depth for artificial datasets that are simulated from numerical models
containing different cluster structures or outliers. We analyse the performance of £D? under
four synthetic scenarios: models A and B with two and three balanced clusters of trajectories,
respectively, model C with two unbalanced clusters, and model D with a single group contam-
inated with 10% of outliers, which are curves of different lengths and directions. The curves
are given by a series of 30 pairs of points, y = {p1, ..., p3o}, generated by the parametric
model,

0i+1 =0; + ni+16,
pi+1 =pi + t(cos(®41),sin(0;41)) fori=1,...,29,

where p; = (0, 0) is the common origin/end for all trajectories and 0; sets the first direction
of the trajectory. At each step, it is updated by adding é1;, where n; are independent random
variables Bernoulli(g). Higher values of é correspond to more pronounced changes in the
direction of the curve. The parameter T modifies the amplitude at each update; higher values
of 7 result in longer trajectories.

Figure 5 shows the four datasets that we generated with the parameters 61, 8, g, T, and n
(the number of trajectories) in Table 1 for the four different models. For each of these datasets,
we compute the integrated circular local depth with the input g-grid (0.10, 0.20, ..., 1) and
o = 0.1 in Algorithm 1. The radii of the concentric circles in which we integrate correspond
to equiprobable regions of probability 0.01, from 0.1 to 0.9 percentiles.

The deepest trajectories represented with dark lines in the upper panels appear in the centre
of the two groups in models A and C, the three groups in B, and the nonoutlier group in D.
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FIG. 5. (a) Dataset generated following Model A. (b) Dataset generated following Model B. (c) Dataset gen-
erated following Model C. (d) Dataset generated following Model D. In each case the top 10% deepest curves
appear and are shown as dark (blue) lines in the upper panels, while the 10% most outlying curves appear as
dark (red) lines in the lower panels.

The outer trajectories of each group are shown in the lower panels with dark lines. In models
A and B, 10% of the less deep trajectories, which can be considered the most outlying, are
located in the outer regions of the groups. In model C the 10% less deep trajectories appear
only in the outermost region of each group. It is important to note that the trajectory found
in the outer region of each group facing the second quadrant is less deep than those found in
the inner part of each group. Finally, in model D the less deep curves are precisely the shape
outliers.

Extending the analysis of model D, we simulated 500 replicates of the bouquet and found
that 95% of these outlier trajectories are within the 10% less deep observations. We repeated
the same scheme with 0.01, 0.05, and 0.15 contaminations. The high proportions of outlier
curves that are within the less deep observations, shown in Table 2, suggest that LD is a
promising tool for detecting outliers in a bouquet of trajectories, especially for low contami-
nation rates.

We analysed the sensitivity of the results to the selection of the locality parameter 8 in
model A. We computed the depths with 8 = 0.2, 0.4, 0.6, and 0.8. Figure 6 shows that the
central and the most outlying curves are correctly detected with 8 equal to 0.2 and 0.4.
However, the procedure fails to detect the most relevant features of the dataset with 8 equal
to 0.6 and 0.8. In this case, § < 0.5 are good choices of the locality parameter, while g > 0.5
will miss the data structure.

3.4. Computation time. It is well known that one of the main drawbacks of depth func-
tions is the high computational cost required to compute them on large or high-dimensional

TABLE 1
Parameter configuration for Models A to D. In Model D U|a, b] indicates that at each step i the parameter is
generated following an uniform distribution between a and b

Model A Model B Model C Model D
Parameters Gl G2 Gl G2 G3 Gl G2 Gl G2
01 b4 0 2r/3 4 /3 2 b4 /2 b4 U0, ]
T 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.1 0.5
8 0.05 0.05 0.05 0.05 0.05 0.05 —0.05 0.1 U[0,0.5]
q 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.8
n 100 100 100 100 100 100 50 90 10
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TABLE 2
Mean proportion of outliers detected, with the corresponding standard deviation (sd), for different contamination
rates

Contaminantion rate, ¢ (%) 1 5 10 15

Average outlier detection (sd) 0.98 (0.13) 0.97 (0.07) 0.95 (0.07) 0.85 (0.08)

datasets. A common strategy to overcome this problem in high-dimensional spaces is to con-
sider integrated depths based on one-dimensional projections. In our proposal we follow this
idea, but the computation of some one-dimensional depths in the circle can be very slow on
a personal computer, even for mild-size datasets.

To evaluate the computational time of £D?, we generated different datasets using model
A and varying the sample size between 100 and 1200. Figure 7 shows that as the sample size
increases, the time required grows linearly up to 1.8 seconds for 1200 trajectories.

We repeated the same procedure replacing L D? with the classical Tukey circular depth
(TCD), which is implemented in the R package circular (Agostinelli and Lund (2022)).
Figure 7 shows the computation time for L D# and TCD as the one-dimensional depth. TCD
shows an exponential growth in computation time, measured in seconds, as the sample size
increases, requiring more than 24 hours for 1200-trajectory bouquets. The computational cost
with L D# is practically negligible compared to the computational cost with TCD.

We completed the simulation by analysing the behaviour of £D? with denser sampling
trajectories. For Models A to D, we considered the same trajectories but sampled at 1000
points. We ran 100 replicates and calculated in each one the correlation between the depths
LD# for the trajectories sampled at 30 and 1000 points. In each case the correlation was
greater than 0.98. Table 3 shows that increasing the number of points in each trajectory by
more than 30 times at most doubles the computational cost.

All the calculations were performed on a personal computer with a 16-core Intel Core i7-
10700K 3,80 GHz processor with 16-cores processor and 64 GB of RAM. The R package rcd,
which contains the routines we use to do the calculations, is freely available from the Github
package repository. Also, the code is presented in the Supplementary Material C (Fernandez-
Piana, Justel and Svarc (2025c¢)).

4. Where do the microorganisms that reach Antarctic Peninsula come from?. The
recent deglaciation in some areas of the Antarctic Peninsula has left large areas of bare soil for
the first time in thousands of years. This phenomenon allows us to try to understand the origin
of microbial life in pristine regions. Considering that an important part of the movement of

J S S
A A

FIG. 6. Dataset generated following Model A. The integrated circular depth is computed for
B=0.2,0.4,0.6,0.8. In each case the top 10% deepest curves appear with dark lines (in blue), while the 10%
most outlying curves appear with light lines (in pink).
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FI1G.7. Computation time (log scale) for the integrated circular local depth calculated with LDP (+)and Tukey
depth (0).

microorganisms occurs through the atmosphere, we analyse the circulation of air masses that
have reached the Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica)
over the last two decades. Byers Peninsula is an Antarctic Specially Protected Area (ASPA
No. 126) because of its terrestrial, aquatic, and coastal ecosystems. It is the largest ice-free
area in maritime Antarctica with very low human presence. Acquiring this knowledge will
help us to understand the dynamics of emerging microorganism communities in the soils of
this region in future studies.

The dataset contains 104, 448 five-day back-trajectories simulated with the Hybrid Single-
Particle Lagrangian Integrated Trajectory model (HYSPLIT, Stein et al. (2015)), all with
a common endpoint at Byers Peninsula (62°39'S 61°04'W). Between 2005 and 2016, four
curves were generated daily (00z, 06z, 12z, 18z), each time at six vertical initialization (0.25,
0.5, 0.75, 1.25, 1.5, and 1.75 fraction of mixed boundary layer) for 121 consecutive points
(hourly). Back-trajectories were cut when the height was zero metres above the surface. The
global Data Assimilation System (GDAS, NOAA) at 0.5 degrees was used for the input me-
teorological data that HYSPLIT uses in the back-trajectories computation. A subset of 600
randomly selected back-trajectories is shown in Figure 1B. Even for this small subset of
back-trajectories, we observe that it is not possible to retrieve the most salient features of the
bouquet solely by visual inspection of the map.

We calculated the £D? for the entire dataset and for each year separately. The locality
parameter B was chosen in a data-driven way by applying Algorithm 1 for each of the 71
selected radii. The 10% of the smallest radii were removed to control the noise generated at
the arrival point at Byers Peninsula, and the 10% of the largest radii were also discarded to
avoid favouring the longest trajectories. Figure 8 shows that the deepest and most outlying

TABLE 3
Mean time in seconds needed to compute LDP for
each model for the trajectories sampled at 30 points
(OT) and the trajectories sampled at 1000 points (DT)

Model A B C D

oT 0.18 0.26 0.14 0.10
DT 0.32 0.50 0.23 0.15
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F1G. 8. Each small map shows the 1% deepest wind back-trajectories in blue (dark) and the 1% most outlying
back-trajectories in red (light), yearly from 2005 to 2016. The large map on the bottom right shows the 0.3%
deepest and most outlying wind back-trajectories for the entire period, maintaining the colour key.

wind back-trajectories for each year and for the complete dataset describe a clear and robust
pattern. The central curves came from the Ross Sea in West Antarctica, which is consistent
with the fact that the Antarctic Peninsula is subject to Southern Westerly Winds associated
with the Antarctic Circumpolar Current (Gonzalez and Vasallo (2020)). These deepest back-
trajectories circumvent Antarctica, making it difficult for colonising microorganisms to enter
from the continent. Furthermore, most of the shallower back-trajectories are outliers, show-
ing erratic behaviour with movements in all directions, that are associated with the frequent
cyclones that cross the area. These back-trajectories are not of interest for the problem of mi-
crobial transport because they are short and remain close to the peninsula. They are, therefore,
not capable of introducing alien microorganisms to colonise the area under study.

The same analysis using a global depth instead of a local, that is, setting 8 = 0.8, shows
that the main patterns are similar, as expected, since no distinct groups emerge (Figure 1,
Supplementary Material A, Fernandez-Piana, Justel and Svarc (2025a)). However, in general,
they show less dispersion, especially at the beginning of the back-trajectories. In contrast,
the choice of the data-driven locality parameter allows us to capture more variability in the
behaviour of the back-trajectories, showing more cases in which the curves came within the
Antarctic continent, allowing for internal colonisation. When considering the fixed locality
parameter 8 = 0.2, the results are very similar to those obtained with the data-driven choice;
see Figure 2 in Supplementary Material B (Fernandez-Piana, Justel and Svarc (2025b)).

As the seasonal behaviour of the Southern Westerly Winds can influence the back-
trajectories, we reproduced the analysis for the summer (December-January-February) and
winter (June-July-August) back-trajectories separately. This fact is related to the semiannual
oscillation, which is stronger at the equinoxes and weaker at the solstices. Figure 9 shows
the deepest back-trajectories for each year and season. All the central back-trajectories of the
air masses came from the west, except in the winter of 2010, when they mostly moved in
the opposite direction. A unique pattern of aerial transport of microorganisms is identified,
except in the summers of 2006, 2008, 2010, and the winter of 2016, where the deeper back-
trajectories separate into two groups highlighting different origins. In years 2007, 2011, and
2015, the central air masses came very close to the American terrestrial ecosystems, in some
cases passing over land, which may imply that in these years there could have been a greater
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flow of alien species toward Antarctica. These years are part of the two periods (2007-08,
2010-11) with strong La Nifia events (1.5 to 1.9 SST anomaly in the Oceanic Nifio Index),
and the only period (2015-16) with a very strong El Nifio event (> 2.0) between 2005 and
2016. The Oceanic Nifo Index (ONI) is the standard index used by the NOAA Climate Pre-
diction Center (U.S. National Oceanic and Atmospheric Administration) to classify El Nifio
and La Nifia events. This relationship alerts us to a possible increase in the vulnerability of
Antarctic microbial communities to future changes in ENSO (EI Nifio-Southern Oscillation)
due to climate change.

A particular phenomenon can be observed in the winter of 2010, where the southeasterlies
became the dominant winds. This finding is consistent with the results obtained by Turner
et al. (2016), which indicate a period of absence of warming in Antarctica between 1998 and
2014 (the end of the study). During this period there were stronger easterly and southeasterly
near-surface currents toward the Antarctic Peninsula, associated with katabatic winds. These
winds are particularly strong in winter, when they tend to push sea ice toward the east coast
of the peninsula. Over the past 20 years, the sea ice-cover has increased, producing a cooling
effect due to changes in atmospheric circulation. Visual inspection of all the winter wind
back-trajectories (see Figure 3 in the Supplementary Material B, Fernandez-Piana, Justel and
Svarc (2025b)) reinforces the findings of the method, which are in line with Turner’s results.
It can be seen that easterly and southeasterly winds were frequent in winter and that this
phenomenon is more pronounced in 2010. The result persists, even when we repeated the
analysis with a global depth (considering 8 = 0.8). Moreover, we have also analysed what
happens when we examine the deepest 25% of the curves. In some years, such as 2008 or
2014, different origins emerge and new patterns are identified for the deepest curves. In other
cases, such as 2013 and 2016, where different origins were already highlighted for 5% of the
deepest curves, these patterns are reinforced (see Figure 4 in the Supplementary Material B,
Fernandez-Piana, Justel and Svarc (2025b)).

In conclusion, the analysis of the back-trajectories reaching the Antarctic Peninsula
throughout the year during this period tells us that the main origin of the microorganisms
is not particularly sensitive to the occurrence of a short period of cooling followed by a very
strong El Nifio. However, when we consider only the winter back-trajectories, the air masses
from the interior of the continent are more relevant during the years of absence of warming,
becoming the most central in 2010. The study we have carried out also provides some ev-
idence of the possible influence of El Nifio and La Nifia phenomena on the arrival of new
invasive species capable of thriving in the current climate change context.

5. Concluding remarks. In this paper we study the patterns of air mass back-trajectories
in Antarctica concerning microbial dispersal. The deeper curves allow us to identify the main
air transport routes of airborne microorganisms to Byers Peninsula, a specially protected area
on the Antarctic Peninsula dedicated to scientific research. This study will also help future
works about the origin and evolution of the sampled soils and microbial mats in this very
sensitive and unique location in the Maritime Antarctica.

For this aim we introduce new notions of depth measures for trajectories that share the
same origin or endpoint and that spread in all possible directions. The main idea is to de-
fine an integrated depth where the integral variable is the radius of concentric circles from
the common point. Thus, a new local depth measure for circular data is introduced. Desir-
able theoretical properties are obtained for both the circular local depth and the integrated
depth. An efficient data-driven algorithm is presented, which is available online and allows
the handling of large datasets.

The problem studied raises extensions and future challenges beyond the scope of this pa-
per. The integrated depth definition can be extended to problems where the trajectories belong
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FIG. 9. In light lines (yellow) are the 5% of deepest curves for summer, and in dark lines (green) are the 5% of
deepest curves for winter, for each year between 2005 and 2016.

to a two-dimensional smooth connected Riemannian manifold. Then the slicing for the in-
tegral depth is in an expanding sequence of equidistant one-dimensional subvarieties, where
the shape is given by the metric associated to the manifold. If the one-dimensional subva-
riety is not a circle, the polar coordinate parameterisation makes no sense, but the quantiles
can still be defined, so the A definition should be reformulated accordingly. Computational
aspects should be adapted ad hoc. This methodology can be extended beyond the problems
of air and particle transport. An example could be the study of the density of cart networks in
irregular land. This method can also be applied to the problem of in-store product placement
of complementary items, considering as centres the most attractive promotions.

Furthermore, it would be appealing to explore some other ideas for circular local depth by
considering a kernel density depth. An important point in this case will be the choice of the
bandwidth, which is particularly challenging in the presence of multimodality.

Finally, there are many situations where the start or end point of the bouquet varies in time,
for example, when measuring emissions from a moving vehicle. In these cases it would be
interesting to be able to describe temporal patterns of the main features of these bouquets of
trajectories with time dependencies.
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SUPPLEMENTARY MATERIAL

Supplementary material A: Integrated depth for trajectories of airborne microorgan-
isms to Antarctica (DOI: 10.1214/25-A0AS2041SUPPA; .pdf). This supplementary mate-
rial contains the proofs for the results given in Section 2.

Supplementary material B: Integrated depth for trajectories of airborne microorgan-
isms to Antarctica (DOI: 10.1214/25-A0AS2041SUPPB; .pdf). This supplementary mate-
rial provides further details on the case presented in Section 4.

Supplementary material C: Integrated depth for trajectories of airborne microorgan-
isms to Antarctica (DOI: 10.1214/25-A0AS2041SUPPC; .zip). The R library is provided in
this supplementary material.
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