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1. Introduction

Let M be a 0, 1 matrix and consider the polyhedron
QM) ={0<x<1:Mx>1}, (1.1

where 0 and 1 stand for the vector of all zeros and ones, respectively.

Every 0,1 solution of Mx > 1is called a cover of M and the covering number of M denoted by 7 (M) is the size of a minimum
cover of M. If Q (M) has only integer extreme points, the matrix M is called ideal. In this case, Q (M) coincides with the set
covering polytope Q*(M) defined as the convex hull of all covers of M. In general, Q*(M) C Q(M) and there are ways to
quantify how far a matrix M is away from being ideal even though the description of Q*(M) is not known. In this context,
we will consider lift-and-project operators.

Lift-and-project operators have been widely used in polyhedral combinatorics. Starting from a given polyhedron X C
[0, 11", these methods attempt to give a description of the convex hull of integer solutions in X, KX* = conv(X N {0, 1}"),
through a finite number of lift-and-project steps. In each step the current polyhedron (initially X) is lifted to a higher
dimensional space, where it is tightened, and then it is projected back. In [9], the authors introduce two such operators,
N and N, by lifting the original polyhedron X to a higher dimensional space requiring about as many as the square of
the original variables. Both operators obtain J* in at most n steps, but one of them (N_,.) combines linear restrictions with
non-linear restrictions from the cone of semidefinite matrices.
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In [4] another lift-and-project operator, called disjunctive operator, requiring just about twice as many as the number of
original variables in the lifting step, is presented. Although this operator generally obtains at each step a weaker relaxation
than those of Lovasz and Schrijver’s, it also gets JX* in at most n steps.

Goemans introduced in [7] a notion for evaluating the strength of a linear relaxation for a combinatorial problem, relative
to a weaker relaxation of that problem. He applied these results to compute the relative strength of classes of facet-defining
inequalities for blocking-type polyhedra.

More precisely, given a relaxation X of X * and a facet-defining inequality ax > b for X*, Goemans defined the strength
of the facet ax > b withrespect to X as m This measure is an indicator in comparing different classes of inequalities
with respect to their potential effectiveness in a polyhedral cutting-plane algorithm.

Now, given a relaxation X of KX * and a facet-defining inequality ax > b for X *, we can define the lift-and-project strength
of a facet as its corresponding rank, i.e., the minimum number of steps the lift-and-project procedure in question needs, to
obtain it as a valid constraint starting from K. This idea is developed in Section 5.

In this paper we focus on polyhedra Q (M) as in (1.1) when M is a consecutive-ones circulant matrix and study the number
of steps these lift-and-project operators need in order to get the set covering polytope. A consecutive-ones circulant matrix
is denoted by Cr’f and defined as a square matrix whose i-th row is the incidence vector of {i,i ® 1,...,i ® (k — 1)} for
i e {1,...,n},where2 < k < n — 2 and & denotes addition modulo n. Although we work with addition modulo n,
throughout this paper we consider the set {1, ..., n} instead {0, ..., n — 1}. For the sake of simplicity C,’j will be called
circulant matrix.

The set covering polyhedron on these matrices has been studied in [1,3,2,6,10], among others.

For most circulant matrices Cr’f, the complete description of Q*(C,’f) is not known. But it is not hard to see that the
inequality,

= o(ch = {%W (1.2)
is always valid for Q*(C,’j) and following [10], it will be called the rank constraint associated with C,’j. Also, in [10] it is proved
that (1.2) defines a facet for Q*(C,’j) if and only if n is not a multiple of k.

The purpose of this work is twofold. On the one hand, we study the lift-and-project operators on the set covering polytope
associated with certain circulant matrices, proving that there is a particular family, CS’§< 1> for which all the lift-and-project
ranks coincide. The relevance of this family relies on the fact that almost all circulant matrices have a minor of this class. In
Section 2 we present some known results on circulant matrices and minors. In Section 3 the formal definition of lift-and-
project procedures is introduced, as well as some important results on their behavior over convex sets in [0, 1]". In Section 4
we study the minimum number of steps any of the lift-and-project procedures needs in order to get the set covering polytope
associated with a circulant matrix. This is defined as the lift-and-project rank of the relaxation Q(Cr’f). We also obtain an upper
bound for the lift-and-project ranks of the set covering polytope of all circulant matrices.

On the other hand, in Section 5 we compare the strength of the various relaxations obtained through the lift-and-project
operators and the measures utilized by Goemans, as suggested by Tuncel in [11]. In particular, we prove that the rank

constraint associated with C% , | is a facet of maximum strength according to lift-and-project and Goemans’ measure. Finally,

using this result we identify a family of facets for Q*(Cs’;) when s > k + 1, having maximum strength according to the
disjunctive operator and Goemans’ measure.

2. Preliminaries

From now on, M is m x n0, 1 matrix. Ifi,j € {1, ..., m} and M!, M/ are the i-th and j-th rows of M, respectively, we say
that row i dominates row j if M* < M/.

We denote by M /j the contraction of column j, that is, column j is removed from M as well as the resulting dominated
rows and hence, it corresponds to setting x; = 0 in the constraints Mx > 1. The deletion of column j, denoted by M \ j
means that column j is removed from M as well as all the rows with a 1 in column j. This corresponds to setting x; = 1in
the constraints Mx > 1. Given M and disjoint sets V1, V, C {1, ..., n}, contraction of all the columns indexed in V; and
deletion of all the columns in V, can be performed sequentially and the resulting matrix does not depend on the order of
indices or matrix operations. Then we say that M /V; \ V; is a minor of M and it is a proper minor if V; or V, are nonempty
sets.

Remark 2.1. It is known (see [6]) that given a circulant matrix C,’f every minor obtained by deletion is ideal; i.e. Q(C,’f) Ni{x:
x; = 1} is an integer polyhedron foreveryj=1,...,n.

For each Cr’l‘, Cornuéjols and Novick introduced in [6] the directed graph G(C,’;) with vertices V = {1, ..., n} and such
that (i, j) is an arc ofG(C,’j) ifje{idkid (k+ 1)}
Moreover, under this definition in [6, Lemma 4.5] it is shown that:

Lemma 2.2. If D C {1, ..., n} induces a simple directed cycle in G(C,’f), then there exist nonnegative integer numbers nq, n, ns
with ny > 1 such that
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1. nny = kny + (k+ 1)ns,
2. ged(ng, np, n3) =1,

3. if k—ny <0, Ck/Dis a zero matrix. If k — ny > 1 then C¥/D is isomorphic to C,f:,',';_ny

In addition, in [1] it is obtained a characterization of contractions of circulant matrices that give back circulant matrices.
Actually:

Theorem2.3. [et2 <k <n—1,DC {1,...,n}with[Dl =mand0 <m <n-2.If0 <n; < min{k,m}thenC,’j/Dis

isomorphic to C,’f:,',? if and only if there exist d = gcd(m, nq) disjoint simple directed cycles in G(C,’j), induced by D+, ..., Dg each
having length m/d such that D = | J, D;.

Remark 2.4. Lets > 2and k > 3.1fD = {1, 1+k, 142k, ..., 1+ (s— 1)k}, using Lemma 2.2 we have thatn; = 1, n, = s—1
and n3 = 1 and it follows that Csk(;llﬂ—] is a minor of Cs’§<+1. Analogously,if0 <l <k—1,s> (I+ 1)k+ 1and

D={1,1+k, ..., 14+ puk, 14+ pk+ k+1),..., 14+ pk+ (¢ — Dk + 1)},
foru =s—k(l+ 1) —1and ¢ = k(I + 1) — |, it holds thatn; = 1, n, = u, n3 = ¥ and C;;l])ﬂ isaminorosz’i_,.

3. Lift-and-project operators

In [4], the authors present a lift-and-project operator defined on polytopes X in [0, 1]". Forj € {1, ..., n}, the polytope

P;(X) obtained after one lift-and-project iteration can be described as
Pi(X) = conv(X N {x € RY : x; € {0, 1}}).

Given a subset F = {iy, ..., iy} of {1, ..., n}, in [4] it is proved that this operator can be applied iteratively over F, thus
denoting the polytope P;, (P, (. .. P;, (X))) as Pr(X). Clearly, Py, »(X) = X* and the disjunctive rank of X, rp(X), can be
defined as the smallest cardinality of F C {1, ..., n} for which P¢(X) = K*. ~

Now, we briefly overview the operator N and N, introduced in [9]. Here the authors work with convex cones X C R,
homogenizing the inequalities by introducing a variable xq. Thus a vector x € R"*! is of the form (xo, x1, . .., X;) and we
will work with vectors satisfying 0 < x; < xp foralli=1,...,n. _

Given a convex cone KX whose points satisfy the inequalities above, M (K) denotes the cone of symmetric matrices
Y e RMEDx@+D guch that diag(Y) = Yeg, Ye; € K and Y(eg — ;) € X fori = 1,...,n, where e; is the (i + 1)-th unit
vector in R™1. 5

The cone N(X) is defined as N(K) = {Yeg : Y € M(X)). _ .

By requiring the matrices in M(X) to be also positive semidefinite, we obtain the cones M, (X) and N (K) = {Yeg :
Y € ML (X))

For simplicity, when we say we are applying the N or N, operator to a convex set X C [0, 1]" we mean that we consider
the cone generated by vectors of the form C) where x € X, apply the corresponding operator, then take the intersection

of this cone with yo = 1 and project it back onto R". N(X) and N, (X), respectively, stand for these final subsets of [0, 1]".

We notice that N(X) is a polyhedron, whereas, in general N (.X) is not. Clearly N, (K) C N(X).

If we set N°(K) = NE(JC) = X,N"(X) =N(N""1(X)) and NL(K) = N+(Nj__1(JC)) forr > 1,in [9] it is proved that
NY(X) = NL(K) = X"

This property allows the definition of r(X), the N-rank of X, as the smallest integer r for which N"(KX) = X*. The
N, -rank (denoted by r, (X)) is defined in a similar way.

In [4] it is proved that for any KX C [0, 1]", the above defined operators generate relaxations of KX * satisfying

K* C Ny (K) CN(K) C Pi(X) C X,

foreveryj=1,...,n.
Therefore,

r(K) = r(K) < rp(X). (3.1)
In order to simplify the notation, when there is no need to distinguish between the operators N and N, we simply write
N;. Similarly, when we write r; (K) we refer to any of the ranks of a polyhedron X in (3.1).
The following fact about the behavior of lift-and-project operators is well-known [8].
Lemma 3.2. Let F be any face of [0, 1]" and KX C [0, 1]" be a convex set. Then, for every k > 0,

Nf(K NF) = Nf(X) NF.

Remark 3.3. Consider X = Q(C¥) and D as in Theorem 2.3. Then, if C¥ is a minor of C¥ isomorphic to C¥/D there is a natural
one-to-one correspondence between Q(C,’;,/ ) and Q(C,’,< /D). Moreover, from Lemma 3.2, this correspondence is preserved
after the successive applications of the lift-and-project operators. Therefore, r:(Q (C”q‘,/ ) <r:(Q (Cr’f)).
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In the following section we will focus our attention on matrices of the form CS"k +1» Which, according to Remark 2.4, appear
as minors of most circulant matrices.

4. Lift-and-project operators on circulant matrices

A general circulant matrix is defined through the shift operator T. If T : R" — R"is such that T(vy, ..., vz) = (vn,
V1, ..., Un_1), then circ(u) is the n x n matrix whose first row is T°(u) = u and whose j-th row is given by TV~ (u), for every
j > 2.1tis easy to see thatif 1 < k < n — 2 then C¥ = circ(v) where v* € {0, 1}" and v} = 1ifand onlyifi € {1,...,k}.

The following result provides an upper bound for the disjunctive rank of every circulant matrix.

Theorem4.1. If 1 < k < n — 2 thenp(Q(CX) <k — 1.

Proof. If k = 1, then Q(Cﬁ) is an integer polyhedron. Let F = {1, ...,k — 1} with k > 2 and x be an extreme point of
PF(Q(C,’f)). Ifx; = 1for somei € F then Remark 2.1 implies that x is an integer point. Otherwise, x € Q(C,’f) N{x:x;=0,j€
F} and then x;, = 1. Again, Remark 2.1 shows that x is an integer point. Therefore, PF(Q(C,’I‘)) = Q*(C,f). O

Concerning the N -operator, it is proved in [5] that r (Q ( 2k+1)) > k—1fork > 2. After inequality (3.1) and Theorem 4.1
we have:

Corollary 4.2. For k > 2, 1;(Q(Chy) =k — 1

Next we prove an extension of the result in [5] for any s > 2.

Theorem4.3. If s > 2 and k > 2 then r(Q(C k+l)) >k—1

Proof. Lets > 2, k > 2, and consider X = o1 € R**+! where

1
- ifk =2,
2

ok—1(1 + sk — 1))
og—1(1+ sk — 1)) +s(k — 1)
By induction on k, it is not hard to check that x* € Q (C! k+1) and that it violates the rank inequality (1.2), i.
sk+1
k '

Then, it follows that x* € Q(Ck_ ;) \ Q*(Ck ).
Let us show that x* ¢ Nfr 2(c k+1)) thus proving the desired result. For k = 2 this is clear since N0 Q(c s+1))

QG-
For k > 3, assume that X~ ! Nf‘[3(Q(C’(k 1)4+1)) and consider the (sk 4-2) x (sk + 2) matrix Y* of the form

) 1 (Xk)T
Yh= xk i}k

where Y¥ € REDx6k+D s defined as
% ifi = j,
k—DGs-DH+1
. PP AR A
Yi=1{"" stk—1)+1
1
O ————— -
stk—1)+1

It is easy to see that Y¥ is a symmetric matrix and that diag(Y*) = x*.

o =
ifk > 3.

1x"<s+1:(

iffj=i®lk,i®(—lk)andl=1,...,5s—1,

otherwise.

Claiml.Ifie{l,...,sk+]}thenif”‘eieN H(I( M)

Proof. Let us observe that a point x belongs to Q (C k+1) if and only if ij;(} Xrqj > 1foreveryr =1,...,sk+ 1. If we call
B = W forl=1...,s, then aY"ei satisfies the previous restrictions since:
K

(i) ifr=i+1orr=i® (s— 1)k + 1then

— Z(Y"el)r@] Bi+ (k—1)p =1

(811 =
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(ii)ifr=i®((s—1Dk+2),...,i® (sk+ 1) then
k—1

1 ~
— D (e =1+ (k= Dfic > 1
[67% =0
(iii) ifr=i@® (I — 1Dk +2),...,i® (k) withl=1,...,s — 1then
1 k—1 5
— D (Vegy = k=2 + fi+ fa =1+ (k= Dfs > 1
k j:0

(iv)ifr=i® (lk+ 1) withl=1,...,s— 2 then

k—

— Z(Y eraj = (k—2)Bs + Boi + fri1 = 1

Then, aikf/"ei € Q(Cs’j{H) N {x: x; = 1}. According to Remark 2.1, Q ( sk+l) N {x: x; = 1} is an integer polyhedron and then

;k?kei € Q*(Ch ) C N2 Q(Chu ).

Thus, the claim holds. O
Claim 2. If i € {1,..., sk + 1} then -~— (x — Ykey) € NE3(Q(C, ).

Proof. LetU; = {i,i®k,...,i® (- Dk, i® (k+1),...,i® ((s— Dk+ 1)}and w' € R**+! be defined as follows
o L ifj ¢ Ui,
I 1o ifj € U,

forl =1,
Recall that after Remark 2.4, Cs’(kll) 41 is @ minor of C .1 obtained after the contraction of D = U, with parameters

ny = 1,n, = s — 1and n; = 1. In other words, the zero entries of w' are exactly the columns deleted to get the minor.
Using Remark 3.3, with X = Q(C%_,) and D = U, and induction hypothesis, i.e, X*"1 = ;11 € Nﬂ‘:3(Q(CS"(k 1)) We

have w' € N¥3(Q( Ch i)
Moreover, the entries of w = % S, ware

0 ifj =i,
l

wj = ;oz;H ifj=i®lk,i® (—lk)andl=1,...,5s—1,
o1 otherwise.

Since o1 = 1f’;k S(1—pByforalll=1,... s, wegetw = %ak(xk — Yke)).

Therefore, by convexity the claim is proved. O

After Claims 1 and 2 and the definition of the N-operator, we have that x* € N(Nfr 3Q(c 7<+1)))

It remains to prove that Y* is a PSD matrix. It is enough to show that the Schur complement yk — xk(x)T is PSD (for
further details see [11]).

Now, Y¥ — xk(x*)T = oy [ 1 Y" — o E] where E is the n x n matrix with all entries at value one. Moreover, iY" —aE =
circ(z) ifz = aikY"el — oyl

It is known that, if ¢; = exp(slz{f] j) forj = 0, ..., sk, then the eigenvalues of circ(z) are A; = Zfﬁf Ozm+1e Recall that

€ is an (sk 4 1)-th root of the unity. Then, eSk“ = 1and, ifj # 0, Zm o€ =0.

Letuscally = 1—ai(s(k—1)+1)and §, = (s—r)(k—1)forr = 1,...,s—1,then we can write (s(k—1)+1)z = u+y1
where

stk—1) ifj=1,
up= 46 ifj=1®rk,1d (—rk)andr =1,...,s—1,

0 otherwise.
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Foreveryj=1,..., sk, we obtain that

sk sk
(stk—1D+1r = Z Uni1€" + ¥ Zejm
m=0 m=0
sk
= Z Um1€"
m=0

s—1
stk—=1)+> 8+

r=1

! 2mjkr
(k—1) (s + ;(s —T1)2cos (sk n 1))

where in the last equality we used the fact that exp(ix) = cos(x) + isin(x) to get ejm + ej_m =2 cos(
{0, ...,sk}.

2nmj
sk+1

) forj,m €

Forj=1, ..., skit can be proved by induction that
(k — 1) sin? (Z2)
(k=1 + Dy = ————ats
sin (55)

In addition, Ag = Zﬁfzo Zm1 = 1 —ar(1+4sk) + s and it is positive since (sk + 1)ax < s+ 1. Therefore, A; > 0 for every
j=0,...,skandthen Y*isaPSD matrix. O

As an immediate consequence of Theorems 4.1 and 4.3, we have:

Corollary44. If s > 2and k > 2 thenr;(Q(Ck ) =k — 1.
Using Remarks 2.4 and 3.3, Theorem 4.1 and Corollary 4.4 we also have:

Corollary4.5. If k> 3,0<l<k—1ands > (I4+ 1)k + 1thenk —2 < rn(Q(Cs’j{_,)) <k—1
The following result relates the disjunctive rank of the set covering polytope of a circulant matrix and the ranks of its
minors.

Lemma 4.6. Let C,’;,/ be a nonideal proper minor of C,’j. If rD(Q(C,f,/)) > p then rD(Q(C,’f)) >p+ 1

Proof. Let F = {iy,...,ip} C {1,...,n}. We will show that Pf (Q(C,’f)) is not an integral polyhedron, which leads to
the desired result. By Remark 2.1, a nonideal proper minor can only be obtained by contraction. Therefore, there is a set
D C {1, ...,n}such that C,’l‘/D is isomorphic to C,’;,/ Moreover, w.l.0.g. we can consider that F N D # (. Then F \ D indexes
a subset of columns of matrix C,’f/D with cardinality at most p — 1.

Under the assumption that rD(C,f,/ ) > p, there must be a fractional extreme point X in PF\DQ(Cr’f/D) having all its
components in F \ D at value zero. Now, let x € R" be such that

0 ifie FUD,
"7 |x otherwise.

Therefore, x is a fractional extreme point of Pr (Q(Cr’f)) and this shows that rD(Q(C,’j)) >p+1. O
Moreover, using this result we are able to prove that:
Corollary4.7. If k > 3,0 <l <k —1ands > (I4+ 1)k + 1 then rD(Q(CS",H)) =k—1

Proof. From Remark 2.4 we have that Cf;l])H is a minor of Cs’jH and by Corollary 4.4, rp (Q(CS"@L)H)) = k — 2. Then, from
Lemma 4.6 and Theorem 4.1, the result follows. O

5. Strength of facets

According to the results in [2] for most nonideal circulant matrices, the rank constraint is not the only one needed for a
description of the set covering polyhedron. Moreover, in [2] a family of non-rank facet inequalities for Q * (C,f) is presented.
Actually:
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Theorem 5.1. Let Cr’f be a nonideal circulant matrix and let D C {1, ..., n} induce a simple directed cycle in G(Cr’f) such that
C¥/D is isomorphic to Cr’l‘,/ andn’ = 1(mod k), k' > 2. Let Vy, Vr be a partition of D such that i € Vr ifand only if (i —k — 1, i)
is an arc of the cycle. Then, the inequality

in—i—in—i—Zinz ’V’;:—‘, (5.2)

ig¢D ieVy ieVr
defines a facet of Q*(CX) if and only if P’ﬂ > [1].
In [3] it is studied Goemans’ strength of inequalities (5.2) when they define facets of Q*(C,’f). In particular:

Lemma5.3. Let k > 3ands > 1.

(1) The facet-defining inequality of maximum strength of Q*(Cskk+l) with respect to Q(Cs"kﬂ), is the rank constraint.
(2) If s = k+ 1, the facet-defining inequalities of maximum strength of Q*(Cs’jc) with respect to Q(Cs’jc), are the inequalities given
by (5.2) where D is any subset of {1, ..., sk} such that Cs"k/D is isomorphic to C5;11)5+1'

In this section we analyze the strength of the facets considered in the previous lemma according to the lift-and-project
procedures.

Firstly, if X is a linear relaxation of X* and L is any of the lift-and-project operators introduced in Section 3, we say that
the L-rank of a facet constraint ax > b of X* according to L, is the minimum number of steps r needed to obtainax > b as a
valid inequality for L' (X).

According to this definition, the L-strength of a facet of K * is its corresponding L-rank. Trivially, an inequality of maximum
strength is one having the lift-and-project rank of X .

Observe that in the proof of Theorem 4.3 we show that r (Q(Cskkﬂ)) = k — 1 by presenting a point x* € N’fz(Q(CS"kH))
that violates the rank constraint. Then, it is a facet of maximum strength according to the N, operator. This means that it is
also a facet of maximum strength for the disjunctive and N operator. Therefore,

Theorem 5.4. If s > 2 and k > 2 then the rank constraint (1.2) is a facet of maximum L-strength of Q*(CS",(H) where L stands
for the disjunctive, N or N, operator.

Now, consider the family of circulant matrices CS’§< fors > k+ 1.

Theorem 5.5. If k > 3 and s > k + 1, the inequalities given by (5.2), where D is any subset of {1, ..., sk} such that Cs"k/D is
isomorphic to C(",;ll)s 1o are facet-defining inequalities of maximum disjunctive strength of Q*(Cs’j().

Proof. If D is such that CX /D is isomorphic to C(",:DH],

can be rewritten as

Xi+2 Xi>s—+1. (56)
D xi+2)

igw iew

consider W = {i e D:i—k — 1 € D}. Then, the inequality in (5.2)

From Corollary 4.7, rD(CS"k) = k — 1. Then, it is enough to show that for every set F with |F| < k — 2 there is a point in

Pr (Q(CS",()) that violates the inequality (5.6).
As we have already done in the proof of Lemma 4.6, consider F = {iq, ..., i} C {1,...,sk}and theD C {1, ..., sk}
such that Csljc/D is isomorphic to Csk(;l])ﬂ with F N D # #. Then F \ D has at most k — 3 elements.

By Corollary 4.4, rD(Q(CS"(;lI) +1)) = k — 2 and from Theorem 5.4 the rank inequality is a facet of maximum disjunctive
strength. Therefore, there is a fractional extreme point X in Q(Cs’j< /D) having all its components in F \ D at value zero that
violates the rank inequality associated with CS"(;UH, i igrupXi <s+ 1.

Let x € R" be such that

{O ifie FUD,
Xi = - .
X; otherwise.

Then, x € Pf (Q(Cs",()) and violates inequality (5.6) since W € D. O

6. Conclusions and open problems

In this paper we analyzed the behavior of the disjunctive, N and N, operators over a wide family of circulant matrices. We
found in Theorem 4.1 an upper bound for all the lift-and-project ranks of the set covering polyhedron on circulant matrices.
Also, we could compute all the lift-and-project ranks over the family Cs"k 1 broviding lower bounds for the lift-and-project
ranks for the linear relaxation of the set covering polytope of most circulant matrices.
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Although the set covering polyhedra for matrices C%, , and C% with s > k + 1 are not known, we could identify facets

of maximum strength of these polyhedra when we consider Goemans’ and lift-and-project measures defined in Section 5.
Moreover, we have proved they are facets of maximum strength according to any of them.

On the other hand, it is known that the set packing polyhedron on circulant matrices can be stated in terms of the stable
set polytope on web graphs. Our future work consists in studying the behavior of lift-and-project procedures on the clique
relaxation of these graphs and compare the strength of facets according to Goemans’ and lift-and-project measures. This
would complete the line of research suggested by Tungel in [11].
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