
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 1

Elaborating Requirements using Model
Checking and Inductive Learning

Dalal Alrajeh, Jeff Kramer, Member, IEEE, Alessandra Russo, Member, IEEE
and Sebastian Uchitel Member, IEEE

Abstract—The process of requirements engineering includes many activities, from goal elicitation to requirements specification. The
aim is to develop an operational requirements specification that is guaranteed to satisfy the goals. In this paper, we propose a formal,
systematic approach for generating a set of operational requirements that are complete with respect to given goals. We show how
the integration of model checking and inductive learning can be effectively used to do this. The model checking formally verifies
the satisfaction of the goals and produces counterexamples when incompleteness in the operational requirements is detected. The
inductive learning process then computes operational requirements from the counterexamples and user-provided positive examples.
These learned operational requirements are guaranteed to eliminate the counterexamples and be consistent with the goals. This
process is performed iteratively until no goal violation is detected. The proposed framework is a rigorous, tool-supported requirements
elaboration technique which is formally guided by the engineer’s knowledge of the domain and the envisioned system.

Index Terms—Requirements elaboration, goal operationalisation, behaviour model refinement, model checking, inductive learning.

F

1 INTRODUCTION
1.1 Motivation
Requirements Engineering (RE) is an integral part of
the software development process. It is concerned with
the elicitation of stake-holders goals, the elaboration of
these goals into requirements on the software behaviour,
and the assignment of responsibilities for these require-
ments to agents [13]. Inadequacy in the execution of any
of these RE sub-tasks inevitably leads to development
problems, which are often difficult and costly to repair.
This has led researchers to seek rigorous and automated
methods to support the fulfilment of these tasks.

Goal-oriented approaches have shown to be particu-
larly effective for formal analysis and automated valida-
tion [6], [51], [46], [39]. Goals are objectives the system is
intended to achieve, through the co-operation of agents
in the envisioned software and its environment [30].
“Reverse thrust enabled when a plane is moving on the
runway” is an example of a goal for a flight control
system. Agents, such as autopilot and wheels-sensors,
are active components in the software and environment
whose behaviour can be constrained to ensure the sat-
isfaction of the goals. A requirement is a goal which
has been assigned to an agent in the software being
developed, while an expectation is a goal which has
been assigned to an agent in the environment. An oper-
ational requirement captures the conditions under which

• The authors are with the Department of Computing, Imperial College
London, London, SW7 2AZ.
E-mail: {dalal.alrajeh,j.kramer,a.russo,s.uchitel}@imperial.ac.uk

• Sebastian Uchitel is also with the Departamento de Computacion, FCEyN,
University of Buenos Aires, Buenos Aires, Argentina.
E-mail: suchitel@dc.uba.ar

a system component may or must perform an operation
to achieve the goals (e.g. a required pre-condition for
disabling the reverse thrust is that the wheels’s pulse is
on).

One of the difficulties in developing a system specifi-
cation is the elaboration of operational requirements that
guarantee the satisfaction of the goals. This is essentially
a manual task and hence is costly and error-prone. Very
little systematic, rigorous support exists; amongst the
exceptions are the informal techniques explained in [6],
[46] and the formal approaches in [31]. However such
approaches lack desirable characteristics such as automa-
tion and/or generality, making them less accessible to
practitioners.

This paper addresses the problem of how formal, tool-
supported methods can be effectively used to identify
and resolve incompleteness of a given set of operational
requirements with respect to a set of pre-defined goals.
We propose an integrated use of model checking to
detect incompleteness in a given partial operational re-
quirements specification, and inductive learning to re-
solve the incompleteness. The model checking formally
verifies the satisfaction of the goals and produces a
counterexample when an incompleteness is detected in
the partial operational requirements specification. We fo-
cus on two incompleteness problems: (i) incompleteness
of the operational requirements with respect to goals
expressed as safety properties and (ii) incompleteness
of the operational requirements with respect to goals
expressed as a particular form of liveness properties
called progress properties. In this paper, we assume
correctness of the initial specification, and do not address
the case in which model checker detects faults caused by
an erroneous specification.

The particular inductive learning technique we use,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 2

called Inductive Logic Programming (ILP) [38], automat-
ically generates missing operational requirements that
are needed to satisfy the existing goals. One of the main
advantages of using ILP is that it makes use of any
existing knowledge during the inference process. This
has the benefit of automatically ensuring consistency
of the learned requirements with respect to the goals
and the existing specification. Witnesses and counterex-
amples are used to suggest information about positive
and negative scenarios (or examples) that the inductive
learner uses to compute the operational requirements.

The proposed framework is defined as an iterative
process consisting of four phases. In the behaviour analysis
phase, the existing (partial) specification of operational
requirements is verified against the given goals using
a model-checker. If the verification is unsuccessful, the
counterexample generated is used in the scenario elici-
tation phase, where an engineer extracts a set of posi-
tive and negative scenarios. In the requirements inference
phase, goals, existing operational requirements and sce-
narios are used by the ILP learning system to compute
a set of new operational requirements that covers all
positive scenarios and eliminates the negative ones. If the
learner produces a number of alternative requirements,
the engineer then selects the operational requirements
to be added from the list proposed in the requirements
selection phase. The cycle is then repeated until no goal
violation is detected. The steps are illustrated in Figure
1. The person shown in the figure indicates the points
where an engineer’s intervention is required.

The automated support provided by this framework is
intended to reduce the manual intervention of engineers
and hence avoids the introduction of errors, that are
frequent in a fully manual approach, as the learner
guarantees to produce correct solutions with respect to
the goals and the existing specification.

1.2 Contribution and Outline

The main contribution of this paper is a systematic, rigor-
ous and tool-supported framework for the elaboration of
operational requirements from safety and progress goals,
using an integration of model-checking and inductive
learning.

The approach proposed here also provides more spe-
cific contributions. We provide a sound technique for
transforming a specification expressed in asynchronous
Fluent Linear Temporal Logic (FLTL) into a logic pro-
gram, which in turn lends itself to the use of reasoning
methods based on logic programming. We also prove the
correctness of the ILP solution with respect to the given
scenarios.

More generally, we provide automated support for
the incremental development of behaviour specifications
that satisfy progress and safety properties. We show how
the approach can be adapted and applied to other goal
operationalisation problems such as operationalisation
of goals that must be achieved within a bounded time

interval. This suggests that the approach is potentially
applicable to other event-based problems where a partial
model exists and needs to be refined.

The rest of this paper is organised as follows. Section
2 describes background work on goals, operational re-
quirements and behaviour modelling. Section 3 defines
the problem this paper addresses. Section 4 describes
in detail the different phases of the framework. Section
5 discusses the termination of the approach. Section 6
validates the proposed requirements elaboration process
using the London Ambulance Service case study. A
discussion and account of related work are given in
Sections 7 and 8 respectively. Section 9 summarises our
contributions, and discusses future work.

2 BACKGROUND

In this section we define the notions of goals, opera-
tional specifications and behaviour modelling used in
the approach. We also introduce some preliminaries on
Event Calculus logic programs and inductive learning.
To illustrate the concepts, we refer to excerpts of the
Flight Control System (FCS) example introduced in [22].

2.1 Goal and Operational Requirements Specifica-
tions
Goals are the objectives to be achieved by a system
[31], [6]. They are often expressed declaratively in terms
of state-based properties that should be satisfied in
the envisioned system over some predefined temporal
structure (e.g. “reverse thrust enabled when the plane is
moving on the runway”).

Operational requirements, on the other hand, express
constraints on the operations to be performed by the
system. They take the form of domain and required
conditions. A domain condition captures the basic state
transitions defined by the application of an operation
in the domain. It is specified as a pair containing a do-
main pre-condition (DomPre) and domain post-condition
(DomPost). Required conditions, on the other hand, capture
strengthened conditions on the software-controlled op-
erations that contribute to the satisfaction of the goals.
They are expressed in the form of required pre-, trigger-
and post-conditions. Required pre-conditions (ReqPre) are
conditions that capture a permission to perform an oper-
ation. Required trigger-conditions (ReqTrig) are conditions
that capture an obligation to perform an operation. Re-
quired post-conditions (ReqPost) specify the conditions that
must hold after the execution of an operation.

A set of operational requirements is said to be complete
with respect to a goal if satisfying the required conditions
in the set guarantees the satisfaction of the goal [31].
Otherwise, it is said to be partial.

Goals and operational requirements can be expressed
in some form of temporal logic. Such formalisms support
the use of existing automated behaviour model synthesis
and verification techniques such as model checking. We
use an asynchronous form of FLTL [21] to specify goals

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 3

A
satisfies

G?
(a) Construct LTS A

from O w.r.t. D
(b) Check A against

G

(c) Elicit positive &
negative scenarios

POS U NEG

(d) Encode G,O,D,
POS and NEG into

Logic Program B ∧ E

(e) Compute
hypotheses H from

B ∧ E

(f) Transform H into
Operational

Requirements {Rj}

(g) Select
requirements to add

to O from {Rj}

Yes	

No	

(1) Behaviour Analysis

(2) Scenario
Elicitation

(3) Requirements Inference

(4) Requirements
Selection

Goals G, Fluent
Definitions D and
Operational
Specification O

Human Intervention involved.

Fig. 1. Overview of the proposed approach

and operational requirements, and Labelled Transition
Systems (LTS) to model the corresponding system be-
haviour. The reason for using FLTL as the representation
language is twofold. First, FLTL is a language designed
for reasoning about event- and state-based properties
together in event-based models. Second, it is supported
by existing model checkers (e.g. LTSA [34]). However,
this particular choice of formalism is not essential to our
approach. The approach can be easily adapted to other
formalisms such as standard linear temporal logic.

2.1.1 Fluent Linear Temporal Logic

FLTL is a special form of linear temporal logic that
makes use of fluents. A fluent is a time-varying
property of the system. It is defined by a pair of
disjoint sets of event labels, referred to as the initiating
(If) and terminating (Tf) sets of events, and an initial
truth value true or false. Event labels in an initiating
(resp. terminating) set are those events that, when
executed, cause the fluent to become true (resp. false).
For instance, assuming a fluent WheelsTurning is initially
false, meaning that wheels of the plane are initially not
turning, the definition for this fluent is specified as

WheelsTurning=
〈{spinWheels},{stopWheels}〉 initially false

stating that the event spinWheels causes the fluent Wheel-
sTurning to become true, and the event stopWheels causes

the fluent WheelsTurning to become false. In other words,
WheelsTurning is a domain post-condition for the event
spinWheels. A fluent can be state-based, such as the one
above, or event-based. An event-based fluent fe signals
the occurrence of the event e. Its initiating set is the
singleton set {e} and its terminating set is L − {e},
where L is the universal set of event labels. We use the
convention that a fluent is assumed to be initially false
unless explicitly stated to be true.

Given a set of fluents F , an FLTL formula can be
constructed using the classical connectives, ¬,∧ and →,
and the temporal operators © (next), meaning in the
next state, 2 (always), meaning always in the future,
3 (eventually), meaning some time in the future and
U (strong until), meaning always in the future until.
In addition, bounded temporal operators [25] can be
used such as 3≤d, meaning some time in the future
within the next d time units, where d is a non-negative
integer. Other classical and temporal operators can be
defined as combinations of the above operators (e.g.
φ∨ψ ≡ ¬(¬φ∧¬ψ), and φWψ ≡ (2φ)∨ (φUψ)). A well-
formed FLTL formula is formulated in the standard way
[35].

FLTL, as defined in [21], is said to be an asynchronous
temporal logic. This means that its properties refer to se-
quences of system states observed after each occurrence
of an event. Goals, however, are often defined over a
discrete linear structure of time. When expressing goals
and operational requirements in asynchronous FLTL, a

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 4

tick fluent is introduced to mark the beginning of each
time unit.

A goal can be expressed formally in four different
modes: achieve, cease, maintain and avoid [12]. The
schemata for goals in the immediate achieve and cease
modes are expressed respectively as follows.

2(tick→ (P →©(¬tick W (tick ∧Q)))
2(tick→ (P →©(¬tick W (tick ∧ ¬Q)))

where P and Q can be any well-formed FLTL expression
containing state-based fluents only. For instance, as-
sume an FLTL language includes the state-based fluents
ThrustEnabled, PulseOn and MovingOnRunway, meaning
“the reverse thrust is enabled”, “the wheels’ pulse is
on” and “the plane is moving on the runway” respec-
tively, and the event-based fluents switchPulseOn mean-
ing “switch the wheels’ pulse on”, disableThrust mean-
ing “disable the reverse thrust” and enableThrust which
means “enable the reverse thrust”. The goal “reverse
thrust enabled when the plane is moving on the runway”
can be formally expressed in FLTL as

2(tick→ (MovingOnRunway→
©(¬tick W (tick ∧ ThrustEnabled))))

which states that it should always be the case that
whenever the plane is moving on the runway, the reverse
thrust should be enabled by the next time point. Hence
goals refer to what needs to be true or false at tick
occurrences.

Operational requirements, on the other hand, express
constraints on events occurring between the tick transi-
tions. These are expressed in one of the following generic
forms.

2(tick→ (¬ReqPre→©(¬OP W tick)))
2(tick→ ((ReqTrig ∧DomPre)→©(¬tick W OP)))
2(OP → (¬tick W (tick ∧ ReqPost)))

where OP is an event-based fluent and ReqPre, ReqTrig,
DomPre and ReqPost are FLTL expressions containing
state-based fluents only.

For example, the domain pre-condition “the wheels’
pulse switch may not be pressed if the wheels’ pulse is
already on” is formalised as

2(tick→ (PulseOn→
©(¬switchPulseOn W tick)))

The required pre-condition “the wheels’ pulse is off” for
the operation disableThrust is specified in asynchronous
FLTL, as

2(tick→ (¬PulseOn→
©(¬disableThrust W tick)))

while the trigger-conditions “the wheels’ pulse is on” for
the operation enableThrust is expressed as

2(tick→ (PulseOn→
©(¬tick W enableThrust)))

Goals and operational requirements can be formally

expressed in a more compact way using other languages
or semantics. In synchronous LTL, for instance, the above
goal can be expressed without explicitly referring to ticks
of the clock as 2(MovingOnRunway→©ThrustEnabled).
It is understood implicitly that every state at which the
assertion is evaluated is the state immediately proceed-
ing the occurrence of a tick. Expressions of this form can
be automatically transformed into asynchronous FLTL
specification using the technique described in [29].

2.1.2 Labelled Transition Systems
A Labelled Transition Systems (LTS) [23] is a behaviour
model that can be used to represent a system as a set
of concurrent components (or agents). Each component
is defined as a set of states and transitions between the
states. Transitions are labelled with events denoting the
interaction that the component has with itself, the envi-
ronment and other components. The definition below is
adapted from [20].

Definition 1. (Labelled Transition System) A labelled
transition system A is a tuple (S,L,R, s0) where S is a finite,
non-empty set of states including the error state, designated
as λ, L is a finite non-empty set of event labels, called the
alphabet, s0 is an element of S, called the initial state, and
R ⊆ S − {λ} × L× S is a non-empty set of transitions.

A trace σ in A is a (possibly infinite) sequence of
transitions (denoted s0Re1s1Re2s2...), such that for each
i ≥ 0 there is a transition (si, ei+1, si+1) ∈ R. Note that
we also sometimes represent traces as sequences of event
labels (e1, e2, ...).

A scenario σ∗ is a finite sequence of labels of the
form 〈e1, e2, ..., em〉 where ei ∈ L for 1 ≤ i ≤
m. It is said to be accepted by an LTS A if there
is a trace s0Re1s1Re2s2...sm−1Remsm in A such that
(si, ei+1, si+1) ∈ R for all 0 ≤ i < m. We call a trace
σ that accepts a scenario σ∗ an accepting trace of σ∗.

LTSs can be generated automatically from declarative
expressions specified in asynchronous FLTL. The seman-
tics of an FLTL formula is defined with respect to traces
in an LTS and a valuation function that returns the set
of fluents that are true at a given position in a trace σ in
A according to their fluent definition.

Given a set of fluent definitions D, a fluent f is
evaluated as true at position i in a trace σ with respect
to D, denoted σ, i |=D f , if and only if either of the
following conditions hold:
• f is defined initially true in D and ∀j ∈ N . ((0 <
j ≤ i)→ ej 6∈ Tf);

• (∃j ∈ N . (j ≤ i) ∧ (ej ∈ If)) ∧ (∀k ∈ N .((j < k ≤
i)→ ek 6∈ Tf)).

In other words, a fluent f is said to be true at position
i if it was initially true or an initiating event for f
has occurred, and no terminating event has occurred
since. The semantics of Boolean operators is defined with
respect to the fluent definitions over each position in
a trace in a standard way. For a given set of fluent

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 5

definitions D, the semantics of the temporal operators
is defined inductively as follows:
• σ, i |=D ©φ iff σ, i+ 1 |=D φ
• σ, i |=D 2φ iff ∀j ≥ i. σ, j |=D φ
• σ, i |=D 3φ iff ∃j ≥ i. σ, j |=D φ
• σ, i |=D φ U ψ iff ∃j ≥ i. σ, j |=D ψ and ∀i ≤ k < j.
σ, k |=D φ

An FLTL formula φ is said to be satisfied in a trace
σ with respect to D if it is satisfied at position 0. The
satisfaction of FLTL expressions in a given LTS is defined
below.

Definition 2. (FLTL Satisfaction and Entailment in
LTSs) Let φ be a single FLTL formula, Γ a set of FLTL formu-
lae, also called a theory, and D a set of fluent definitions. The
formula φ is said to be satisfied in an LTS A with respect to D
if it is satisfied in every trace in A with respect to D. The set
of formulae Γ is said to be satisfied in an LTS A with respect
to D if every formula in Γ is satisfied in A with respect to
D. Γ is said to be consistent if there is an LTS that satisfies
it. A formula φ is said to be entailed by Γ with respect to D,
denoted as Γ |=D φ, if and only if every LTS that satisfies Γ
also satisfies the formula φ.

Given a consistent FLTL theory, the Labelled Tran-
sition System Analyser (LTSA) tool [34] can be used
to automatically generate a least constrained LTS that
satisfies it, i.e. maximal with respect to the traces it
includes. This is done using an adaptation [29] of a
“temporal logic to automata” algorithm used in model
checking FLTL formulae [21].

2.2 Inductive Learning
We describe here the basic notions of an Event Calculus
logic program, which is a formalism understood by the
learning system. We also give a brief introduction to the
inductive learning algorithm deployed in the approach.
Notation and terminology used for logic programs are
given in Appendix A. Readers may skip this section
without loss of continuity.

2.2.1 Event Calculus Logic Programs
The Event Calculus (EC) is a formalism, first introduced
by Kowalski and Sergot for reasoning about events and
their effects over time [24]. A number of extensions
have been introduced since. We use here the variation
presented in [1].

The EC language includes the basic predicates happens,
initiates, terminates, holdsAt, impossible and attempt. Their
definitions are given in Table 1.

Furthermore, additional predicates are defined to cap-
ture the notion of synchronous satisfaction in terms of
asynchronous semantics [2]. For instance, the predicates
holdsAt Tick(f,p,s) (resp. not holdsAt Tick(f,p,s)) means
that a fluent f holds (resp. does not hold) when
a tick occurs at position p in scenario s. An atom
holdsAt PrevTick(f,p,s) (resp. not holdsAt PrevTick(f,p,s))
means a fluent f holds (resp. does not hold) at the

EC predicate Definition

happens(e,p,s) event e occurs at position p in scenario s

initiates(e,f,p,s)
the occurrence of event e at position p in
scenario s causes fluent f
to be true at the next time position

terminates(e,f,p,s)
the occurrence of event e at position p in
scenario s causes fluent f
to be false at the next time position

holdsAt(f,p,s) fluent f is true at position p in scenario s

impossible(e,p,s) the event e is impossible at position p in
scenario s

attempt(e,p,s) there is an attempt to execute event e
at position p in scenario s

TABLE 1
Definition of EC basic predicates

previous tick in scenario s if it holds (resp. does not
hold) at the last preceding position where a tick occurred.
The predicate nextTickAt(p2,p1,s) is an auxiliary predicate
that says that p2 is the next position where a tick occurs
after position p1 in scenario s. The predicate occursS-
ince PrevTick(e,p,s) states that event e occurs in a scenario
s at some position between the current position p and the
last preceding tick.

Domain-independent axioms formalise the law of inertia:
a fluent that is initiated continues to hold until a ter-
minating event occurs. They also define when an event
may happen. For the definition of these axioms and the
auxiliary predicates, the reader is referred to Appendix
B.

Domain-dependent axioms define the predicates initiates,
terminates, impossible, attempt and happens used to repre-
sent the particular problem in hand. Examples of these
are given in later sections.

2.2.2 Inductive Logic Programming
In general, an inductive learning task is defined as
the computation of an hypothesis H that is consistent
with a given background knowledge B and integrity
constraints IC, and that together with B explains a given
set E of examples [43], [37].

B ∧H ∧ IC 6|= false (1)

B ∧H |= E (2)

For instance, consider an EC program where the
background knowledge includes the following
information about the FCS example:

B={attempt(enableThrust,1,s1),
holdsAt(thrustEnabled,1,s1),
attempt(enableThrust,0,s2),
not holdsAt(thrustEnabled,0,s2),
happens(E,T,S):- attempt(E,T,S),

not impossible(E,T,S)}

(3)

In this example, the background assumes at position
1 in scenario s1, the thrustEnabled fluent is true and
there is an attempt to enable the reverse thrust at

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 6

the same position. In scenario s2, thrustEnabled is not
true at position 0 and an attempt is made to enable
the reverse thrust then. The last rule states that an
event E happens at position T in scenario S if it is
attempted and it is not impossible to occur. From the
above we can derive the facts happens(enableThrust,1,s1)
and happens(enableThrust,0,s2) as neither of the events’
occurrences is defined as impossible in the program.
Now assume the following facts are observed.

E={not happens(enableThrust,1,s1),
happens(enableThrust,0,s2)} (4)

Notice that the current background knowledge does
not entail the examples E in (4) as the fact hap-
pens(enableThrust,1,s1) is provable from the current pro-
gram. This means that to explain the observations in
E, B needs to be extended with a set of rules H
such that in a model of the program B ∧ H , the fact
happens(enableThrust,1,s1) is no longer true.

In ILP systems, such as XHAIL [41], [42] and Progol
[37], the computation of H is constrained by a mode
declaration and the compression heuristic. The mode
declaration specifies the syntactic form of the rules that
can be learned. It includes a head declaration of the form
modeh(r, s) and body declarations of the form modeb(r, s),
where r is an integer, called the recall, and s is a ground
literal called the scheme, possibly containing so-called
placemarker terms of the form +t, −t and #t. These
respectively denote input variables, output variables,
and constants of type t. The recall is used to bound the
number of atoms a mode declaration can contribute to
an hypothesis. Where this is not important, an arbitrary
recall is denoted by an asterisk ∗. The compression
heuristic, on the other hand, favours the inference of
hypotheses containing the fewest number of literals, as
motivated by the scientific principle of Occam’s razor.

It is also common to restrict the search space to those
rules that satisfy some integrity constraints ICs. These are
rules with an empty head. For instance, the following
IC states that an impossible event cannot happen

IC={:- happens(E,T,S), impossible(E,T,S).} (5)

If the above rule is added to the program, then only
those H ′s in the search space that satisfy the constraint
are computed.

Now assuming the mode declaration is defined to
learn rules with the predicate impossible in the head of
the rule and the literals holdsAt and not holdsAt in the
body, an ILP solution for the examples E given in (4)
may be

H={impossible(enableThrust,T,S) :-
holdsAt(thrustEnabled,T,S).} (6)

which means that the reverse thrust cannot be enabled
if it is already enabled. Adding the above rule to
B, ensures that the fact happens(enableThrust,1,s1) is no

longer derivable from the new program B ∪H , and that
B ∪H |= E.

3 PROBLEM DEFINITION

The problem this paper addresses is how to systemat-
ically elaborate a set of operational requirements that
together with an existing partial specification ensures the
satisfaction of given goals.

Consider, for example, the goal [ReverseThrustEnabled-
WhenMovingOnRunway] formalised in asynchronous
FLTL as the following safety property.

2(tick→ (MovingOnRunway→
©(¬tick W (tick ∧ ThrustEnabled))))

(7)

This states that if at the tick of a system clock, the
plane is moving on the runway, then by the next tick
the reverse thrust should be enabled.

Consider the definitions for the fluents ThrustEnabled,
WheelsTurning, PulseOn and MovingOnRunway given in
Table 2.

ThrustEnabled = 〈enableThrust, disableThrust〉
WheelsTurning = 〈turnWheels, stopWheels〉
PulseOn = 〈switchPulseOn, switchPulseOff〉
MovingOnRunway = 〈landPlane, {takeOff, stopPlane}〉

TABLE 2
Fluent definitions for the FCS example

Suppose that the given partial operational specifi-
cation is as formalised in Table 3. It expresses do-
main constraints on the operations enableThrust and
disableThrust stating that the reverse thrust cannot be
enabled (resp. disabled) if it is already enabled (resp. dis-
abled). Similarly once the fluents WheelsTuring, PulseOn
or MovingOnRunway have been initiated (resp. termi-
nated), they cannot be initiated (resp. terminated) again
before the next time point. The last two expressions
are expectations on the domain that express necessary
conditions for the wheels to be turning and the plane to
be moving on the runway. Note that, initially, this partial
specification includes no required conditions.

The LTS generated from the above specification using
the LTSA model-checker contains 65 states and 273
transitions. Due to its large size, we show a minimised
LTS where only the events tick, landPlane, enableThrust
and disableThrust are observable. i.e. those event relevant
to the satisfaction of the goal, and all other events are
hidden or represented by the label tau. The problem with
this LTS is that it allows behaviours that violate the
goal [ReverseThrustEnabledWhenMovingOnRunway]. For
instance, inspection of the full LTS shows that it accepts
the scenario 〈tick, landPlane, turnWheels, switchPulseOn,
tick, tick〉, where the plane lands on the ground, the
wheels start turning and the wheels’ pulse is switched
on but the reverse thrust is not enabled subsequently.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 7

2(tick→ (ThrustEnabled→
©(¬enableThrust W tick)))

2(tick→ (¬ThrustEnabled
→©(¬disableThrust W tick)))

2(tick→ (WheelsTurning→
©(¬turnWheels W tick)))

2(tick→ (¬WheelsTurning→
©(¬stopWheels W tick)))

2(tick→ (PulseOn→
©(¬switchPulseOn W tick)))

2(tick→ (¬PulseOn→
©(¬switchPulseOff W tick)))

2(tick→ (MovingOnRunway→ WheelsTurning))
2(tick→ (WheelsTurning→ PulseOn))

TABLE 3
A partial operational specification for the FCS in FLTL

The violation occurs when the last tick occurs and the
reverse thrust is not enabled.

This counterexample indicates that the current
operational requirements are incomplete with respect to
the goals. The inclusion of the required trigger-condition
for the event enableThrust

2(tick→
((PulseOn ∧ ¬ThrustEnabled)→

©(¬tick W enableThrust)))
(8)

which ensures that the reverse thrust must be enabled
when the wheels pulse is activated, would eliminate this
violation. We will show in the following section how
inductive learning can be used to compute such missing
requirements.

The above example shows an instance of an
incompleteness with respect to a goal expressed as
a safety property. Incompleteness of an operational
requirements can also be with respect to a goal
expressed as a progress property. For instance, consider
the LTS shown in Figure 2 which is generated from
the operational specification in Table 3. It includes the
trace (tick, enableThrust, enableThrust, enableThrust, ...),
in which after the fist tick event, no ticks occur. This is
an example of a behaviour that vacuously satisfies the
goal [ReverseThrustEnabledWhenMovingOnRunway] but
violates the expectation that time progresses, commonly
referred to as the Time Progress (TP) property. This
is a common property check in discrete-time LTSs
and is formalised as 23tick. Though such violations
cannot occur in the real world, violations to this progress
property indicate a problem in the specification and may
give rise to additional operational requirements. In our
example, this trace exists because the safety goals require
certain fluents to hold at fixed time points, but do not
constrain sufficiently the sequence of interleaved events
that ensure that these properties hold. These violations
thus give rise to additional operational requirements

or expectations missing from the specification in order
to satisfy the goals. For instance, by including an
additional required pre-condition (¬PulseOn) for the
event enableThrust expressed as

2(tick→ (¬PulseOn→
©(¬enableThrust W tick)))

(9)

the behaviour described above would be eliminated.
In summary, systems implemented from partial opera-

tional requirements specifications may exhibit behaviour
that violates goals expressed as either safety or progress
properties. Existing model checking techniques and tools
allow the automatic detection of behaviours that violate
such properties. However, completing the specification
with respect to these properties remains an open prob-
lem with no rigorous, automated support.

In the following section, we show how an existing
partial operational specifications can be completed by
computing operational requirements such as those given
in 8 and 9 through an integration of goal-based model
checking and inductive learning.

4 LEARNING OPERATIONAL REQUIREMENTS

The input to the requirements elaboration process is a set
of goals, fluent definitions and a partial set of operational
specifications expressed in asynchronous FLTL that are
consistent with the goals. We consider a partial oper-
ational specification consists of domain pre-conditions,
required conditions (if any), and any domain specific
expectations. The task is to complete this partial specifi-
cation with new operational requirements to guarantee
the given goals are satisfied.

The proposed framework, as depicted in Figure 1,
is defined as an incremental process composed of four
phases:

1) Behaviour analysis phase: The model checker is
used, first, to construct an LTS A from a partial
operational specification O with respect to fluent
definitions D. It is then used to verify the LTS A
against the goals G. The result of the analysis is
either a notification that no violation traces have
been detected, in which case the process success-
fully terminates, or that a counterexample has been
detected, in which case it is displayed.

2) Scenario elicitation phase: If a counterexample is
found, an engineer elicits a set of positive and
negative scenarios (POS ∪ NEG) from the coun-
terexample and the LTS model. A negative scenario
represents a violation while a positive scenario ex-
emplifies an instance of some desirable behaviour.

3) Requirements inference phase: The goals, partial
operational specification, fluent definitions and sce-
narios are translated into a logic program used by
an ILP system. The output of this phase is sets
of alternative required conditions {Reqj}, each of
which permits all the positive scenarios, forbids all

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 8

0 1

2 3 4 5

6 7

8 9

10
11

12

13

14

15

16

17181920

tick

tick

enableT
hrust

lan
dP

lan
e

ta
u

landPlane

en
ab
leT

h
ru
st

landPlane

tick

en
ab
leT

h
ru
st

tau

tick

en
ab
leT

h
ru
st

enableT
hrust

tick

tick

enableThrust
ta
utick

lan
dP

lan
ed

is
a
b
le
T
h
ru
st

landPlane

d
is
ab
le
T
h
ru
st

landPlane

disa
bleT

hrus
t

tick tick

tau

d
is
a
b
le
T
h
ru

st

di
sa
bl
eT
hr
us
t

tick

disableThrust

tick

ta
udisableThrust

tick

disableThrust
landPlane

tick

disableThrust

landPlane

disableThrust

tau

landPlane

tick

enableThrust

tick

ti
ck

enableThrust
landPlane

tick

enableThrust

landPlane

enableThrust

tau

landPl
ane

landPlan
e

Fig. 2. A minimised LTS that violates the goal [ReverseThrustEnabledWhenMovingOnRunway]

the negative ones and is consistent with the goals
and the existing operational specification.

4) Selection phase: From the list of alternative sets
of computed operational requirements proposed
by the learning phase, the engineer selects the set
Reqj which is then added to the current operational
specification. This selection is domain dependent.

The four phases are then repeated until no viola-
tion is detected during the analysis phase. The steps
are explained in what follows. Note that, without
loss of generality, we focus on learning two types
of operational requirements: required pre- and trigger-
conditions. Our approach can be adapted to learn re-
quired post-condition. Further details on this are given
in Section 4.3.1.

4.1 Behaviour Analysis
The analysis phase of the approach is concerned with au-
tomatically checking whether a given partial operational
specification entails a given FLTL property φ, where φ
maybe a safety or progress property. In the case of a
progress property, φ is a conjunction of events.

Verifying an LTS model A against an FLTL safety
property φ with fluents P , using the LTSA, requires
generating a tester automaton for φ [21]. Figure 3,
for example, shows the tester automaton for the goal
[ReverseThrustEnabledWhenMovingOnRunway]. Any trace
from the initial state to the error state exemplifies one
that violates the property φ. All traces that do not reach
the error state are said to satisfy φ. In the case of the
LTSA model checker, it produces the shortest sequence
of events from the initial state to the error state.

When checking an LTS A for the satisfaction of a
progress property φ, the LTSA searches for all terminal
sets in A [34]. If there is at least one terminal set in
which an event e in φ does not appear, then A is said to

violate the progress property with respect to that event.
The violation trace produced by the LTSA is the shortest
sequence of events from the initial state to the root of a
terminal set where the progress property is violated.

Consider the LTS model generated from the given
FCS partial operational specification. When checking
against the safety property [ReverseThrustEnabledWhen-
MovingOnRunway], the LTSA generates the violation
trace shown below.

Trace to property violation in
ReverseThrustEnabledWhenMovingOnRunway:

tick
landPlane MovingOnRunway
turnWheels MovingOnRunway
switchPulseOn MovingOnRunway
tick MovingOnRunway
tick MovingOnRunway

Analysed in: 4ms

The column on the left represents the sequence of
consecutive transitions that occur starting from the initial
state and ending at the state in which the goal is violated.
The column on the right indicates the fluents that are
true immediately after the occurrence of the event to
their left. The violation shown above, for instance, is
caused by the fact that at the last observable state in the
prefix 〈tick, landPlane, turnWheels, switchPulseOn, tick〉,
i.e. at position 5 of the trace, the fluent MovingOnRun-
way is true and the fluent ThrustEnabled is false, and
no initiating event occurs afterwards. Hence the fluent
ThrustEnabled is evaluated to false at the tick occurring
at position 6 when it should have been true.

In the context of this work, the detection of a violation
trace signifies a missing operational requirement for
some software-controlled event occurring or not occur-
ring within the last time unit and hence an incomplete-
ness in the current operational specification.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 9

−1

0

1

2

3

4

5

6

7

tick
stopPlane

disableThrust
stopWheels

switchPulseOff
switchPulseOn

turnWheels

la
n

d
P

la
n

e

en
a
b

le
T

h
ru

st
st

o
p

P
la

n
e

landPlane
stopWheels

disableThrust
switchPulseOff
switchPulseOn

turnWheels

tick

d
isa

b
leT

h
ru

st

stopPlane
enabeThrust
stopWheels

switchPulseOff
switchPuleseOn

turnWheels
tick

la
n

d
P

la
n

e

d
is

a
b

le
T

h
ru

st

st
o
p

P
la

n
e

landPlane
enableThust
stopWheels

switchPulseOn
switchPulseOff

turnWheels

tick

tick

landPlane
disableThrust
stopWheels

switchPulseOff
switchPulseOn

turnWheels

en
a
b

le
T

h
ru

st

stopP
lane

d
isa

b
leT

h
ru

st

landPlane
enableThrust
stopWheels

switchPulseOff
switchPulseOn

turnWheels
tick

st
o
p

P
la

n
e

tick

la
ndPla

ne

stopPlane
disableThrust
stopWheels

switchPulseOff
switchPulseOn

turnWheels

enableThrust

tick

landPlane disableThrust

stopPlane
enableThrust
stopWheels

switchPulseOff
switchPulseOn

turnWheels

Fig. 3. Tester automaton for the goal [ReverseThrustEnabledWhenMovingOnRunway].

4.2 Scenario Elicitation

Our aim is to identify required conditions on those
events whose presence or absence in the counterexample
leads to a goal violation.

From a logical standpoint, a number of correct solu-
tions could be proposed to eliminate the counterexam-
ple. Our objective is to produce a solution that is relevant
to the particular problem domain at hand whilst reliev-
ing the engineer from having to manually derive the
full formal operational specification. Hence, the engineer
is asked to provide some intuition on the cause of the
violation in the form of scenarios that exemplify good
and bad system behaviour. The engineer is expected
to identify, from the trace, events which may have
contributed to the violation, along with other examples
which are consistent with the property being verified.

As the approach is concerned with developing re-
quired conditions, we only consider software-controlled
events and the tick event as potential causes of the viola-
tion. In the following, we illustrate general guidelines for
eliciting negative and positive scenarios from violation
traces.

4.2.1 Eliciting Negative Scenarios
In eliciting a negative scenario from a violation trace, the
engineer is required to identify an event in the violation
trace that should not have occurred at a particular po-
sition in the trace. The sequence of event labels starting
from the initial state of that trace up to and including
the violating event is identified as a negative scenario.
In general, given a trace of the form (e1, e2, ..., ek, ...),

where ek is the violating event, a negative scenario neg
is the prefix 〈e1, e2, ..., ek〉. The intended meaning of
the negative scenario 〈e1, e2, ..., ek〉 is that if the system
exhibits the sequence (e1, e2, ..., ek−1) then ek should not
happen immediately afterwards.

In our models, the violating event is either a software-
controlled event appearing in the last time unit or the last
tick event of the trace produced. The former indicates
the identified software-controlled event should not have
occurred to avoid a goal be violated while the latter
suggests that a software-controlled event should have
occurred before that tick for a goal to be satisfied. In
general, in the LTSA, the position of the violating event
can often be predicted depending on the pattern of the
goal being checked.

Returning to our running example, the violation trace
given in Section 4.1 terminates with two consecutive tick
transitions with no software-controlled event occurring
in between. The engineer could reason from this that
some event e that initiates the fluent ThrustEnabled must
occur within the last time unit for the goal [Reverse-
ThrustEnabledWhenMovingOnRunway] to be satisfied. The
last tick event is marked as the violating event since
it should not have occurred. The sequence from the
initial state until this last tick event in the violation trace
constitutes a negative scenario (see Figure 4 where the
event occurring below the dotted line is the violating
event).

4.2.2 Eliciting Positive Scenarios
Once the engineer has elicited a negative scenario termi-
nating with a violating event e, he must provide at least

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 10

FlightControllerWheelsSensor AutopilotAircraft Clock

tick

landPlane

turnWheels

switchPulseOn

tick

tick

Fig. 4. Negative scenario from goal violation trace.

one scenario which shows a positive occurrence of the
same event e. The positive scenario should be a sequence
of events:
• exemplifying when the event e in question may or

must occur;
• accepted by the LTS of the given asynchronous

operational specification;
• consistent with all the goals;
• terminating with a tick event;
• extendable with at least one subsequent infinite

extension that satisfies the goals.
The first condition is to ensure that any requirement

inferred from the scenarios would preserve good be-
haviour in the model. The second and third are to
ensure that any requirement learned is consistent with
the current specification and goals. We require positive
scenarios to terminate with tick to ensure that the occur-
rence of the satisfying event in the last time unit of the
sequence does not violate the goals in that sequence. The
last condition is needed to avoid the engineer providing
a finite trace that satisfies the goals but where all possible
extensions to this trace would violate them, and hence
no completion to the initial set of requirements would
exist.

To ensure the specified characteristics are satisfied, the
engineer can use the built-in animation and deadlock
features of the LTSA system to generate a positive sce-
nario by first generating an LTS from the composition of
the goals and operational specification and then walking
through the LTS model by following a trace until the
event e is executed.

We give an account of some general guidelines for
eliciting positive scenarios that support learning the
missing requirements. Consider a negative scenario of
the general form 〈e1, e2, ..., ek−1, e〉 where the violating
event e is a software-controlled event. An associated
positive scenario has the general form 〈e1, ..., e′l, e, tick〉
where the sequence 〈e1, ..., e′l〉 is either different from
〈e1, ..., ek−1〉, or a prefix of it. On the other hand, if
the negative scenario terminates with a tick event as
its violating event, 〈e1, ..., ek−1, tick〉, then an associated
positive scenario would be a sequence with 〈e1, ..., ej , 〉 as
its prefix, where ej , is a tick-event occurring at 1 ≤ j < k,
showing that the occurrence of event e before the last tick
is necessary for the satisfaction of the goal.

For example, a positive scenario associated to the
negative scenario shown in Figure 4 that satisfies the
goal [ReverseThrustEnabledWhenMovingOnRunway] en-

forces the event enableThrust to occur before the last tick
(see Figure 5).

FlightControllerWheelsSensor AutopilotAircraft Clock

tick

landPlane

turnWheels

switchPulseOn

tick

enableThrust

tick

Fig. 5. Positive scenario satisfying goal [ReverseThrust-
EnabledWhenMovingOnRunway].

Note that, because scenarios are finite traces, positive
scenarios do not exemplify traces that satisfy progress
properties. They merely capture desirable system be-
haviours which are consistent with the given goals,
and could be subsequently extended with a sequence
that satisfies a given progress property. Furthermore, all
elaborated scenarios are assumed to include no hidden
events in their sequence. The main reason for this is
that, as discussed below, when computing an operational
requirements specification, the learning phase uses the
fluents that are true and false at the tick that precedes
the violating event in the given sequence to compute
hypotheses. Hidden events may obviously affect the
truth values of these fluents and hence would affect the
correctness of the requirements with respect to scenarios
elaborated in subsequent iterations. Note also that al-
though we only show examples for elaborating a single
positive scenario for each negative scenario, the engineer
may elicit a number of positive scenarios from a violation
trace.

The question that naturally arises here is how different
should the positive scenarios be from the elaborated
negative scenario? A possible heuristic is the richness
of the positive scenarios with respect to a negative
scenario. The richness of a set of positive scenarios with
respect to a negative scenario is determined by the set
of fluent literals evaluated at the tick event proceeding
the occurrence of the satisfying event with respect to the
fluent literals at the last tick proceeding the violating
event in the negative scenario. This is expressed formally
below.

Definition 3. (Rich set of positive scenarios) Given a set
of fluents F , a set D of fluent definitions and an LTS model A,
let neg = 〈e1, e2, ..., ej , ..., gk〉 be a negative scenario accepted
in A where j < k is the position of the tick that precedes
the violating event g. Let σ = (s0Re1s1...sk−1Rgksk) be an
accepting trace of neg in A. Let POS= {pos1, ..., posn} and
POS ′ = {pos′1, ..., pos′m} be sets of positive scenarios accepted
in A. Let {p1, ..., pn} and {p′1, ..., p′m} be the sets of the set of
fluents that are true at the last tick preceding the occurrence
of the event g in each positive scenario in POS and POS ′

respectively. Then POS ′ is said to be richer than POS with
respect to neg, denoted POS<negPOS ′ iff

|(2p1 ∪ ... ∪ 2pn))− 2sj | < |(2p′
1 ∪ ... ∪ 2p

′
m)− 2sj |

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 11

where the notation 2x denotes the power set of the fluent
valuations in set x.

This property characterises a set of positive scenarios
that ensures that the learned requirements do not over-
constrain the behaviour of the final system, i.e. eliminate
some behaviour that may be considered in later itera-
tions as positive. We illustrate the concept of richness
through an extended example of the FCS.

Assume the fluent definitions include, in addition to
those in Table 2, a definition for a fluent EmergencyDecel-
eration meaning the pilot has requested a sudden drop
in the speed of the aircraft as follows:

EmergencyDeceleration = 〈dropSpeed, fixSpeed〉
where the event dropSpeed means drop the speed of the
aircraft and the event fixSpeed means fix the speed of
the aircraft.

Assume the negative scenario neg = 〈tick,
enableThrust〉, stating that enabling the reverse thrust
after the first tick is not permissible, is elicited where
the event enableThrust is the violating event. Consider
two sets of positive scenarios which show acceptable
occurrences of the event enableThrust. Let the first set
include the single scenario

pos1 = 〈tick, landPlane, turnWheels,
switchPulseOn, tick, enableThrust, tick〉

which states it is acceptable to enable the reverse thrust
when the plane is moving on the runway, the wheels are
turning and the wheels’ pulse are switched on. Suppose
the second set includes the two scenarios

pos′1 = 〈tick, landPlane, turnWheels,
switchPulseOn, tick, enableThrust, tick〉

and

pos′2 = 〈tick, dropSpeed,tick, enableThrust, tick〉

which together state that it is acceptable to enable the
reverse thrust if the plane is moving on the runway,
the wheels’ pulse has been switched on and the wheels
are turning, or when there is a request for the plane
to drop in speed. The sets of fluent literals evaluated
to true at the last tick preceding the occurrence of the
event enableThrust in all three positive scenarios are:

p1 = {MovingOnRunway, WheelsTurning, PulseOn}

p′1 = {MovingOnRunway, WheelsTurning, PulseOn}

p′2 = {EmergencyDeceleration}

The power set for each of the above is computed. From
Definition 3, we check the value of |(2p1)−2sj | = |9−1| =
8 and |(2p′

1 ∪ 2p
′
2) − 2sj | = |10 − 1| = 9. The number of

elements after removing from the union of the power
set of p′1 and p′2 the power set of sj is greater than
those as result of removing the elements appearing in the
power set of sj from the power set of p1. This means that

the positive scenarios in the latter set consider different
courses of events before executing the desirable event
and hence covers more acceptable behaviour. Hence the
second set is said to be a richer set of positive scenarios
with respect to the given negative scenario.

Identifying a rich set of scenarios ensures that the
learning does not over generalise the learned hypotheses
and hence produces operational requirements that are
too restrictive, e.g. a required pre-condition that prevents
the occurrence of the enableThrust whenever the plane is
not on the runway.

4.3 Requirements Inference
The input to the learning phase is a set of goals G, a
partial operational specification O, a set of fluent defi-
nitions D and a set of elaborated positive and negative
scenarios (POS ∪ NEG) accepted in an LTS of O. The
output of this phase is a set of operational requirements
{Reqj} that, together with the given partial specification,
defines an LTS that accepts all positive scenarios in POS
but none of the negative ones in NEG, and is consistent
with all goals in G.

We present here the main steps involved in this phase
which are: (i) encoding the input into a language un-
derstandable by the learning system, (ii) computing the
new operational requirements and (iii) translating the
learned requirements back into FLTL. It is important to
note that these steps are done automatically and hidden
from the engineer.

4.3.1 Translating FLTL Specifications into EC
The corresponding EC logic program uses variables of
four sorts: events, fluents, time positions and scenar-
ios. Event and fluent constants are, respectively, the
event-based fluents Fe and state-based fluents Fs of the
FLTL language, time positions are represented by the
non-negative integers 0, 1, 2, . . ., corresponding to the
positions in the traces of an LTS, and scenario terms
are constants introduced for each elicited positive and
negative scenario. Definition 4 below is an adaptation of
the encoding detailed in [1] which are relevant to the
examples given in this paper.

Definition 4. (Encoding operational specifications into
EC programs) Let O be an operational specification expressed
in an asynchronous FLTL language. Let D be a set of fluent
definitions and A be an LTS model generated from O with
respect to D. Let NEG∪POS be a set of negative and positive
scenarios. The corresponding logic program Π = τ(O) ∧
τ(D) ∧ τ(NEG ∪ POS) is the EC program containing the
following clauses:
• initially(f,S) :- scenario(S).

for each fluent f defined to be initially true in D

• initiates(e,f,P,S):- position(P),

scenario(S).

for each event e ∈ If of fluent f in D

• terminates(e,f,P,S):- position(P),

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 12

scenario(S).

for each event e ∈ Tf of fluent f in D

• impossible(tick,P,S):-position(P),
scenario(S),
(not_)holdsAt_PrevTick(f_1,P,S),
...,
(not_)holdsAt_PrevTick(f_n,P,S),

not occursSince_LastTick(e,P,S).

for each trigger-condition assertion
2(tick→ ((

∧
1≤i≤n(¬)fi)→©(¬tick W e))) in O

• impossible(e,P,S):- position(P), position(P),
scenario(S),
(not_)holdsAt_PrevTick(f_1,P,S),
...,

(not_)holdsAt_PrevTick(f_n,P,S).

for each pre-condition assertion
2(tick→ ((

∧
1≤i≤n(¬)fi)→©(¬eW tick))) in O

• :- position(P), scenario(S),
(not_)holdsAt_Tick(f_1,P,S),
...,
(not_)holdsAt_Tick(f_n-1,P,S),

not_holdsAt_Tick(f_n,P,S).

for each expectation assertion
2(tick→ ((

∧
1≤i≤n−1(¬)fi → fn) in O

• :- position(P), scenario(S),
(not_)holdsAt_Tick(f_1,P,S),
...,
(not_)holdsAt_Tick(f_n-1,P,S),

holdsAt_Tick(f_n,P,S).

for each expectation assertion
2(tick→ ((

∧
1≤i≤n−1(¬)fi → ¬fn) in O

• attempt(ej, j-1, sci) for each ej in sci where sci ∈
NEG ∪ POS,

We assume that the program Π, resulting from the
encoding above, is always extended with a set of
EC domain-independent axioms (See Appendix B). For
proof of soundness of the encoding, the reader is referred
to [1]. Note that the above translation considers pre- and
trigger-conditions that prevent and require respectively
the occurrence of an event e before the next tick of the
system clock. The encoding may be adapted for other
forms of required conditions, e.g. those that require the
occurrence of an event after a number of tick occurrences
in the past. This is done by using auxiliary predicates in
the body of the rules such as holdsAt ith Prevtick(f,p,i,s)
which means that f holds at the ith tick occurring before
position p in scenario s. The definition may also be
extended to encode required post-condition as EC rules
with the predicate happens in the body and holdsAt tick
in the head. Both negative and positive scenarios are
translated into attempt facts. This is to state that both
scenarios are permitted by the current specification. Note
that, in the translation, one is subtracted from the time
position argument of the attempt facts. This is because the
EC program assumes that the effect of initiating and ter-
minating events on fluents is only observable at the next
time position in a scenario as opposed to asynchronous
FLTL which assumes events have immediate effects on
fluents in a given trace.

Table 4 shows an excerpt of the EC program for the
FCS example including the rules generated by applying
τ to the fluent definitions in 2, the operational specifi-
cation described in Table 3 and the scenarios in Figures
4 and 5. For instance, the clauses shown in lines 5-6 are
generated from the definition of the fluent ThrustEnabled,
and the clause shown in lines 20-21 is constructed from
the domain pre-condition of the event switchPulseOn.

4.3.2 Learning Requirements

To fully define the inductive learning task, a correspond-
ing translation of goals into EC integrity constraints and
scenarios into examples E must be specified. The former
is to ensure that all learned operational requirement do
not violate any of the goals. This encoding is given
below.

Definition 5. (Encoding goals into integrity constraints)
Let G be a set of goals formulated as immediate achieve expres-
sions in FLTL. The corresponding set of integrity constraints
IC includes:

• :- position(P1), scenario(S),
(not_)holdsAt_Tick(f_1,P1,S),. . .,
(not_)holdsAt_Tick(f_n,P1,S),
position(P2), nextTickAt(P2,P1,S),

not_holdsAt_Tick(g,P2,S).

for each immediate cease goal 2(tick → ((¬)f1 ∧ . . . ∧
(¬)fn →©(¬tick W (tick ∧ ¬g)))) in G,

• :- position(P1), scenario(S),
(not_)holdsAt_Tick(f_1,P1,S),. . .,
(not_)holdsAt_Tick(f_n,P1,S),
position(P2), nextTickAt(P2,P1,S),

not_holdsAt_Tick(g,P2,S).

for each immediate achieve goal 2(tick→ ((¬)f1 ∧ . . .∧
(¬)fn →©(¬tick W (tick ∧ g)))) in G.

Note that the corresponding EC integrity constraints
capture the negation of the FLTL goals. For instance,
the encoding of the asynchronous FLTL goal [Reverse-
ThrustEnabledWhenMovingOnRunway], shown in lines 52-
53, states that the constraint is violated if the fluent
movingOnRunway is true at a tick occurrence and the
fluent thrustEnabled is false at the next tick. The encoding
of all the given goals is assumed to be included in the
EC program.

The encoding of scenarios into examples E is driven
by the violating event for which the required condition is
to be learned, i.e. the last event in the negative scenario.
The translation is given below.

Definition 6. (Encoding scenarios into EC examples)
Let NEG and POS be a set of negative and positive scenarios.
The corresponding set of examples is the program E given
by:
• for each negative scenario negj = 〈e1, ..., en〉 in NEG

– E includes n-1 facts of the form
happens(e_i,i-1,neg_j) with 1≤ i≤n-1,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 13

% *** BACKGROUND KNOWLEDGE *** 1
% *** 2
% DOMAIN-DEPENDENT AXIOMS 3
% — Fluent Definitions — 4
initiates(enableThrust,thrustEnabled,P,S) :- position(P), scenario(S). 5
terminate(disableThrust,thrustEnabled,P,S) :- position(P), scenario(S). 6
initiates(turnWheels, wheelsTurning,P,S) :- position(P), scenario(S). 7
terminates(stopWheels, wheelsTurning,P,S) :- position(P), scenario(S). 8
initiates(switchPulseOn, pulseOn,P,S) :- position(P), scenario(S). 9
terminates(switchPulseOff, pulseOn,P,S) :- position(P), scenario(S). 10
initiates(landPlane, movingOnRunway,P,S) :- position(P), scenario(S). 11
terminates(stopPlane, movingOnRunway,P,S) :- position(P), scenario(S). 12
terminates(takeOff movingOnRunway,P,S) :- position(P), scenario(S). 13

14
% — Domain Conditions — 15
impossible(enableThrust,P,S) :- position(P), scenario(S), 16

holdsAt_Tick(thrustEnabled,P,S). 17
impossible(disableThrust,P,S) :- position(P), scenario(S), 18

not_holdsAt_Tick(thrustEnabled,P,S). 19
impossible(switchPulseOn,P,S) :- position(P), scenario(S), 20

holdsAt_Tick(pulseOn,P,S). 21
impossible(switchPulseOff,P,S) :- position(P), scenario(S), 22

not_holdsAt_Tick(pulseOn,P,S). 23
impossible(turnWheels,P,S) :- position(P), scenario(S), 24

holdsAt_Tick(wheelsTurning,P,S). 25
impossible(stopWheels,P,S) :- position(P), scenario(S), 26

not_holdsAt_Tick(wheelsTurning,P,S). 27
28

% — Assumptions — 29
:- position(P1), scenarios(S), holdsAt_Tick(wheelsTurning,P1,S), 30

not_holdsAt_Tick(pulseOn,P1,S). 31
:- position(P1), scenarios(S), holdsAt_Tick(movingOnRunway,P1,S), 32

not_holdsAt_Tick(wheelsTurning,P1,S). 33
34

% — Scenarios — 35
attempt(tick,0,neg_1). 36
attempt(landPlane,1,neg_1). 37
attempt(turnWheels,2,neg_1). 38
attempt(switchPulseOn,3,neg_1). 39
attempt(tick,4,neg_1). 40
attempt(tick,5,neg_1). 41

42
attempt(tick,0,pos_1). 43
attempt(landPlane,1,pos_1). 44
attempt(turnWheels,2,pos_1). 45
attempt(switchPulseOn,3,pos_1). 46
attempt(tick,4,pos_1). 47
attempt(enableThrust,5,pos_1). 48
attempt(tick,6,pos_1). 49

50
% — Goals — 51

:- position(P1), scenarios(S), holdsAt_Tick(movingOnRunway,P1,S), 52
position(P2), nextTickAt(P2,P1,S), not_holdsAt_Tick(thrustEnabled,P2,S). 53

54
% *** EXAMPLES *** 55
% ************************ 56
examples :- 57

happens(tick,0,neg_1), happens(tick,4,neg_1), 58
not happens(tick,5,neg_1), 59
happens(tick,0,pos_1), happens(tick,4,pos_1), 60
happens(enableThrust,5,pos_1), happens(tick,6,pos_1). 61

62

TABLE 4
An Excerpt of the EC Encoding for the Flight Control System

– E includes a fact of the form not happens(e_n,n-1,

neg_j),

• for each positive scenario posj = 〈e1, ..., em〉 in POS
– E includes m facts of the form

happens(e_i,i-1,pos_j) with 1≤ i ≤m.

Note that, to guarantee consistency of the learned
hypothesis with the positive scenarios elicited in previ-
ous iterations, the translation of the latter is preserved
throughout all iterations. The encoding of the scenarios

shown in Figures 4 and 5 into examples is given in lines
57-61 of Table 4.

The task of learning required conditions is defined,
within the context of EC programs, as learning rules
that define an impossibility of a software and/or a tick
event from an EC encoding of goals G, operational
specification O, fluent definitions D and scenarios (NEG
∪ POS). In our running example, the EC encoding of the
partial operational specification and scenarios currently
entails that both positive and negative scenarios happen.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 14

The learning task is hence required to find hypotheses
that would prevent the violating event in the negative
scenario from happening. The search space is defined by
the following mode declaration.

modeh(*,impossible(“]tick_event
′′, “+position′′,

“+scenario′′)).
modeh(*,impossible(“]sw_event

′′, “+position′′,
“+scenario′′)).

modeb(*,holdsAt_PrevTick(“]fluent
′′,“+position′′,
“+scenario′′)).

modeb(*,not_holdsAt_PrevTick(“]fluent
′′,

““+position′′, +scenario′′)).
modeb(*,not occursSince_PrevTick(“]sw_event′′,

“+position′′, “+scenario′′)).

Given a corresponding EC program and mode declara-
tion, the actual computation is performed by the XHAIL
system, which is one of the few ILP systems designed for
non-monotonic ILP. It is based on a three-phase Hybrid
Abductive Inductive Learning (HAIL) approach, intro-
duced by Ray et al. [43], which operates by constructing
and generalising a preliminary ground hypothesis K,
called a Kernel Set of B and E.

For our running example, XHAIL computes the min-
imal explanation as follows

∆ = {impossible(tick, 5,neg 1)} (10)

The following ground rule is generated from the above
explanation

impossible(tick,5,neg_1) :-
position(5), scenario(neg_1),
not_holdsAt_PrevTick(movingOnRunway,5,neg_1),
not_holdsAt_PrevTick(wheelsTurning,5,neg_1),
holdsAt_PrevTick(pulseOn,5,neg_1),
not_holdsAt_PrevTick(thrustEnabled,7,neg_1),
not occursSince_PrevTick(enableThrust,

5,neg_1).
(11)

and generalised to the following alternative solutions
each with a minimal number of body literals that are
needed to cover the examples.

impossible(tick,X1,X2) :-
position(X1), scenario(X2),
holdsAt_PrevTick(pulseOn,X1,X2),
not_holdsAt_PrevTick(thrustEnabled,X1,X2),
not occursSince_PrevTick(enableThrust,X1,X2).

(12)

impossible(tick,X1,X2) :-
position(X1), scenario(X2),
holdsAt_PrevTick(wheelsTurning,X1,X2),
not_holdsAt_PrevTick(thrustEnabled,X1,X2),
not occursSince_PrevTick(enableThrust,X1,X2).

(13)

impossible(tick,X1,X2) :-
position(X1), scenario(X2),
holdsAt_PrevTick(movingOnRunway,X1,X2),
not_holdsAt_PrevTick(thrustEnabled,X1,X2),
not occursSince_PrevTick(enableThrust,X1,X2).

(14)

Once computed, our approach automatically trans-
forms the learned hypotheses into asynchronous FLTL

assertions. For instance, hypotheses 12, 13 and 14 are
mapped back into FLTL respectively as

2(tick→
((PulseOn ∧ ¬ThrustEnabled)→

©(¬tick W enableThrust)))
(15)

2(tick→
((WheelsTurning) ∧ ¬ThrustEnabled)→

©(¬tick W enableThrust)))
(16)

2(tick→
((MovingOnRunway ∧ ¬ThrustEnabled)→

©(¬tick W enableThrust)))
(17)

stating that the reverse thrust should be enabled when-
ever the wheels’ pulse is on, the wheels are turning and
the plane is moving on the runway respectively.

The effect of the compression mechanism deployed
by the learning system on the computed hypotheses is
that our approach learns operational requirements that
eliminate additional behaviour sharing characteristics
with the negative scenarios while keeping those sharing
characteristics with the positive scenarios. However, the
degree of the compression may be controlled by the
richness of scenarios heuristic discussed in Section 4.2.2.

4.4 Requirements Selection
When the learning phase produces alternative sets of
requirements, the engineer is required to select, from
amongst these, the best requirements that fit his un-
derstanding of the system’s intended functionality. The
reason why only one set is selected is that, though
each set of learned hypotheses is consistent with the
background and explains the examples, the learning
does not guarantee consistency among the alternative
solutions computed in a single iteration, and hence se-
lecting several solutions at once may invalidate integrity
constraints given in the program.

For instance, the learning phase produced three al-
ternative required trigger-conditions for the event en-
ableThrust. The former triggers the reverse thrust to be
enabled when the wheels’ pulse is on, the second when
the wheels are turning and the last when the plane
is moving on the runway. Any would eliminate the
violation trace for the goal [ReverseThrustEnabledWhen-
MovingOnRunway] shown in Section 4.1. The selection is
subject to the engineer’s understanding of the system
and the goals the system must satisfy. We select the
first as it is the only one realisable by the autopilot
agent. Note that, although both are consistent with the
current specification and the goals, only one is selected
to remove the prescribed behaviour and not both. Once
the engineer makes his selection, the operational require-
ment is added to the current operational specification
and a single iteration in the overall framework is com-
pleted.

Any LTS model generated from the newly-extended
specification does not accept the negative scenario elab-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 15

orated in the previous phase, and accepts all the positive
scenarios. This fact, and the soundness of the learning
step, is proved in Theorem 1. The theorem states that,
given a partial operational specification O, fluent defi-
nitions D, goals G and a consistent set (NEG ∪ POS)
of negative and positive scenarios, any non-monotonic
ILP solution computed by XHAIL can be translated back
into a set of operational requirements when added to the
initial O, it would allow traces that accept all positive
behaviours in POS but none of the negative ones in NEG.

Theorem 1 (Correctness of Learned Requirements). Let
O be an operational specification and G a set of goals both
expressed in asynchronous FLTL. Let D be a set of fluent
definitions, A an LTS model of O with respect to D and
NEG ∪ POS a set of negative and positive scenarios. Let
Π = τ(O)∧τ(D)∧τ(NEG∪POS), IC be the encoding of the
goals into integrity constraints and E be the encoding of the
scenarios into examples. Let H be an inductive solution for
E, computed by the XHAIL algorithm, with respect to Π and
IC, under the mode declaration MD, such that Π ∪H |= E.
Then the corresponding set Req of asynchronous FLTL pre-
and trigger-conditions, such that τ(Req) = H , is a correct
operational extension of O with respect to NEG ∪ POS.

The proof is given in [1]. Consequently, the newly-
generated LTS is also guaranteed not to exhibit the viola-
tion trace detected by the LTSA in the first phase (since it
is a trace that accepts a negative scenario). In addition to
the removal of all traces accepting the negative scenario
(including the detected violation trace), other traces
sharing common properties with the violation traces are
eliminated. This is a consequence of the generalisation
feature of the learning system, which identifies common
undesirable properties from the negative scenarios.

5 TERMINATION
Within a given application of our framework, there
may be a number of iterations of the cycle depicted in
Figure 1. The process is repeated until all the necessary
required pre- and trigger-conditions have been learned:
those which, together with the initial specification, allow
only those behaviours that satisfy the goals. The process
terminates when no further violations are detected in the
analysis phase.

In the case of safety properties, the termination of
the cycle is reached once the error state is no longer
reachable in the composition of the LTS generated from
the specification and the negation of the property in
question. If in each iteration, no new event labels are
introduced, it can be shown that a finite number of
iterations is needed to make the error state unreachable.
The argument is based on the idea that each state in the
LTS generated in the analysis phase can be characterised
(through bisimulation) by a unique fluent valuation.
Given that there are a finite number of states and fluents,
then there are a finite number of fluent valuations to
characterise this LTS. As each rule that is learned re-
moves at least one transition from the generated LTS

in a trace leading to the error state, a finite number of
iterations is required to make the error state unreachable.

The argument as to why the states of an LTS resulting
from the composition of the LTSs for the operational re-
quirements specification and the property can be charac-
terised with a unique fluent valuation is as follows. LTSA
synthesises the least constrained (with respect to trace
inclusion) minimal (with respect to bisimulation) LTS
that satisfies the operational requirements specification.
By least constrained we mean that the generated LTS
includes all possible traces that satisfy the operational
specification, while by minimal we mean the LTS is one
which contains the least number of states in comparison
with any other LTS satisfying the specification. This is
also the case of the LTS generated from the negation
of the property. The value of a fluent in a single state
in the generated LTS may be true or false depending
on the trace executed to reach that state. States that
have these characteristics are referred to as top states
[10]. However, a bisimilar finite state LTS can be built
that does not have any top states, i.e. each state in the
LTS has a particular fluent valuation that holds for all
traces leading to that state. An algorithm showing this
computation is given in [10]. Furthermore, this valuation
is unique as the operational requirements specification
language can only express behaviour in terms of fluent
valuations. Hence, two states with the same valuation
must have the same behaviour.

When checking a specification against a progress prop-
erty, the termination of the cycles is reached if in every
terminal set of the LTS, there is a reachable state with an
outgoing transition of each event in the progress. Similar
to the argument of termination when checking against
safety properties, since each learned rule removes at least
one transition, a finite number of iterations is required
to make a terminal set in which the transitions in the
progress set no longer appear unreachable.

The above cases consider what happens when the
elaboration process successfully terminates. In other
cases, the process may come to a premature termination
point, i.e. before learning all requirements that would
guarantee the satisfaction of the desired property. Such
termination often occurs when the engineer discovers
a positive scenario that is inconsistent with the current
specification during the scenario elaboration. This case
occurs if the requirements learned in previous iterations
are too strong (i.e. there is a pre-condition that constrains
the occurrence of events more than is necessary, or a
trigger-condition that forces the occurrence of events
more than required).

The choice of requirements to include in the spec-
ification also has an impact on the overall elabora-
tion process. For instance, a pre-condition that is too
strong may prevent the system being modelled from
behaving desirably and hence affects the conditions of
a requirement learned in subsequent iterations. On the
other hand, conditions that are too weak may marginally
constrain the specification and lead to a larger number

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 16

of iteration steps before termination.
Having identified a premature termination point, the

engineer will have to backtrack to specific decision
points in previous iterations. The proposed approach has
two main junctures at which a choice is made: the ela-
boration of scenarios and the selection of requirements.
Backtracking to the previous iteration will go to the
immediately preceding decision point. The engineer thus
first backtracks to the selection phase of the previous
iteration in order to select alternative requirements. Fail-
ing this, he will then backtrack to the scenario elicitation
phase of the previous iteration, and so on—if necessary,
to previous iterations.

6 VALIDATION

Our general strategy for validation is to apply the pro-
posed framework to a number of case studies for which a
formal operationalisation of the goals exists and compare
the outcome of our application with those obtained by
other existing techniques.

6.1 Methodology
For each case study, we consider a set of goals expressed
in LTL and a complete set of operational requirements
with respect to the goals. These are automatically trans-
lated into an asynchronous FLTL specification using the
techniques described in [29].

We start from a set of goals and a partial operational
specification, and iterate through the four phases de-
scribed in this paper. We assume that the set of goals
and initial partial operational specification are consistent
and that the goals may vary from high-level to low-
level ones. The final set of operational requirements
learned are compared to the ones provided using the
operationalisation patterns in [29], [28], [27].

Whenever human intervention is required, we play
the role of the engineer. As this intervention is only
required in two activities (1) scenario elicitation and (2)
requirements selection, we believe that our influence on
the validation of the approach is minimal. For (1), no
understanding of the underlying approach is needed,
only understanding of the problem domain. It may be
argued that the choice of the elicited scenario is biased by
the understanding of the underlying approach, however
this selection is done following the heuristics set out in
this paper regarding richness of scenarios (see Section
4.2.2). For (2), human intervention is limited to check-
ing if one of the proposed requirements automatically
learned is part of the original specification developed by
a third-party. All case studies are executed on a standard
desktop computer (Core2Duo, 1 GB RAM).

In what follows we show an excerpt of the London
Ambulance Service System case study. Our aim for this
case study is to show that the approach is capable of
handling various forms of goal specifications; in this
case the one specified using the bounded achieve/cease
pattern 2(tick→ (P → 3≤d(¬tick W (tick ∧ (¬)Q))).

6.2 London Ambulance Service System

The LAS was implemented in 1992 for despatching
ambulances to emergency incidents in London. The fol-
lowing description is taken from [16]:

The LAS despatch system is responsible for: receiving
calls; despatching ambulances based on an understanding
of the nature of the calls and the availability of resources;
and monitoring the progress of the response to each call. A
computer-aided despatching system was to be developed, and
would include an automatic vehicle locating system (AVLS)
and mobile data terminals (MDTs) to support automatic
communication with ambulances. This system was to supplant
the existing manual system.

The initial set of goals are taken from the specification
provided in [27] where they are specified in first-order
logic LTL. For the purpose of applying our approach,
we transpose the formalisation of goals and operational
requirements into propositional FLTL.

We assume the given goals are correct and show
how operational requirements can be derived for
them. Only a subset of the operational specification
in [27] constitutes our initial partial operational
specification. We consider definitions for the fluents
Allocated, Mobilised, Available and Encoded, as well as
the fluents Occurs encode and Occurs alloc which signal
the occurrences of the encode and allocate events
respectively since the last clock tick. The last two fluents
are terminated by an event tock, which proceeds every
occurrence of a tick event. These are given below.

Allocated = 〈{allocate},{deallocate}〉
Available = 〈{free},{assign}〉 initially true
Occurs alloc = 〈{allocate},{tock}〉
Mobilised = 〈{mobilise},{demobilise}〉
Intervention = 〈{intervene},{withdraw}〉
Encoded = 〈{encode},{decode}〉
Occurs encode = 〈{encode},{tock}〉

The partial operational specification includes the fol-
lowing required pre-condition:

2(tick→ (¬Allocated→©(¬mobilise W tick)))

meaning that an ambulance may not mobilise if it has
not been allocated, and

2(tick→ ((Allocated ∧ ¬Intervention)→
©(¬demobilise W tick)))

stating that an ambulance may not demoblise if it is
allocated and has not intervened, as well as the domain
pre-conditions:

2(tick→ (Available→©(¬free W tick)))
2(tick→ (¬Available→©(¬assign W tick)))
2(tick→ (Allocated→©(¬allocate W tick)))
2(tick→ (¬Allocated→©(¬deallocate W tick)))
2(tick→ (Mobilised→©(¬moblise W tick)))
2(tick→ (¬Mobilised→©(¬demoblise W tick)))
2(tick→ (Intervention→©(¬intervene W tick)))
2(tick→ (¬Intervention→©(¬withdraw W tick)))

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 17

and the expectation

2(tick→ (Allocated↔ ¬Available))

stating that whenever an ambulance is allocated, it is
not available. The operational specification also contains
domain pre-conditions that restrict repeated occurrences
of events between two consecutive ticks. Note that it is
possible to consider an empty operational specification
with fluent definitions only and iteratively generate all
the operational requirements needed to satisfy the goal.

We check this specification against two forms of goals;
safety and time progress. Our focus is on elaborating
required conditions for events of the CAD component
which is responsible for sending signals as well as
allocating, assigning and mobilising an ambulance. We
assume the CAD component monitors all information
about the incident and controls all ambulance events.

6.2.1 Safety Check
We consider the goal [AllocationBasedOnIncident-
FormWhenAmbAvailable], formalised as the following
safety property in asynchronous FLTL

2(tick→ ((Occurs encode ∧Available)→
©((¬tick ∨©(¬tick W (tick ∧ Allocated))) W

(tick ∧ Allocated))))

The above states that once an incident is encoded, an
available ambulance must be allocated within the next
two time units, i.e. before the occurrence of a second
tick1.

First, we use the LTSA to generate an LTS model
from the initial partial operational specification. The syn-
thesised LTS contains 3394 states and 12994 transitions.
Running an LTL property check on this LTS results in
the following violation trace.

Trace to property violation in
AllocationBasedOnIncidentFormWhenAmb-
Available:
tick Available
tock Available
encode Occurs_encode && Available
tick Occurs_encode && Available
tock Available
tick Available
tock Available
tick Available

Analysed in: 38ms

We play the role of the engineer here and try to
identify the violating event. As the violation trace is quite
short, its inspection is feasible. The truth value of the
fluents appearing in the goal is indicated on the right
column of the trace. On observation, we notice that at
the second tick, an incident form is encoded and and
an ambulance is available but has not been allocated

1. This is a simplified version of the one specified in [27] which also
includes a condition that the time it takes the ambulance to reach the
incident location is be less than 11 time units.

by the second proceeding tick. As the Allocated fluent is
false and not made true by an occurrence of an initiating
event before the last tick, we conclude that the last tick is
the violating event. Figure 6 shows the negative scenario
extracted from the above violation trace.

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

tick, tock

tick, tock

Fig. 6. Negative Scenario from goal violation trace

To elicit positive scenarios, we regenerate
a new LTS from the composition of the
partial operational specification and the goal
[AllocationBasedOnIncidentFormWhenAmb-Available].
We then use the LTSA run facility to produce a positive
scenario that is consistent with the partial specification
and satisfies the goal. In this instance, we elicit two
positive scenarios showing that allocating an ambulance
within the first or second time units after an incident is
encoded are both desirable behaviour. These are shown
in Figures 7 and 8.

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

allocate

assign

tick, tock

tick, tock

Fig. 7. First positive scenario satisfying the goal

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

tick, tock

allocate

assign

tick, tock

Fig. 8. Second positive scenario satisfying the goal

The elicited scenarios, goal and partial operational
specification are systematically transformed into a cor-
responding logic program and given to the learning sys-
tem as input. The XHAIL system produces a number of
plausible solutions for eliminating the negative scenario.
The FLTL formulation of two learned required trigger-
condition variants is given below.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 18

1) ReqTrig1(allocate)=

2(tick→ (((Occurs encode ∧ Available ∧ ¬Allocated)∧
(©(¬tick W (tick ∧ Encoded))))→
©((¬tick ∨©(¬tick W allocate)) W (allocate)))

which says that the event allocate should occur by
the third tick if the incident has just been encoded,
an ambulance is available and the incident remains
encoded at the next tick.

2) ReqTrig2(allocate)=

2(tick→ (((Encoded ∧ Available ∧ ¬Allocated)∧
(©(¬tick W (tick ∧ ¬Allocated))))→
©((¬tick ∨©(¬tick W allocate)) W (allocate)))

that states that the event allocate must occur by the
third tick if the an incident has just been encoded,
an ambulance is available and an ambulance is not
allocated at the next tick.

By comparing the learning outcome with the trigger-
condition obtained from applying the operationalisation
patterns in [29], we select the second learned operational
requirement and add this to the initial operational spec-
ification.This marks the end of the first iteration.

Running the analysis on the extended specifica-
tion, which includes now the selected ReqTrig2(allocate),
against the same goal shows that the refined LTS con-
tains no further violations. Hence, a complete set of
operational requirements with respect to the goal [Al-
locationBasedOnIncidentFormWhenAmbAvailable] has been
identified.

6.2.2 Progress Check
The above shows an excerpt of the validation procedure
for checking against safety properties. In this section,
we show how the framework is also used to verify
the satisfaibility of progress properties. Our focus is
on checking the time progress property. To illustrate
the problem of progress violations in LTSs, we deploy
a common assumption in reactive systems called the
Maximum Progress (MP) assumption [14]. Effectively
this gives priority to system events over all other events
including ticks.

By performing a TP progress check on the LTS gen-
erated from the given FLTL specification, under the MP
assumption, the LTSA produces the following counterex-
ample.

Progress violation: TimeProgress
Trace to terminal set of states:

tick
tock
encode
tick
tock
allocate
assign
tick
tock
tick

tock
tick
tock
tick

Cycle in terminal set:
Actions in terminal set:
{}

Progress Check in: 3ms

The violation shows a case in which an incident form
is encoded, an ambulance is allocated to resolve the
incident by the third tick after which time progresses
until the fifth time unit where a deadlock state is reached.

From the violation trace and our understanding of
the system, we identify a missing occurrence for the
event mobilise, since no ambulance was mobilised by
the last time point in the trace. Therefore we consider the
violating event to be the last tick event. The procedure
for eliminating the violation is similar to that for safety
violations. The negative scenario becomes the whole
sequence of events presented in the trace as shown in
Figure 9. The positive scenarios are given in Figures 10

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

tick, tock

allocate

assign

tick, tock

tick, tock

tick, tock

tick, tock

Fig. 9. A negative scenario leading to a progress violation

- 12 showing positive occurrences of the event mobilise.
The positive scenarios collectively state that, if an inci-

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

tick, tock

allocate

assign

tick, tock

mobilise

tick, tock

tick, tock

tick, tock

Fig. 10. A positive scenario satisfying the goals and
operational specification

dent form is encoded and an ambulance is allocated to
resolve the incident then the ambulance may mobilise to
the incident location within the next three time units.

The learning produced a number of required trigger-
condition for the event mobilise expressed in FLTL

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 19

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

tick, tock

allocate

assign

tick, tock

tick, tock

mobilise

tick, tock

tick, tock

Fig. 11. A positive scenario satisfying the goals and
operational specification

IncidentForm ClockAmbulance CAD

tick, tock

encode

tick, tock

tick, tock

allocate

assign

tick, tock

tick, tock

tick, tock

mobilise

tick, tock

Fig. 12. A positive scenario satisfying the goals and
operational specification

including

ReqTrig1(mobilise)=

2(tick→ ((Allocated ∧ ¬Mobilised)→
©((¬tick ∨©(¬tick W mobilise)) W mobilise)))

Informally, the above ensures that an ambulance is mo-
bilised within the first two time units after an ambulance
has been allocated to the incident site.

6.3 Case Study Conclusion
We have demonstrated how the approach can be used for
the operationalisation of different goal patterns. Though
we consider a partial set of operational requirements to
be given as input, the process may be applied to the case
where no operational requirements are known.

In addition to the FCS and LAS case studies, we
have applied our approach to other systems including
the Mine Pump [26] and the Engineered Safety Feature
Actuation System (ESFAS) described in [28]. Table 5
gives an overview of these applications.

The case studies indicate that the number of itera-
tions is mainly affected by the number of goals that
are violated in the generated model. Furthermore, they
show that there is an increase in the computation time
with respect to the number of fluents and events in the

Case Study Events Fluents Goals cycles sec/cycle
Mine Pump 10 5 4 8 ∼29 sec
ESFAS 17 12 5 11 ∼88 sec

TABLE 5
Summary of case studies

language, the length of elicited scenarios, the number
of formulae that form the background and the number
of possible solutions. This is particularly noticeable in
the learning phase as opposed to the analysis phase.
This is owing to a number of factors. First, the learning
system computes the truth value of each fluent accord-
ing to each scenario to produce an explanation for the
uncovered example. Then it tries to find all possible
minimal explanations which may cause the search space
to become very large and hence the complexity of the
search increased.

In the mine pump example, the average time for
computing a solution is less than those for the other case
studies. This is influenced by the fact that the scenarios
elicited from the violation traces are shorter than those
produced for the other case studies. In the ESFAS on the
other hand, no required conditions are initially captured.
Also the number of fluents is higher than that in the
other case studies and hence the computation of their
truth value is more computationally demanding. In the
last case study, the increase in average time is mainly
caused by number and length of the scenarios included
in the program.

Our case studies indicate that there is a dependency
between the richness of the scenario and the weakness
of pre- and trigger-conditions computed by the learning
phase. The more different the course of events leading
to a satisfying occurrence of an event in the positive sce-
nario with respect to the negative scenario, the weaker
the conditions computed by the learning system are
and hence the less likely it will cause a premature
termination.

In comparison with standard manual approaches, we
believe that the proposed approach is simpler and re-
quires less work for the engineer in many cases, provid-
ing consistent elaborations of the requirements specifica-
tion and not simply potential corrections for rechecking.
This is because understanding the exact cause of the
violation trace, which is a sequence of event labels, in the
given specification, which is set of temporal formulae,
is hard. Any edits to such a specification may intro-
duce inconsistency and new errors into the specification.
Requiring feedback from the engineer in the form of
example scenarios, which are more intuitive [49], rather
than direct manipulation of the temporal specification is
also intended to relieve the engineer from this non-trivial
task.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 20

7 DISCUSSION

The applicability of the learning algorithm to a require-
ments elaboration problem is dependent on the ability to
provide a sound encoding into a logic program. Hence
any formal language for which such an encoding can
be constructed may be used. Also, it is possible to use
the EC language or other logic programming formalisms
directly as a specification language.

The scalability of the approach is dependent on the
scalability of the model checking and ILP techniques
used independently. As our current analysis is on the
system LTS, the scalability of the model checking may
be improved by deploying compositional verification
methods as well as using abstraction techniques in
our elaboration. Additional constraints in the learning
process are needed however to ensure the soundness
of the encoding and correctness of the solutions. Also,
recent advances have helped to improve the scalability
of ILP systems significantly through the use of search
heuristics, search ordering and pruning [15].

As the successful completion of the approach relies
to an extent on the engineer’s ability to elicit positive
and negative scenarios the contribute to learning correct
requirements, providing further support for this process
is therefore desirable. In addition to the conditions con-
sidered in Section 4.2.2 specific for identifying positive
scenarios, our experience has shown that there are a
number of considerations which often reduce the risk
of backtracking. These include:
• Verifying the model against the progress properties

first and then the safety properties. Our method for
eliminating traces that violate progress properties
is based on the Maximal Progress assumption, a
common assumption for reactive systems, which
means that the software will do all it can before
the next tick. Hence to prevent the software from
executing events that would lead to a progress vi-
olation, pre-conditions are often learned and added
to the specification. Because the learning system is
guaranteed to only produce requirements that are
consistent with given specification, then enriching
the specification with pre-conditions for an event
guarantees that any learned trigger-condition (in
later iterations) for that same event will be consis-
tent with any pre-condition for that event.

• Giving preference to learning pre-conditions over
trigger-conditions, for the same reason discussed
above.

• Checking the satisfaction of a set of goals in a
single iteration. Often checks against goals individ-
ually may facilitate the identification of the violat-
ing event in violation trace. However, checking the
specification against the conjunction of given goals
may lead to learning requirements that remove more
violations in a cycle than if performed individually.

Note that the learning system automatically checks
that the set of positive and negative scenarios are disjoint

in the sense that a single scenario cannot be deemed
both positive and negative. If the engineer makes such
a mistake then the learning system produces a message
that no operational requirement can be computed for this
set of examples. However, the current approach does not
address the case in which an engineer elicits a scenario
and then realises in a later iteration that this scenario is
not valid within the domain being described. To handle
such a situation, the approach needs to be able to revise
the operational specification to cope with such changes.
This is discussed further in the Conclusion section.

Furthermore, the learning step in our approach is
restricted to the vocabulary introduced by the engineer.
This means that any solution the learning system com-
putes will refer to the set of events and fluents the en-
gineer has already provided. Nonetheless, it possible for
an engineer at the beginning of an iteration to introduce
additional relevant events or fluents to the vocabulary.
Once these have been determined, the learning process
will produce solutions based on the extended vocabu-
lary.

8 RELATED WORK

Among the few approaches concerned with goal oper-
ationalisation are the NFR framework [39], GBRAM [6]
and CREWS [46], [45]. However, these either focus on
non-functional requirements or are informal and hence
cannot be fully verified.

Brinkkemper et al. present the TROPOS methodology
[18], [17] for formally specifying and analysing goals and
requirements. They also use a symbolic model checking
tool [7] to perform the analyses. However, unlike our
approach, they do not provide support for correcting and
completing the specification with respect to goals.

In [31], a formal framework is presented for incremen-
tally constructing an operational requirements specifica-
tion from goals. This is done by applying goal refinement
patterns to high-level goal assertions expressed in Real-
Time Linear Temporal Logic (RT-LTL) [35] to generate
a set of terminal goals realisable by some agent in the
software. The terminal goals are then used to derive
the list of operations to be performed by the system
and their domain pre- and post-conditions. The domain
conditions are then strengthened with required pre-,
trigger- and post-conditions using the operationalisation
pattern catalogue provided. One main advantage of this
approach is that the final product, i.e. the operational
requirements, is guaranteed to be complete, consistent
and minimal with respect to the goals [31]. Nonethe-
less, the case studies suggest that our framework can
produce alternative and acceptable operationalisation for
the same goal that are complete and consistent. As
in our work, operational requirements derived using
the operationalisation approach in [31] can be checked
for consistency and satisfaction of the goals using the
operationalisation checker FAUST [44]. However, if a
counterexample is detected, the engineer is assumed to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 21

manually revise the declarative specification to resolve
the violation [29]. As consistency checks are applied to
the goals only and are assumed to precede the oper-
ationalisation process, any changes to the specification
will have to be made to the goals first to guarantee
consistency. Using our methodology, on the other hand,
the consistency of the requirements is automatically
guaranteed by the learning system without the need
for further analysis. One limitation in our approach as
opposed to that described in [31] is that the minimality
of the generated set of required condition with respect to
the goals is scenario-dependent and therefore not guar-
anteed. By minimality of the requirements, we mean that
the requirements should not restrict the behaviour of the
system more than is required to satisfy the goals. Though
we have not paid particular attention to this during the
elaboration process, we believe that by including richer
(positive and negative) scenarios, the requirements will
be less restrictive and so minimality is more likely to be
preserved.

The work in [52] presents a method for inferring
declarative assertions from scenarios. It elicits goals, as
temporal formulae, from tailored scenarios provided by
stake-holders using an inductive inference process based
on Explanation-Based Learning (EBL) [36]. The tailored
scenarios are then used to elicit new declarative goals
that explain the given scenario. These new goals are
added to the given initial (partial) goal model for “non-
operational” analysis (i.e. goal decomposition, conflict
management and obstacle detection). Our approach dif-
fers from that in [52] in numerous aspects. First, the
inductive inference of declarative goals in [52] is based
on EBL, which does not take into account current knowl-
edge of the system (e.g. existing goals or operational
requirements) during the inference process. It is therefore
(potentially) an unsound inference process in that it can
generate declarative goals that are inconsistent with the
given (partial) goal model. ILP, on the other hand, which
is the paradigm we use, makes substantial use of the
knowledge provided and only produces rules that are
consistent with it. Hence goals, operational requirements
and any available knowledge are used as constraints on
possible acceptable solutions. As a result, any inferred
rules can therefore be directly added to the current
specification. Moreover, the generalisation process in
[52] is from the most specific case (i.e. the scenarios)
to a more general description (i.e. the goals). Negative
scenarios are used to avoid over-generalisation of the
permissible behaviours. Although ILP generalises from
specific examples to general rules, these rules are used
to constrain an over-generalised behaviour specification
which allows both desirable and undesirable behaviour.
Scenarios are used to avoid over-constraining the be-
haviour in the final set of permitted behaviours. The
approach in [52] is, in addition, sequential, considering
one scenario at a time during the inference procedure.
The method used in our work accommodates multiple
positive and negative scenarios collectively in a single

inference process.
Other approaches, such as [11], [50], are synthetic,

in the sense that they incrementally extend the set of
permissible behaviour. Although the outcomes of these
approaches are LTSs that may capture the same set of
behaviour as that in the LTS generated by the final set
of operational requirements, the approach itself does
not support the elaboration of a declarative specification
which can then be used to guide the system implemen-
tation.

The framework presented in this paper builds upon
our preliminary work on learning requirements from
goal models in [3], [2]. This paper mainly differs in
that: i) it presents a framework that supports the op-
erationalisation of goals expressed as both safety and
progress properties, ii) it discusses the termination of
the approach and iii) it provides a more comprehensive
validation with the application to the London Ambu-
lance Service System. It also relates to the work in [5], [4]
where we presented an approach for learning pre- and
trigger-conditions for operations from scenarios only.
The approaches described in both work do not consider
goals in the process nor do they use model checking to
guide the learning process. Furthermore, the operational
requirements are represented using synchronous LTL
and hence the methods are not capable of reasoning
about the two levels of granularity discussed in this
paper. This is also reflected in the EC programs which
do not refer to what is true at tick points.

9 CONCLUSION AND FUTURE WORK

The overall aim of this work is to develop a systematic
approach for elaborating operational requirements that
satisfy the stake-holders’ goals. In particular, we focus
on providing formal, automated support for analysing a
given partial operational specification and completing it
with respect to the given goals.

This paper provides automated formal methods for
analysing a given consistent and correct operational
specification, expressed in propositional FLTL, and sug-
gesting ways to fix detected problems – based on a
fixed vocabulary provided by the engineer. It specifi-
cally focuses on problems that are caused by incom-
pleteness of the operational specification with respect
to goals (expressed in achieve\cease mode) rather than
its incorrectness. We have deployed two well-founded
techniques, model checking and ILP, to perform the
elaboration task. Any requirement that is computed is
automatically guaranteed to be correct and consistent
with the goals and existing operational specification.
At points where users’ input is believed necessary, we
simplify the representation of the problem by using sce-
narios to express positive and negative behaviour, and
the selection of proposed requirements by guaranteeing
their correctness. We also present a sound method for
encoding specifications expressed in FLTL into EC logic
programs. Such encoding has provided us with insight

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 22

on ways of integrating temporal-based analysis methods
which are widely used in software development such
as goal decomposition, agent assignment, and scenario
elaboration, and the various techniques offered by logic
programming such as learning [33] and planning [48].

Our approach can be adapted to learning fluent defini-
tions from scenarios. This would correspond to learning
initiates and terminates EC rules, as shown in [41]. In
this way we would be able to provide support for the
computation of domain conditions from scenarios, as
well as required conditions, allowing the stake-holders
to convey such descriptions purely in terms of narrative-
style scenarios of system behaviours, rather than tem-
poral assertions. Additionally, the learning phase can
be performed in isolation to learn requirements directly
from scenarios. See [5] for further details.

In future work, we envision extensions specific to the
current framework, as well as extensions to more general
related themes, within software engineering, and closely
related disciplines.

One of the main areas we intend to investigate is
handling incorrect and/or inconsistent operational spec-
ifications. For this purpose, we will consider the use
of revision-based ILP techniques such as in [9]. This
would provide support for correcting requirements pre-
viously elaborated with respect to newly elicited goals
and scenarios which in effect would avoid the need of
backtracking.

We plan to incorporate information about the software
architecture in the learning phase to restrict the solution
space so that only those that satisfy constraints imposed
by the architecture are computed. For instance, predi-
cates that capture the monitorability and controllability
of events by different components will be included in
the background knowledge. Furthermore, soft goals will
be used as constraints to select among alternative hy-
potheses.

A further useful extension would be to consider the
scenarios used for learning requirements to be incom-
plete, i.e. contain hidden or unobservable transitions in
their sequences. This would hence simplify the scenario
elaboration which currently requires sequences to be
complete. One way is to explore the use of triggered
scenarios [47]. Such consideration requires the require-
ments to be learned with respect to the scope of the given
scenarios.

Additionally, more research on ways of supporting the
generation of rich scenarios that contribute to learning
requirements that would preserve a larger number of de-
sirable traces is a key interest. We believe this to be pos-
sible since the LTS generated from the specifications is
the least-constrained LTS which already contains traces
that satisfy the goals. For this, we will consider adopting
automated technique such as planning as described in
[40].

We also intend to investigate the applicability of the
framework to the problem of elaborating requirements
expressed in first-order logic. Though the learning phase

uses a first order-logic, other analysis techniques will
need to be deployed, such as theorem proving, that are
capable of handling analysis of first-order logic proper-
ties.

APPENDIX A

Notation and Terminology in Logic Programs
A term is either a variable X or a compound term
f(t1, ..., tn) where f is a function symbol and the ti are
terms. A constant is a 0-ary function symbol [32]. Vari-
ables are represented by alphanumeric strings beginning
with upper case letters. Constants are represented by
alphanumeric strings beginning with lower case letters.

An atom is an atomic formula p(t1, ..., tn) where p is a
predicate symbol of n-ary and ti are terms. Predicates are
represented by strings beginning with lower case letters.
A literal is an atom, called a positive literal, or an atom
preceded by not, called a negative literal, where not is
the negation as failure operator [8]. We use (not) p to
refer to either the positive literal p or the negative literal
not p of that atom.

A clause is an expression of the form h:-b1, ..., bn where
h is an atom (called the head atom) and the bi are
literals (called body literals). The symbol :- is used to
denote material implication in logic programs, so that
p:-q means q → p. A clause is ground if it contains no
variables. A clause is definite if all of its body literals are
positive. The empty clause is denoted 2 and represents
the truth value false. A goal clause is a clause (:-b1, ..., bn)
with an empty head. A normal logic program is set of
clauses. A definite logic program is a program in which
all clauses are definite.

A Herbrand model I of a logic program Π, is a set of
ground atoms such that, for each ground instance C of a
clause in Π, I satisfies the head of C whenever it satisfies
the body of C. A program is consistent if it has at least
one model. A model I is minimal if it does not strictly
include any other model. Definite programs always have
a unique minimal model. Normal programs may have
one, none, or several minimal models. When there is no
unique minimal model, alternative semantics are often
provided to single out specific models as the intended
model. One widely used semantics is that of stable
model semantics [19]. Given a normal logic program Π,
the reduct of Π with respect to I , denoted ΠI , is the
program obtained from the set of all ground clauses in Π
by (a) removing all clauses with a negative literal not a
in its body where a ∈ I and (b) removing all negative
literals from the bodies of the remaining clauses. ΠI

is therefore definite, and has a single unique definite
model. If I is the least Herbrand model of ΠI then I
is said to be a stable model of Π.

Definition 7. (Stable model) A model I of Π is a stable
model if I is the least Herbrand model of ΠI , where ΠI

is the definite program {A:-B1, . . . , Bn | A:-B1, . . . , Bn,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 23

not C1, . . . , not Cn is the ground instance of a clause in
Π and I does not satisfy any of the Ci}.

The definitions of entailment under stable model se-
mantics is given below.

Definition 8. (Entailment in stable model semantics)
A program Π entails an expression E (under the credulous
stable model semantics), denoted Π |= E, iff E is satisfied in
at least one stable model of Π.

APPENDIX B

Here we give the definitions of the EC domain-
independent axioms used in our programs.

clipped(P1,F,P2,S):-fluent(F), scenario(S),
position(P1), position(P2), position(P), P1< P,
P < P2, event(E), happens(E,P,S),
terminates(E,F,P,S).

holdsAt(F,P2,S) :- fluent(F), scenario(S),
position(P2), position(P1), P1<P2, event(E),
happens(E,P1,S), initiates(E,F,P1,S),
not clipped(P1,F,P2,S).

holdsAt(F,P,S) :- fluent(F), scenario(S),
position(P), initially(F,S), not clipped(0,F,P,S).

happens(E,P,S) :-event(E), scenario(S),
position(P), attempt(E,P,S), not impossible(E,P,S).

Below are the definitions of the auxiliary predicates
used to construct EC pre- and trigger-conditions.

holdsAt_Tick(F,P,S) :-
fluent(F), scenario(S), position(P),
happens(tick,P,S), holdsAt(F,P,S).

not_holdsAt_Tick(F,P,S) :-
fluent(F), scenario(S), position(P),
happens(tick,P,S), not holdsAt(F,P,S).

holdsAt_PrevTick(F,P2,S) :- fluent(F), scenario(S),
position(P2), position(P1), P1<P2,
happens(tick,P1,S), holdsAt(F,P1,S),
not occursInBetween(tick,P1,P2,S).

not_holdsAt_PrevTick(F,P2,S) :-
fluent(F), scenario(S),
position(P2), position(P1), P1<P2,
happens(tick,P1,S), not holdsAt(F,P1,S)
not occursInBetween(tick,P1,P2,S).

nextTickAt(P2,P1,S) :- scenario(S), position(P1),
position(P2), P1<P2, happens(tick,P2,S),
not occursInBetween(tick,P1,P2,S).

occursInBetween(E,P1,P2,S):- event(E), scenario(S),
position(P1), position(P2),
position(P), P1<P, P<P2,
happens(E,P,S).

occursSince_LastTick(E,P2,S) :-
event(E), scenario(S),
position(P1), position(P2), P1<P2,
happens(tick,P1,S),
not occursInBetween(tick,P1,P2,S),
position(P), P1<P, P<P2, happens(E,P,S).

ACKNOWLEDGMENTS

We acknowledge financial support for this work from
the ERC project PBM - FIMBSE (No. 204853).

REFERENCES

[1] D. Alrajeh. Requirements Elaboration using Model Checking and
Inductive Learning. PhD thesis, Imperial College London, London,
U.K., 2010.

[2] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Deriving non-zeno
behavior models from goal models using ILP. Journal of Formal
Aspects of Computing, 2009. To appear.

[3] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning op-
erational requirements from goal models. In Proceedings of 31st
International Conference on Software Engineering, pages 265–275,
2009.

[4] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Extracting require-
ments from scenarios with ILP. In Proceedings of 16th International
Conference on Inductive Logic Programming, pages 63–77, 2006.

[5] D. Alrajeh, O. Ray, A. Russo, and S. Uchitel. Using abduction
and induction for operational requirements elaboration. Journal
of Applied Logic, 7(3):275 – 288, 2009.

[6] A.I. Anton. Goal Identification and Refinement in the Specification of
Software-based Information Systems. PhD thesis, Georgia Institute
of Technology, Atlanta, GA, USA, 1997.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tachella. NuSMV 2: An open-
source tool for symbolic model checking. In LNCS Computer Aided
Verification, pages 241–268, 2002.

[8] K. Clark. Negation as failure. In Readings in nonmonotonic
reasoning, pages 311 – 325, 1978.

[9] D. Corapi, A. Russo, and E. Lupu. Inductive logic programming
as abductive search. In Technical Communications of the 26th
International Conference on Logic Programming, pages 54–63, 2010.

[10] C. Damas, P. Dupont B. Lambeau, and A. van Lamsweerde. Gen-
erating annotated behavior models from end-user scenarios. IEEE
Transactions on Software Engineering, Special Issue on Interaction and
State-based Modeling, 31(12):1056–1073, 2005.

[11] C. Damas, B. Lambeau, and A. van Lamsweerde. Scenarios, goals,
and state machines: a win-win partnership for model synthesis. In
Proceedings of the International ACM Symposium on the Foundations
of Software Engineering, pages 197–207, 2006.

[12] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed re-
quirements acquisition. Science of Computer Programming, 20(1):3–
50, 1993.

[13] R. Darimont and A. van Lamsweerde. Formal refinement patterns
for goal-driven requirements elaboration. In Proceedings of 4th
ACM SIGSOFT symposium on Foundations of Software Engineering,
pages 179–190, 1996.

[14] W. P. de Roever and J. Hooman. Design and verification in real-
time distributed computing: An introduction to compositional
methods. In Proceedings of the IFIP WG6.1 9th International Sym-
posium on Protocol Specification, Testing and Verification IX, pages
37–56, 1990.

[15] A. Fidjeland, W. Luk, and S. Muggleton. Scalable acceleration of
inductive logic programs. In Proceedings. 2002 IEEE International
Conference on Field-Programmable Technology, pages 252 – 259, 2002.

[16] A. Finkelstein and J. Dowell. A comedy of errors: the london
ambulance service case study. In Proceedings of the 8th International
Workshop on Software Specification and Design, pages 2–4, 1996.

[17] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and
P. Traverso. Specifying and analyzing early requirements in
TROPOS. Requirements Engineering, 9(2):132–150, 2004.

[18] A. Fuxman, J. Mylopoulos n, M. Pistore, and P. Traverso. Model
checking early requirements specifications in tropos. In Pro-
ceedings of the 5th IEEE International Symposium on Requirements
Engineering, pages 174–181, 2001.

[19] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In R.A. Kowalski and K. Bowen, editors,
Proceedings of 5th International Conference on Logic Programming,
pages 1070–1080, 1988.

[20] D. Giannakopoulou. Model Checking for Concurrent Software Ar-
chitectures. PhD thesis, Imperial College London, London, United
Kingdom, 1999.

[21] D. Giannakopoulou and J. Magee. Fluent model checking for
event-based systems. In Proceedings 11th ACM SIGSOFT Sympo-
sium on Foundations Software Engineering, pages 257 – 266, 2003.

[22] M. Jackson. The world and the machine. In Proceedings of the
17th international conference on Software engineering, pages 283–292,
1995.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 24

[23] R.M. Keller. Formal verification of parallel programs. Communi-
cations of the ACM, 19(7):371–384, 1976.

[24] R.A. Kowalski and M. Sergot. A logic-based calculus of events.
New generation computing, 4(1):67–95, 1986.

[25] R. Koymans. Specifying Message Passing and Time-Critical Systems
with Temporal Logic, volume 651 of Lecture Notes in Computer
Science. Springer, 1992.

[26] J. Kramer, J. Magee, and M. Sloman. Conic: An integrated
approach to distributed computer control systems. In IEE Pro-
ceedings, Part E, volume 30, pages 1–10, 1983.

[27] E. Letier. Reasoning about Agents in Goal-Oriented Requirements
Engineering. PhD thesis, Université Catholique de Louvain,
Dépt. Ingénierie Informatique, Louvain-la-Neuve, Belgium, 2001.

[28] E. Letier. Goal-oriented elaboration of requirements for a
safety injection control system. Technical report, Département
d’Ingénierie Informatique, Université Catholique de Louvain,
2002.

[29] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based
transitions systems from goal-oriented requirements models. Au-
tomated Software Engineering, 15:175–206, 2008.

[30] E. Letier and A. van Lamsweerde. Agent-based tactics for
goal-oriented requirements elaboration. In Proceedings of 24th
International Conference on Software Engineering, pages 83–93, 2002.

[31] E. Letier and A. van Lamsweerde. Deriving operational software
specifications from system goals. In Proceedings of 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages
119–128, 2002.

[32] J.W. Lloyd. Foundations of logic programming. Springer, 1984.
[33] J. Ma, A. Russo, K. Broda, and K. Clark. DARE: a system for

distributed abductive reasoning. Autonomous Agents and Multi-
Agent Systems, 16(3):271–297, 2008.

[34] J. Magee and J. Kramer. Concurrency : State Models and Java
Programs. John Wiley and Sons, 1999.

[35] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer, 1992.

[36] T. Mitchell. Machine Learning. McGraw Hill,, 1997.
[37] S.H. Muggleton. Inverse Entailment and Progol. New Generation

Computing, Special issue on Inductive Logic Programming, 13(3-
4):245–286, 1995.

[38] S.H. Muggleton and L. De Raedt. Inductive Logic Programming:
Theory and Methods. Journal of Logic Programming, 19,20:629–679,
1994.

[39] J. Mylopoulos, L. Chung, and B..A. Nixon. Representing and
using non-functional requirements: A process-oriented approach.
IEEE Transactions on Software Engineering, 18:483–497, 1992.

[40] F. Patrizi, N. Lipoveztky, G. De Giacomo, and H. Geffner. Com-
puting infinite plans for ltl goals using a classical planner. In
Proceedings of 22nd International Joint Conferences on Artificial Intel-
ligence, pages 2003–2009, 2011.

[41] O. Ray. Using abduction for induction of normal logic programs.
In Proceedings of ECAI’06 Workshop on Abduction and Induction in
AI and Scientific Modelling, 2006.

[42] O. Ray. Nonmonotonic abductive inductive learning. Journal of
Applied Logic, 7(3):329–340, 2009.

[43] O. Ray, K. Broda, and A. Russo. A hybrid abductive inductive
proof procedure. Logic Journal of the Interest Group in Pure and
Applied Logic, 12(5):371–397, 2004.

[44] A. Rifaut, P. Massonet, J. Molderez, C. Ponsard, P. Stadnik,
A. van Lamsweerde, and H. Tran Van. FAUST: Formal analysis
using specification tools. In Proceedings of 11th IEEE International
Conference on Requirements Engineering, page 350, 2003.

[45] C. Rolland, G. Grosz, and R. Kla. Experience with goal-scenario
coupling in requirements engineering. In Proceedings of IEEE
International Symposium on Requirements Engineering, pages 74–81,
1999.

[46] C. Rolland, C. Souveyet, and C.B. Achour. Guiding goal mod-
elling using scenarios. IEEE Transaction on Software Engineering,
24(12):1055–1071, 1998.

[47] G. Sibay, S. Uchitel, and V. Braberman. Existential live sequence
charts revisited. In Proceedings of the 30th International Conference
on Software engineering, pages 41–50, 2008.

[48] V.S. Subrahmanian and C. Zaniolo. Relating stable models and AI
planning domains. In Proceedings of 12th International Conference
on Logic Programming, pages 233–247, 1995.

[49] A. Sutcliffe, N. A. M. Maiden, S. Minocha, and D. Manuel.
Supporting scenario-based requirements engineering. IEEE Trans-
actions on Software Engineering, 24:1072–1088, 1998.

[50] S. Uchitel, G. Brunet, and M. Chechik. Synthesis of partial behav-
ior models from properties and scenarios. IEEE Trans. Softw. Eng.,
35:384–406, 2009.

[51] A. van Lamsweerde. Goal-oriented requirements engineering: A
guided tour. In Proceedings of 5th IEEE International Symposium on
Requirements Engineering, pages 249–262, 2001.

[52] A. van Lamsweerde and L. Willemet. Inferring declarative
requirements specifications from operational scenarios. IEEE
Transactions on Software Engineering, 24(12):1089–1114, 1998.

Dalal Alrajeh is a Research Associate on the
ERC project Partial Behaviour Modelling: A
Foundation for Incremental and Iterative Model-
Based Software Engineering at the Department
of Computing, Imperial College London. She
was awarded her PhD in February 2010 at Im-
perial College. She has published papers in soft-
ware engineering and artificial intelligence jour-
nals and conferences, including ICSE, FASE,
JAL, ILP and JFAC. She is appointed as the
Early Research Career Officer for the BCSs

Requirements Engineering Specialist Group. For further details, please
see http://www.doc.ic.ac.uk/∼da04.

Jeff Kramer is the Senior Dean of Imperial
College and Professor of Distributed Comput-
ing, within the Department of Computing. His
research work is on behaviour analysis, the use
of models in requirements elaboration and archi-
tectural approaches to self-organising software
systems. Jeff Kramer is a Fellow of the Royal
Academy of Engineering. In addition, he is a
Chartered Engineer, Fellow of the IET, Fellow of
the BCS and Fellow of the ACM. He is the co-
recipient of the 2005 ACM SIGSOFT Outstand-

ing Research Award for significant and lasting research contributions to
software engineering. He is co-author of a recent book on Concurrency,
co-author of a previous book on Distributed Systems and Computer
Networks, and the author of over 200 journal and conference publi-
cations. He has also worked with many industries, including BP, BT,
NATS, Fujitsu, Barclays Capital, QinetiQ, Kodak and Philips, in research
collaboration and/or as a consultant. See http://www.doc.ic.ac.uk/∼jk for
further details and selected publications.

Alessandra Russo is a Reader in Applied Com-
putational Logic within the Department of Com-
puting. Her research interests include Logic,
Artificial Intelligence and their applications in
Software Engineering, with a focus on the de-
velopment of formal frameworks, techniques and
tools, based on abductive and inductive reason-
ing, for the analysis and management of evolv-
ing specifications. Dr Russo is author of over
90 publications in international conferences and
journals, on which one awarded prize for best

application paper. She has served on the program committees of many
international conferences. She has been investigator on various UK
funded research projects, and ITA funded projects in collaboration with
IBM Watson Research Center. She is also Editor-in-Chief of the IET
Software journal and IEEE member. See http://www.doc.ic.ac.uk/∼ar3
for further details and list of publications.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, APRIL 2010 25

Sebastian Uchitel is a Professor at the De-
partment of Computing, FCEN, University of
Buenos Aires, holds a Readership at Imperial
College London and is a visiting professor at
the Japanese National Insitute of Informatics. Dr.
Uchitel was associate editor of IEEE Transac-
tions on Software Engineering and is currently
associate editor of the Requirements Engineer-
ing Journal. He was program co-chair of the
21st IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2006) and

of the 32nd IEEE/ACM International Conference on Software Engi-
neering (ICSE 2010). Dr Uchitel has been awarded with the Philip
Leverhulme Prize, the ERC Starting Grant award and an Argentine
National Academy of Exact, Physical and Natural Sciences award.

