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Abstract
Background  The Patagonian region hosts endemic bat species and represents the southernmost distribution 
limit for several vespertilionids and molossids species. In cold temperate regions, insectivorous bats are more active 
during summer. However, during this period, the activity of bats can also vary spatially, depending on climatic and 
environmental factors (e.g., temperature, humidity, vegetation cover, productivity, elevation, proximity to water). 
The objective of this study was to analyze how the spatial activity of phonic groups is affected by climatic and 
environmental variables in a large, heterogeneous area of ​​Patagonia, Argentina, using bioacoustic methods. Acoustic 
monitoring was conducted during the austral summer of 2020, at 100 points located at ten sites, in three ecoregions 
of Chubut Province (Patagonian Forest, Patagonian Steppe and Low Monte). Bat passes were classified into four 
phonic groups (PGs), each representing species with similar echolocation call structures. This classification was based 
on foraging habits and bioacoustic characteristics of species commonly recorded in the study area (PG1 = Myotis 
chiloensis, M. levis; PG2 = Lasiurus varius, L. villosissimus, Histiotus magellanicus; PG3 = H. macrotus, H. montanus; 
PG4 = Tadarida brasiliensis). The values of eleven variables were obtained for each point (e.g., temperature, relative 
humidity, vegetation cover, productivity, elevation, and proximity to water). Using generalized linear mixed-effects 
models (GLMMs), we analyzed how climatic and environmental variables influenced the spatial activity of Patagonian 
bat phonic groups.

Results  Our results showed that spatial activity of four phonic groups analyzed in summer is driven by environmental 
(vegetation cover, elevation and proximity to water) and climatic variables (temperature and relative humidity). 
Nevertheless, the spatial activity of each specific phonic group was mainly influenced by vegetation cover variables 
and by their preference for each ecoregion, reflecting the habitat structure in which they forage.

Conclusions  The spatial activity of four phonic groups from Central Patagonia in summer is governed jointly by 
climatic and environmental variables, with vegetation structure being the dominant driver. In the context of climate 
change, habitat loss and reduced water availability (especially in arid and semi-arid environments) could impact the 
populations of Patagonian bats, considering the importance of these factors in influencing their spatial activity.
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Introduction
The order Chiroptera is the second most diverse among 
mammals, with more than 1400 species currently recog-
nized [88]. Bats as a group are most diverse in tropical 
regions of the world [3, 29, 30]; however, they have also 
spread into temperate and boreal zones, albeit to a lesser 
extent [3, 47]. A relevant example in temperate zones are 
the insectivorous bats that inhabit the Patagonian region 
[70]. This environmentally heterogeneous region is home 
to endemic bats and represents the southern distribu-
tion limit for several vespertilionid and molossid species. 
Currently, nine species of insectivorous bats have been 
recorded in Argentine Patagonia: seven vespertilionids 
(Histiotus macrotus, H. magellanicus, H. montanus, Lasi-
urus varius, L. villosissimus, Myotis chiloensis, and M. 
levis) and two molossids (Eumops patagonicus, with a 
single record in Patagonia; and Tadarida brasiliensis) [7, 
36, 37]. The Patagonia region is characterized by a cold 
temperate climate, strong westerly winds, and a marked 
precipitation gradient from west to east [33]. It also 
exhibits significant environmental heterogeneity, ranging 
from humid forests to arid steppes [12, 50].

In temperate regions, insectivorous bats are more active 
during the warmest seasons of the year because of the 
greater and more stable availability of food (arthropods 
prey, primarily insects; [8, 14, 54, 87]). Consequently, ges-
tation, birth, and lactation occur during this period [70]. 
However, during this time, bat activity can also vary spa-
tially in relation to climatic and environmental factors 
such as temperature, humidity, water availability, vegeta-
tion structure, elevation and food resources. There is an 
extensive bibliography that supports these patterns in 
different regions of the world. Some authors have shown 
that favorable weather conditions (e.g., temperature and 
humidity) can increase the likelihood of insect activ-
ity and reduce energetic costs, thus favoring the activity 
of bats [4, 8, 14, 26, 41, 71]. Other studies indicate that 
because bodies of water can favor the presence of insects 
in addition to being a source of hydration, these are areas 
that would benefit from increased bat feeding activity [1, 
46, 51, 54, 76, 86, 91, 92, 97]. Furthermore, it has been 
shown that vegetation cover can also indirectly affect bat 
spatial activity by influencing the density and distribution 
of insect prey [9, 10, 49, 62, 65]. An increase in vegetation 
cover could lead to greater abundance of phytophagous 
insects that serve as prey for bats, favoring their forag-
ing activity [65]. Likewise, the habitat structure given by 
the vegetation cover can affect the spatial activity of bats, 
conditioning the foraging spaces in relation to their wing 
and bioacoustic characteristics [21, 22, 27,49]. In relation 

to elevation, several studies have shown that bat activity 
varies over an elevation gradient, being greater at middle 
elevations because, at those elevations, insect richness is 
also higher [55, 58, 91, 104]. Finally, another factor often 
considered is environmental productivity as a proxy 
for plant biomass available to primary consumers (e.g., 
insects). Given that insect’s density could be affected by 
available nutrients, insectivorous bats could be poten-
tially sensitive to habitat productivity [95, 96]. Therefore, 
greater bat activity is expected to occur in areas with 
greater environmental productivity [79]. Unfortunately, 
there are no studies that jointly analyze how these factors 
influence the spatial activity of Patagonian bats. However, 
this information can provide insight into the limitations 
of bat distributions, especially in regions with extreme 
and variable environmental conditions [26], such as those 
of Patagonia.

Studies on habitat use provide essential informa-
tion for monitoring bat populations and are crucial for 
developing conservation policies [47, 51], especially for 
bat communities that inhabit little-explored areas with 
poorly known species (e.g., Patagonian vespertilionids). 
In this sense, all of these species that inhabit Patago-
nia have been listed as least concern (LC) for the IUCN 
Red List of Threatened Species; however, except for the 
molossid species and M. levis, the remaining species 
show completely unknown population trends, including 
the endemic species of the region (e.g., H. magellanicus 
and M. chiloensis). Studies of this type could contribute 
relevant information for the conservation of species, 
monitoring the status of their populations in the current 
context of climate change in the southernmost areas of 
their distribution. Recent advances in bioacoustic meth-
ods have allowed the development of many studies on the 
biodiversity, distribution, biology, ecology, and conser-
vation of bat species [5, 28, 40, 56, 83, 85]. Since many 
bats use echolocation for orientation and prey detection, 
acoustic surveys are widely used for monitoring bat pop-
ulations, and their use is essential for biodiversity studies 
and monitoring plans in different types of environments 
[6, 54, 77, 80].

Therefore, the objective of this study was to explore 
how bat spatial activity (at the phonic groups level) can 
be affected by climatic and environmental variables in an 
environmentally heterogeneous area of ​​Central Patagonia 
from Argentina, using bioacoustic methods to generate 
useful information for the conservation of its popula-
tions. To address this, we tested five hypotheses based on 
the patterns described above: Hypothesis 1(Effect of 
vegetation structure): vegetation cover type (forest vs. 
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steppe) may differentially influence bat spatial activ-
ity based on their foraging characteristics. Activity of 
clutter-adapted species (PG1–2) will positively correlate 
with forest density, while open-space foragers (PG3–4) 
will show greater activity in steppe habitats [20]. Hypoth-
esis 2 (Effect of microclimate): bat activity patterns will 
be significantly influenced by temperature and humid-
ity, with optimal ranges varying by phonic group [41]. 
Hypothesize 3 (Effect of elevation): bat spatial activity 
will peak at intermediate elevations, where insect avail-
ability is higher [55, 91]. Hypothesis 4 (Effect of proxim-
ity to water): bat spatial activity will be greater near water 
sources due to increased insect availability [46]. Hypoth-
esis 5 (Effect of environmental productivity): bat spatial 
activity will increase in areas with higher environmental 
productivity [79].

Methods
Study area
The study was conducted in Central Patagonia, Argen-
tina, within Chubut Province, covering an extensive area 
of approximately 600 km in length and encompassing 

sites ranging from the Andean Mountain range to the 
Atlantic coast. Ten sites were selected along the province, 
partially following the course of the Chubut River and 
covering the three representative ecoregions of Patago-
nia. These included three sites in the Patagonian Forest 
(1 = Parque Nacional Los Alerces [PNLA], 2 = Área Natu-
ral Protegida Baguilt [ANPB], 3 = Nant y Fall [NyF]), five 
sites in the Patagonian Steppe (4 = Camino Los Rifleros 
[CLR], 5 = Piedra Parada [PP], 6 = Los Altares [LA], 7 = El 
Sombrero [ES], 10 = Área Natural Protegida Península 
Valdes [ANPPV]), and two sites in Low Monte (sensu 
[66]; 8 = Las Plumas [LP], 9 = Dique Florentino Ameghino 
[DFA]; see Fig. 1). The climate in Central Patagonia is 
cold [68], with an average annual temperature rang-
ing from 5 °C to 13 °C [11], and a marked gradient of 
annual precipitation from west to east (3000 mm to 180 
mm, respectively; [50, 57, 60]). This gradient is clearly 
reflected in the vegetation distribution. The Patagonian 
Forest ecoregion is located to the west of the province 
and has dense vegetation with trees up to 30–40 m high 
(e.g., Austrocedrus chilensis, Fitzroya cupressoides, Noth-
ofagus spp; [73]), in combination with a dense understory 

Fig. 1  Study Area. a) Acoustic monitoring sites of bats in the Central Patagonia from Argentina. Ecoregions are indicated in different colors: Patagonian 
Forest (green), Patagonian Steppe (orange) and Low Monte (yellow). Blue lines indicate the main water courses. b) Representative sites of each ecoregion: 
3) ANP Nat y Fall (Patagonian Forest), 7) El Sombrero (Patagonian Steppe) and 9) Dique Florentino Ameghino (Low Monte). The names of the rest of the 
sites are indicated in the text
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(e.g., Chusquea culeou, Fuchsia magellanica and Berberis 
microphylla; [16, 73]). The Patagonian Steppe ecoregion 
is located toward the center of the province and includes 
the Peninsula Valdés. This ecoregion with semidesert 
characteristics presents low vegetation cover [16, 50, 
60], with a predominance of scrubby bushes, adapted to 
conditions of humidity deficit, low temperatures, frosts 
and strong winds (e.g., Mulinum spinosum, Senecio brac-
teolatus, Adesmia volckmannii; [16, 60, 69, 100]. The 
Low Monte ecoregion with a semiarid climate is located 
toward the northeast of the province including the Atlan-
tic coast [60]. The vegetation is dominated by shrubs 
(e.g., the genera Larrea, Prosopis, Chiquiraga, Ephedra, 
and Verberna) and subshrub layers (e.g., Cassia aphylla, 
Acantholyppia seriphiodes, Perezia recurvata, and Bac-
charis darwini; [50]), whereas herbaceous cover is scarce 
[50, 60].

This study was conducted with permits granted 
by Dirección de Fauna y Flora Silvestre (Disp. Nº 
74/2019-DFyFS-M.P.), Subsecretaría de Conservación y 
Áreas Protegidas (Disp. Nº 072/19-SsCyAP) of Chubut 
Province and Administración de Parques Nacionales 
(Argentina, DRPN Nº 1049).

Acoustic sampling
Passive acoustic monitoring was conducted during aus-
tral summer (January-February 2020). Each site simul-
taneously included 10 points (listening stations), thus, a 
total of 100 listening stations were analyzed across the 
study area. The listening stations were separated from 
each other by distances greater than 1.5 km (only five 
detectors were placed less than 1 km apart due to ter-
rain characteristics and limited accessibility). At each 
listening station, an AudioMoth 1.0.0 ultrasonic detec-
tor (Silicon Labs) was placed at an approximate height of 
2 m from the ground level whenever possible. In steppe 
areas where there are no tall trees or shrubs, the detec-
tors were placed on the ground. Each AudioMoth 1.0.0 
was programmed to record at a 192 kHz sample rate in a 
frequency range of 8 to 120 kHz [94] with medium gain. 
Each AudioMoth recorded in 20 s cycles followed by 5 
s pauses, from sunset to sunrise for three consecutive 
nights under favorable weather conditions (i.e., no rain, 
no full moon, no strong wind).

All calls were recorded as full-spectrum calls in WAV 
format. First, we filtered out background noise from the 
recordings using Kaleidoscope software [103]. The filter 
settings specified a signal of interest between 8 and 120 
kHz and 2 to 500 ms and with a 2-minimum number of 
calls per sequence, and we batch split each sequence to a 
maximum duration of 5 s to standardize bat activity ([94]; 
see below). Each sequence of 5 s (noise file classified by 
Kaleidoscope) was filtered again with SonoBat Batch 
Scrubber 5.1 (2012) to delete false negatives. Finally, only 

passes with a quality greater than or equal to 0.8 were 
selected with Sonobat 3.1 (2012) [90], to ensure high-
quality call data [40].

We estimated bat activity as the number of passes dur-
ing the sampling nights, and a bat pass was defined as 
one or more bat echolocation calls during an interval of 5 
s [59, 94]. Because there is no acoustic library for Patago-
nian species that allows precise species-level identifica-
tion; and taking into account that the echolocation calls 
of each species can vary structurally according to the 
habitat structure, ambient noise, geographic variation, 
and the existence of sympatry of close species [84], we 
classified the bat passes into four phonic groups (PGs), 
including species with similar call structures [9, 32]. This 
classification was made based on foraging habits, use of 
foraging space and bioacoustic characteristics [9, 20, 22, 
32] of all species widely recorded in the study area (not 
including Eumops patagonicus). We then manually con-
firmed these classifications based on the following bio-
acoustics parameters of each call: Call structure (CS, 
frequence modulate quasi-constant frequency, FM-QCF, 
or quasi-constant frequency, QFC), lowest frequency (LF, 
kHz), highest frequency (HF, kHz), frequency of maxi-
mum energy (FME, kHz), bandwidth (BW, kHz), and 
call duration (CD, ms). Phonic group 1 (PG1) comprises 
edge-space aerial hawkers that emit short-duration (2–5 
ms), high frequency (FME > 40 kHz), broadband (> 10 
kHz) calls (FM-QCF; e.g., Myotis [27, 35]). Phonic group 
2 (PG2) comprises edge and open spaces aerial hawkers 
that emit mid frequency (FME > 25 kHz), broadband (> 7 
kHz) and duration less than 5 ms calls (FM-QCF; e.g., 
Lasiurus, Histiotus magellanicus [35, 40]). Phonic group 
3 (PG3) comprises edge and open space aerial hawkers/
gleaners that emit low frequency (FME < 22 kHz), band-
width greater than 5 kHz, duration greater than 5ms 
calls (FM-QCF; e.g., Histiotus macrotus, H. montanus 
[35, 40]). Phonic group 4 (PG4) comprises open space 
aerial hawkers that emit low frequency (FME < 25 kHz), 
narrowband (< 5 kHz), and long duration (> 10 ms) calls 
(QCF; e.g., Tadarida brasiliensis; [9, 20]). Calls outside 
these ranges were not included in the analysis.

Variable selection
For each georeferenced sampling point (listening sta-
tion), we obtained values for 11 climatic and envi-
ronmental variables that were hypothesized to be 
related to Patagonian bat activity. We select two cli-
matic variables, Night Mean Temperature (T in °C; 
MOD21A2, [43]) and Relative Humidity (HR as %; L2, 
AIRS2RET_NRT), with an average value of the three 
sampling nights for each of them. We included five 
variables related to vegetation cover, % non-tree veg-
etation (NTV; mean value of the sampling year 2020; 
MOD44B, [25]), % non-vegetated (NV; soil without 
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vegetation cover, mean value of the sampling year 
2020; MOD44B), % tree cover (TC; mean value of the 
sampling year 2020; MOD44B), normalized difference 
vegetation index (NDVI, 250 m; mean value of the 
sampling year 2020; MOD13Q1; [24]), and enhanced 
vegetation index (EVI, 250 m; monthly average value 
for the sampling month and year; MOD13Q1; [24]). 
As proxies for environmental energy availability, we 
obtained values of net primary productivity (NPP, kg 
C/m²/year, 500 m; mean value of the sampling year 
2020; MOD17A3HGF; [81]), and gross primary pro-
ductivity (GPP, kg C/m²/year, 500 m; monthly average 
value for the sampling month and year; MOD17A2H; 
[82]). Finally, we included elevation (E, mals) as a 
complementary variable of climatic events which can 
affect bat occurrence [93], and proximity to bodies of 
fresh water (PW = linear distance in kilometers from 
the detector location point to the nearest freshwater 
body), as a proxy for water availability. MODIS data 
products were obtained from the Terrestrial Ecology 
Subsetting & Visualization Services (TESViS) Global 
Subsets Tool [67]. The values of relative humidity were 
obtained from the AIRS project (2019, ​h​t​t​p​​s​:​/​​/​w​o​r​​l​d​​v​i​
e​​w​.​e​​a​r​t​h​​d​a​​t​a​.​n​a​s​a​.​g​o​v​/) [2], whereas the elevation and 
proximity to bodies of fresh water data were obtained 
for each georeferenced point via a satellite imagery 
layer. Finally, we included the qualitative variable ECO, 
according to the belonging of each site to one of the 
three ecoregions analyzed (Patagonian Forest, Patago-
nian Steppe and Low Monte).

Statistical analysis
Descriptive summary statistics were calculated to assess 
the variation in climatic and environmental variables for 
each sampling site (mean ± standard error, n = 10). Gen-
eralized linear mixed-effects models (GLMM) were fitted 
to analyze the effect of climatic and environmental vari-
ables on bat activity by phonic group (PG). The response 
variables were the number of passes of PG1, PG2, PG3, 
and PG4, and were modeled with a negative binomial 
distribution and a log link function. The random effect 
of the factor site (ten levels) was included to consider the 
nested structure due to the multiple detectors per site 
(the number of passes at detectors on the same site are 
likely to be more similar to each other than to values from 
different sites). We employed an information theoretic 
approach for model comparison, allowing multiple model 
comparisons to be made, and the most parsimonious of 
these models to be identified [17]. Two sets of a priori 
models for each phonic group were determined: one that 
included all non-collinear explanatory variables, and the 
other that included vegetation structure variables (Sup-
plementary Material Table 1). Collinearity was assessed 
using pairwise correlations, and a correlation coefficient 

(r) with an absolute value > 0.7 was used as a threshold 
(Supplementary Material Fig. 1). Akaike’s information 
criterion (AIC) was calculated for each model, and model 
comparisons were made with ∆AIC (difference between 
the AIC for model i and the best model with the lowest 
AIC value). The AIC weight of a model (Wi) was used as 
a measure that model i is the best model in the set of all 
models considered. To evaluate the relative importance 
of predictor variables (RIWi), AIC model weights were 
summed across all models that contained the parameter 
being considered and then divided the cumulative model 
weights for a particular variable by the number of models 
containing that variable to get an average variable weight 
per model [45]. Pearson residual plots were examined 
for model validation following the protocol described by 
Zuur et al. [106]. Additionally, simulated scaled residu-
als from the DHARMa package [42] were used for model 
validation. Specifically, we evaluated residual dispersion, 
zero-inflation and spatial autocorrelation. Analyses were 
performed in R software version 4.1.0 [74] via RStudio 
software version 2024.4.2.764 [72], using glmmTMB [15] 
and tidyverse [102] packages.

Results
A total of 18,958 bat passes were recorded over three 
nights, including ten sampling sites and 100 listen-
ing stations. As results of the classification, 12,335 bat 
passes were assigned to PG1, 4,414 to PG2, 573 to PG3, 
and 1,636 to PG4. The number of passes per site var-
ied according to the phonetic group analyzed (Table 
1). For PG1, the greatest activity was recorded at site 3 
(n = 6,259 passes, in Patagonian Forest), and the low-
est at site 8 (n = 31 passes, in Patagonian Steppe). Simi-
larly, for PG2, the greatest activity was recorded at site 1 
(n = 1,517 passes, in Patagonian Forest), and the lowest 
at site 10 (n =  2 passes, in Patagonia Steppe). While for 
PG3, the greatest activity was recorded at site 9 (n = 173, 
in Low Monte), and the lowest at site 2 (n = 7 passes, in 
Patagonia Forest). Finally, for PG4, the greatest activity 
was recorded at site 9 (n = 714 passes, in Low Monte), 
and the lowest at site 8 (n = 15 passes, in Low Monte). 
Although bat passes were detected at all sites, only PG2 
was recorded at site 7, and only PG2 and PG4 at site 10.

Several models were plausible in explaining the varia-
tion in the spatial activity of four analyzed phonic groups, 
based on the criterion of ΔAIC < 2 (Table 2). All the most 
plausible models for the four phonic groups selected the 
variables temperature (T), relative humidity (RH), eleva-
tion (E), proximity to water (PW), and ECO (ecoregion). 
However, the variables that had the greatest influence 
on the spatial activity of phonic groups were vegetation 
cover, which varied according to the group analyzed 
(Supplementary Material Table 2).

https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/
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For PG1, the most important variable was TC (% tree 
cover) based on its Wi value (0.353) with a negative 
effect, indicating that the increase in tree cover generates 
a decrease in activity (Fig. 2a). The spatial activity of this 
group was positively associated with climatic variables (T 
and RH), indicating that higher temperature and humid-
ity led to greater activity, whereas for E and PW the rela-
tionship was negative (Supplementary Material Fig. 2), 
showing that at higher elevations and greater distances 
from bodies of water, the activity of this group decreases. Ta
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4 Table 2  Generalized linear mixed-effects models explaining 

variation in Bat activity of phonic groups (PG). Models are 
provided in decreasing order of importance, and only best 
ranked models with Δi ≤ 2 are shown. Df: degrees of freedom; 
AIC: akaike’s information criterion; ΔAIC: difference in AIC 
between the best model and the model indicated; Wi: model 
weight. Explanatory variables: NDVI (normalized difference 
vegetation index), EVI (enhanced vegetation index), NPP (net 
primary productivity), GPP (gross primary productivity), NTV (% 
non-tree vegetation cover), NV (% soil without vegetation cover), 
TC (% tree vegetation cover), T (mean temperature), RH (mean 
relative humidity), E (elevation), PW (proximity to water body) 
and ECO (ecoregion: Patagonian Forest, Patagonian Steppe and 
Low Monte)
Pho-
nic 
group

Model Df AIC ΔAIC Wi

PG 1 Model 6: TC + T + RH + E + PW + ECO 10 679.6 0.0 0.353
Model1: NDVI + NTV + T + RH + E + 
PW + ECO

11 680.2 0.6 0.262

Model 3: NPP + NTV + T + RH + E + 
PW + ECO

11 681 1.5 0.170

PG 2 Model 1: NDVI + NTV + T + RH + E + 
PW + ECO

11 758.3 0.0 0.246

Model 6: TC + T + RH + E + PW + ECO 10 758.6 0.4 0.206
Model 2: EVI + NTV + T + RH + E + P
W + ECO

11 758.8 0.5 0.194

Model 3: NPP + NTV + T + RH + E + 
PW + ECO

11 759.5 1.2 0.133

Model 5: NV + NTV + T + RH + E + P
W + ECO

11 759.8 1.5 0.114

Model 4: GPP + NTV + T + RH + E + 
PW + ECO

11 759.9 1.6 0.108

PG 3 Model 2: EVI + NTV + T + RH + E + P
W + ECO

11 463.1 0.0 0.367

Model 1: NDVI + NTV + T + RH + E + 
PW + ECO

11 464 0.9 0.230

Model 6: TC + T + RH + E + PW + ECO 10 464.9 1.8 0.149
Model 3: NPP + NTV + T + RH + E + 
PW + ECO

11 465.1 1.9 0.136

PG 4 Model 6: TC + T + RH + E + PW + ECO 10 539.2 0.0 0.315
Model 1: NDVI + NTV + T + RH + E + 
PW + ECO

11 540.6 1.5 0.152

Model 5: NV + NTV + T + RH + E + P
W + ECO

11 541 1.8 0.128

Model 2: EVI + NTV + T + RH + E + P
W + ECO

11 541.1 1.9 0.118
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PG1 showed a positive association with forested environ-
ments (Patagonian Forest), as reflected in the ECO vari-
able (Patagonian Forest; Fig. 3a).

For PG2, the most important variable was TC accord-
ing to its Wi value (0.206), and its effect was negative, 
indicating that the increase in tree cover generates a 
decrease in activity (Fig. 2b). Similarly, the NTV had a 
negative effect on spatial activity (Supplementary Mate-
rial Fig. 3b). The relationships were negative for T, E, 
and PW, showing a decrease in the spatial activity of the 
group with increasing temperature, elevation, and dis-
tance to water bodies (Supplementary Material Fig. 3c, e, 
f ). The relationship was positive for HR, indicating that 
the spatial activity of the group increases with higher HR 
(Supplementary Material Fig. 3 d). Regarding ECO, PG2 

showed a greater association with Patagonian Forest 
environments (Fig. 3b).

For PG3, the variables that most influenced spatial 
activity were EVI and NDVI according to their Wi val-
ues (0.23, Fig. 2c). Both variables affected negatively the 
activity, showing that the spatial activity of the group 
decreases with higher EVI and NDVI values. The NTV, 
also was an important variable, and its relationship with 
spatial activity was positive, indicating that higher non-
tree vegetation cover led to greater group spatial activ-
ity (Supplementary Material Fig. 4a). The relationship 
was negative for T and positive for RH, indicating that 
the decrease in temperature and the increase in rela-
tive humidity generate greater activity (Supplementary 
Material Fig. 4b, c). Regarding E and PW, the association 
was negative, showing that as elevation and distance to 

Fig. 2  Fitted values obtained by the GLMMs showing the effects of tree cover and enhanced vegetation index (variables with highest relative impor-
tance: RIW adjusted) on the number of passes of phonic groups a) PG 1, b) PG 2, c) PG 3 and d) PG 4. Fitted values were estimated from the full model 
while holding other variables at mean values

 



Page 8 of 14Giménez et al. BMC Ecology and Evolution           (2025) 25:83 

water bodies increased, the spatial activity of the group 
decreased (Supplementary Material Fig. 4 d, e). This 
group was primarily related to Low Monte (Fig. 3c).

Finally, for PG4, TC was the most important predictive 
variable based on its Wi value (0.315) and had a negative 
effect on the spatial activity of this group (Fig. 2d). This 
relation showed that an increase in tree cover generates 
a decrease in the activity of PG4. The relationship was 
negative with T and positive with RH, showing increased 
activity with the decrease in temperature and the increase 
in relative humidity (Supplementary Material Fig. 5a, b). 
Like the other, the relationship was negative with E and 
PW, showing that with increasing elevation and distance 
to water bodies, the spatial activity of the PG4 decreased 
(Supplementary Material Fig. 4c, d). Regarding the ECO 
variable, this group was more closely related to the Low 
Monte (Fig. 3d).

Based on the most plausible models, the productivity 
variables exerted less influence on phonic group activity 
than other environmental variables. The results indicated 
that NPP was selected at least once by the most plausible 
models for PG1, PG2, and PG3, but not for PG4; while 
GPP was retained by a single model for PG2. The influ-
ence of NPP and GPP was negative, indicating a decrease 
in the spatial activity of phonic groups in environments 
with higher values for these variables.

In summary, vegetation structure consistently emerges 
as the most influential predictor across all phonic groups, 
showing negative effects on bat activity. While responses 
to microclimate varied by group (e.g., PG1 and PG2 
favored warmer conditions, whereas PG3 and PG4 pre-
ferred cooler temperatures), all groups avoided higher 
elevations and distant water sources and exhibited strong 
ecoregion associations—PG1 and PG2 with the Patago-
nian Forest, and PG3 and PG4 with Low Monte.

Fig. 3  Variation of number of passes of phonic groups a) PG 1, b) PG 2, c) PG 3 and d) PG 4 according to ecoregions
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Discussion
The main aspects of Patagonian bats that have been stud-
ied are morphology [34, 35, 40] and distribution [37, 38, 
99], including occasional records for some species [7, 23]. 
In this context, our study provides unique information on 
spatial activity of phonic groups that inhabit an extensive 
and environmentally heterogeneous area in the Patagonia 
region via a passive monitoring network.

The most plausible models revealed that climatic and 
environmental variables jointly influenced the spatial 
activity of all phonic groups of Central Patagonia, sup-
porting most of our hypotheses. We found that the 
spatial activity of phonic groups in summer, varied in 
relation to climatic and environmental characteristics. 
The spatial activity of all phonic group was associated 
with temperature, relative humidity, elevation, and prox-
imity to water, but mainly responded to the structure of 
the habitat (cover vegetation variables and ecoregion). 
Each phonic group responded differently to these last 
variables. In contrast, the productivity variables had less 
influence than expected compared to the other variables 
analyzed.

Effect of vegetation cover
Each phonic group’s association with different vegeta-
tion cover and ecoregions suggests preferences based on 
foraging style and spatial use, supporting our hypothesis 
1. In this sense, PG1 (Myotis) spatial activity was influ-
enced to a greater extent by the TC (% tree cover) in a 
negative way. In Patagonia, M. chiloensis and M. levis are 
adapted for aerial foraging in edge spaces due to their 
short, wide wings and small size [27, 35], which allow 
them greater maneuverability in edge spaces [35]. How-
ever, despite their high maneuverability, the activity of 
this group could also be reduced in highly cluttered envi-
ronments since they lack echolocation calls adapted to 
environments with high background interference from 
vegetation [20, 22]. Therefore, this echolocation call 
structure (high-frequency, broadband, and short-dura-
tion FM-QCF) would allow these species to feed in edge 
spaces (and not so much in narrow spaces) in environ-
ments with greater plant structure compared to the other 
phonic groups [22, 27], explaining PG1’s preference for 
forested areas like Patagonian Forest where activity was 
higher (e.g., site 3).

The PG2 (Lasiurus and H. magellanicus) spatial activ-
ity showed a negative association with TC (% tree veg-
etation) indicating decreased activity in environments 
with dense vegetation structure (e.g., cluttered spaces). 
This relationship may be due to the fact that the spe-
cies included in this group (Lasiurus and H. magellani-
cus), have wing characteristics that allow them to hunt 
in the air and forage on edges (mainly H. magellanicus) 
and open spaces [35]. Likewise, the structure of the 

echolocation calls of these species is not adapted to navi-
gate or feed in dense vegetation, but rather in edge spaces 
or forest clearings [20, 22]. Lasiurus in particular, prob-
ably has the most flexible behavior, alternating forested 
habitats and open space, due to its migratory capacity 
[35]. In addition, ecoregion variable was also selected 
by the most plausible models, showing a greater activity 
of PG2 in Patagonian Forest (e.g., site 1). This coincides 
with the fact that most of the records of these species in 
the study area are found in forest environments [23, 36, 
37].

The spatial activity of PG3 (Histiotus) was nega-
tively associated with the variable EVI and NDVI, and 
positively with NTV. EVI and NDVI are indexes that 
responds to structural variations in the canopy, so low-
est values ​​indicate low tree cover [105]. In combination, 
the association with both variables indicate that spatial 
activity of this group is greater in environments with less 
tree vegetation. Consistently, the model selected ECO 
variable, showed a higher spatial activity of PG3 in Low 
Monte (e.g., site 9). The PG3 include Histiotus species 
(H. macrotus and H. montanus) that are characterized by 
having longer ears (> 27 mm) and emitting low-frequency 
calls [40]. Such features are associated likely to foraging 
in edge or open space in different degree [35, 40], which 
is consistent with the environments where this group 
presented greater activity (Low Monte and Patagonian 
Steppe).

Finally, the spatial activity of PG4 was associated nega-
tively with TC, indicating that an increase in tree cover 
generates a decrease in the activity of this group. In addi-
tion, PG4 showed a greater spatial activity in environ-
ments with low or sparce vegetation. This group included 
only Tadarida brasiliensis, due to its distinct echoloca-
tion call structure (QCF, [20]). This species is widely 
known to be an aerial hawker in open space, due to the 
combination of its wing morphology (long and narrow 
wing [35, 63]) and bioacoustic characteristics [20, 21]. 
Therefore, it is expected to observe greater spatial activ-
ity of this specie in open environments with less vegetal 
structure such as Low Monte (e.g., site 9).

Effect of microclimate
As mentioned initially, temperature and relative humidity 
also resulted in important predictive variables on spatial 
activity in summer for all phonic groups analyzed, sup-
porting our hypothesis 2. The groups showed an increase 
in activity with decreasing temperature, except PG1, 
which showed an inverse association (greater activity 
at higher temperatures). In relation to relative humidity 
the spatial activity was positively associate with the four 
phonic groups, indicating an increase in activity with 
increasing relative humidity.
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The climatic variables T and RH, have been widely 
associated with the activity of bats, for its effect on ther-
moregulation of these animals and probably because it 
affects insect densities [14, 41, 101]. Favorable weather 
conditions increase the flight probability of insect prey 
and reduce the energetic costs of flight and echoloca-
tion [14]. With respect to temperature, only PG1 showed 
a positive relationship with this variable, indicating that 
spatial activity for this group is, as expected, favored by 
higher temperatures. On the contrary, for the rest of 
groups, spatial activity decreased with increasing tem-
perature. Reducing activity on warmer nights in summer 
may be a strategy to prevent water loss through evapora-
tion and, thus avoid dehydration, especially in arid envi-
ronments with less water availability [54, 61, 76], such as 
Low Monte and Patagonian Steppe [12, 33]. In relation to 
this, the increase in relative humidity favored the spatial 
activity of all phonic groups. Thus, our results suggest 
that relative humidity levels above 30% may enhance bat 
activity. However, these results should be studied in more 
depth to corroborate this relationship.

Effect of elevation and proximity to water
Elevation and proximity to water also were important 
predictive variables in all most plausible models for each 
group, consistent with hypotheses 3 and 4. In this case, 
both variables affected negatively the summer spatial 
activity of four phonic groups. Within the range of 71 to 
1,105 masl included in our study, higher spatial activity 
was observed in environments located in intermediate 
elevations. For PG1 and PG2 the greatest activity was 
recorded between 350 and 550 masl, reinforcing both 
groups’ preferences for forested environments. A plausi-
ble explanation for these results is that, in environments 
with a marked elevational gradient (Patagonian Forest), 
the greatest insect species richness could be found at 
mid-elevations, resulting in greater food availability and 
enhanced bat activity. This same relationship has been 
observed in bat communities in other temperate regions 
[58, 91]. While that for PG3 and PG4, the spatial activ-
ity was higher in elevations between 200 and 440 mals. 
In this case, selection could be mainly due to the type 
of environment (with low vegetation structure, such as 
scrubland and steppe) due to its wing restrictions and 
foraging habits [35].

Our results show that increased distance to freshwater 
bodies is associated with reduced bat activity. Similar pat-
terns have been observed in other studies, demonstrating 
how water sources can affect the structure of bat popula-
tions and communities [1, 13, 18, 46, 51, 54, 62, 86, 92]. 
Water bodies are expected to contain a high abundance 
of nocturnal insects (many of which have aquatic life 
stages) and constitute an important part of the bat insec-
tivorous diet [46, 54, 92] and particularly of Patagonian 

bats [39]. In addition, bats use water sources for drinking, 
thus, even small, temporary or ephemeral ponds can be 
highly important for these animals [46, 54, 75, 92]. Like-
wise, the availability of free water has been considered an 
important conditioning factor in lactating female bats, 
because water loss during roosting is greater throughout 
lactation, thus generating a greater water requirement [1, 
46].

Effect of environmental productivity
Among the variables analyzed in our study, the produc-
tivity variables (NPP and GPP) were those that had the 
least influence on the spatial activity of phonic groups. 
Notably, none of these variables were significant predic-
tors for PG4. Similarly, GPP was only selected as a pre-
dictive variable by a single model for PG2. Both variables 
had a negative effect on the spatial activity of phonic 
groups, so they did not support our last hypothesis. This 
suggests that morphological traits that influence foraging 
style and space use may have a stronger effect on activ-
ity than food availability. It is evident that the environ-
ments that showed greater productivity also exhibited 
denser tree cover and, therefore, more closed or cluttered 
spaces, which would make navigation difficult for any of 
phonic groups analyzed since none of them are adapted 
to foraging in narrow spaces [20]. However, these results 
should be considered preliminary and analyzed in more 
detail at the microhabitat level for corroboration, since 
previous studies have demonstrated their importance in 
determining bat activity [79, 95, 96].

Final considerations
Because this study is the first in the analyzed area (with-
out a prior basis for comparison), the sensitivity of the 
microphones used may represent a methodological 
limitation in our study. Although the use of AudioMoth 
detectors has significantly expanded in recent years in 
bioacoustic studies of bats (e.g., [53, 78]), their efficiency 
could be considered a limitation compared to similar 
equipment [48]. Therefore, it is necessary to continue 
acoustic monitoring, testing different equipment that can 
corroborate our results and deepen knowledge about the 
specific activity of Patagonian bats. We also consider it 
important to explore these studies at a smaller scale, or 
at the microhabitat level, to corroborate our results. It 
would also be interesting to evaluate whether these fac-
tors have the same impact, considering Patagonia’s latitu-
dinal gradient.

Nonetheless, despite these limitations, our find-
ings provide valuable insights into the activity patterns 
of Patagonian bats. From a conservation perspective, 
and in the context of climate change, this information 
takes on greater relevance. Habitat loss due to anthro-
pogenic activity (agricultural expansion, overgrazing, 
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deforestation, fires, etc.) in Patagonia, coupled with the 
effects of climate change [52, 89], could affect the avail-
ability of shelters, food, and water for Patagonian bats, 
considering their association with these environments. 
While it is unknown how climate change may directly 
impact Patagonian bat populations, it has been dem-
onstrated how this factor can impact the ecosystems 
in which these animals live. In this sense, both forested 
and semi-arid environments are highly vulnerable to 
climate change [19, 54, 64, 86]. A recent study projects 
a significant decrease in the extent of temperate decidu-
ous forests (−30%) and the Patagonian Steppe (−20.6%; 
[98]). Relatedly, rising temperatures, loss of plant species, 
changes in precipitation, and the frequency of drought 
events are expected to increase the vulnerability of Pata-
gonian ecosystems [31, 52, 98]. Therefore, Patagonian 
bats could be affected not only by habitat loss but also by 
water scarcity, with arid or semi-arid environments—e.g., 
Patagonian Steppe and undergrowth—being the most 
affected [46]. In this context, the population trends of 
most species inhabiting Patagonia are unknown, includ-
ing the region’s endemic species (e.g., H. magellanicus 
and M. chiloensis, sensu IUCN 2024). Although our anal-
ysis does not differentiate at a specific level, the trends 
in activity patterns for each bat group are clear and can 
be used as a basis for more detailed studies on this topic. 
From our results, it can be interpreted that the preserva-
tion of habitat (plant structure in both forest and steppe 
environments) and water bodies is essential for the pro-
tection of insectivorous bat populations in Patagonia. 
Therefore, our findings may be useful for implementing 
conservation policies for Patagonian bat populations in 
protected and unprotected areas in Patagonia.

Conclusion
Passive acoustic monitoring in Central Patagonia, Argen-
tina, revealed that the summer spatial activity of four 
phonic groups is jointly governed by climatic (tempera-
ture and relative humidity) and environmental variables 
(elevation, proximity to water and ecoregion), with veg-
etation structure being the dominant driver. The dif-
ferential association of each phonic group with specific 
vegetation cover variables and ecoregions may indicate a 
particular preference of each group for certain environ-
ments, depending on their foraging style and use of space. 
In relation to this, the PG1 (Myotis) and PG2 (Lasiurus 
and Histiotus magellanicus) showed greater spatial activ-
ity in forest environments (Patagonian Forest), while PG3 
(H. macrotus and H. montanus) and PG4 (T. brasiliensis) 
showed greater spatial activity in steppe environments 
(Low Monte). In the context of climate change, the loss 
of habitat and water availability (mainly in arid and semi-
arid environments) could affect the populations of Pata-
gonian bats, considering the importance of these factors 

in influencing their spatial activity. Further research is 
still needed to fully understand the activity patterns of 
bats; however, our study is the basis for continuing in this 
line.
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