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Ferredoxins are electron shuttles harboring iron–sulfur clusters which participate in oxido-reduc-
tive pathways in organisms displaying very different lifestyles. Ferredoxin levels decline in plants
and cyanobacteria exposed to environmental stress and iron starvation. Flavodoxin is an isofunc-
tional flavoprotein present in cyanobacteria and algae (not plants) which is induced and replaces
ferredoxin under stress. Expression of a chloroplast-targeted flavodoxin in plants confers tolerance
to multiple stresses and iron deficit. We discuss herein the bases for functional equivalence between
the two proteins, the reasons for ferredoxin conservation despite its susceptibility to aerobic stress
and for the loss of flavodoxin as an adaptive trait in higher eukaryotes. We also propose a mecha-
nism to explain the tolerance conferred by flavodoxin when expressed in plants.
� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Ferredoxins and flavodoxins by the flavoenzyme ferredoxin-NADP+ reductase (FNR) [2,3]. The
1.1. Electron shuttling: a common theme in oxido-reductive processes

Electron shuttling is a key feature of many redox pathways in all
living organisms. This function is usually performed by diffusible
electron carrier proteins which act as electronic switches between
cellular sources of reducing power (i.e., light-driven reactions,
pyridine nucleotides, sugars) and electron-consuming routes and
processes. In organisms displaying oxygenic photosynthesis
(plants, algae and cyanobacteria), ferredoxin (Fd) is a key player
of electron shuttling [1]. There, Fds collect reducing equivalents
generated in the photochemical reactions of the photosynthetic
electron transport chain (PETC), and deliver them to a plethora of
metabolic, regulatory, dissipative and developmental processes. A
substantial fraction of photoreduced Fd is employed for the reduc-
tion of NADP+ in an electron-hydride exchange reaction catalyzed
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NADPH thus formed is subsequently employed for CO2 fixation in
the regenerative steps of the Calvin cycle and for other biosyn-
thetic, regulatory and protective reactions. Reduced Fd molecules
also act as electron donors for N and S assimilation, amino acid,
fatty acid and secondary metabolism, reductive activation of en-
zymes, antioxidant regeneration, etc. (reviewed in [4]). A compre-
hensive list of known Fd partners is provided in Table 1.

Ferredoxins employ iron–sulfur clusters of different stoichiom-
etry as prosthetic groups, with the photosynthetic Fd harboring a
[2Fe–2S] center [1]. Canonical Fds have Mw of �12 kDa and a mid-
point redox potential of about �410 mV [5], which allows them to
behave as low potential electron shuttles. Fd is found in a wide
range of organisms pervading all kingdoms, aerobic and anaerobic,
with plastid and mitochondrial variants in higher eukaryotes. Sev-
eral isoforms are usually present in plants and cyanobacteria [6–9].
Expression of photosynthetic Fd is induced by light and declines
under iron starvation [10–14]. Noteworthy, oxidative stress and
adverse environmental situations (salt, extreme temperatures,
water deficit) lead to down-regulation of Fd levels in both plants
and cyanobacteria [14–18].

Many prokaryotes and some oceanic algae contain an isofunc-
tional electron shuttle, flavodoxin (Fld), a small soluble protein
(Mw = 15–22 kDa) which has a non-covalently bound FMN
lsevier B.V. All rights reserved.
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Table 1
Identified partners of Fd and Fld in chloroplasts and cyanobacteria.

Protein partners Function Metabolic pathway Organisms References

Ferredoxin
Photosystem I (PSI) Photosynthetic electron transport Photosynthesis Cyanobacteria, algae, plants [82]
FNR NADP+ reduction Photosynthesis Cyanobacteria, plants [1,83]
Nitrite reductase Reduction of NO2

- to NH4+ Nitrogen assimilation Cyanobacteria, algae, plants [1,83]
Nitrate reductase Reduction of NO3

- to NO2
- Nitrogen assimilation Cyanobacteria [1,83]

Nitrogenase and pyruvate:Fd oxidoreductase or FNR N2 fixation Nitrogen assimilation Cyanobacteria [84]
Hydrogenase H2 formation Hydrogen metabolism Cyanobacteria [84]
Glutamate–oxoglutarate amino transferase (GOGAT) Glutamate synthesis Amino acid synthesis Cyanobacteria, algae, plants [1,83]
Sulfite reductase Reduction of SO3

2� to H2S Sulfur assimilation Plants [1]
Ferredoxin-thioredoxin reductase Thioredoxin reduction Redox regulationa Cyanobacteria, algae, plants [1,83]
Fatty acid desaturase Double bond formation in fatty acids Lipid metabolism Cyanobacteria, plants [83,85]
Monodehydroascorbate reductase Ascorbate regeneration Antioxidant defense Plants [86]
Heme oxigenase and phytochromobilin synthase Phytochromobilinb synthesis Development Plants [87,88]
Heme oxigenase and phycocyanobilin:Fd oxidoreductase Phycocyanobilinc synthesis Development Cyanobacteria [83,89,90]
PGRL1, PGR5, FNR and PSI Cyclic electron flow Photosynthesis Algae, plants [91,92]

Flavodoxin
PSI Photosynthetic electron transport Photosynthesis Cyanobacteria, algae [82]
FNR NADP+ reduction Photosynthesis Cyanobacteria, algae [22,93]
FNR and PSI Cyclic electron flow Photosynthesis Cyanobacteria [94]
Nitrogenase N2 fixation Nitrogen assimilation Cyanobacteria [95]
Hydrogenase H2 formation Hydrogen metabolism Cyanobacteria [84]

a Reduced thioredoxin activates key chloroplast enzymes of the Calvin cycle, the malate valve, etc.
b Plant chromophore of the light sensor phytochrome and intermediate in the synthesis of chlorophyll.
c Chromophore of the light sensor phytochrome in cyanobacteria and green algae, and precursor of the chromophores of the light-harvesting phycobiliproteins.
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molecule as prosthetic group instead of an iron–sulfur cluster [19].
Unlike Fd, which is an obligatory one-electron carrier, the flavin
group of Fld can in principle exchange one or two electrons, oscil-
lating between the oxidized, the semiquinone and the hydroqui-
none states [20]. However, empirical evidence indicates that Fld
behaves as a one-electron carrier under all circumstances, switch-
ing between the semiquinone/hydroquinone states [21]. This tran-
sition has a redox potential close to that of the Fe+3/Fe+2 reaction of
Fd, whereas the conversion of the oxidized form into the semiqui-
none is usually 200 mV less negative.

Fld properties as redox shuttle largely match those of Fd (Table 1),
and the flavoprotein can replace the metalloprotein in most
reactions [22]. In organisms in which both electron carriers are
present, Fld is typically induced as an adaptive resource under envi-
ronmental or nutritional hardships that compromise Fd expression
or activity (i.e., iron limitation), allowing survival and reproduction
under conditions that would be otherwise deleterious. However, a
few Fld-specific metabolic routes have been described. Indeed, Fld
is an essential gene in Escherichia coli and Helicobacter pylori,
whereas Fd is not [23–25]. Both Fd and Fld are able to mediate
NADP+ photoreduction via FNR [26]. This reaction can proceed back-
wards, from NADPH to oxidized Fd/Fld, for instance in non-photo-
synthetic plant tissues (i.e., roots) and cyanobacterial heterocysts
[3]. NADPH is the normal reductant in heterotrophic microorgan-
isms and mitochondria, although carbohydrates can also be used
as electron source to reduce Fd/Fld by committed enzymes such as
the pyruvate-Fd reductase of E. coli [27].

Fld is present in prokaryotes (including cyanobacteria) and
some algae, but has not been found in the genomes of plants (or
animals), indicating that this adaptive resource was irreversibly
lost in the long evolutionary history that led to current day strep-
tophytes and metazoans [28].

1.2. The basis for functional equivalence: promiscuity as a virtue

Fld and Fd do not share any significant similarity in primary,
secondary or tertiary structures, and yet they can interact produc-
tively with the same redox partners with comparable efficiency.
The key to this apparent paradox resides in the very function of
these proteins. The most desirable property of an electron shuttle
is the ability to exchange reducing equivalents with the highest
possible number of different redox partners. Accordingly, Fd and
Fld have been tailored by evolution to be promiscuous in their
interactions. Analysis of plant Fd binding sites in various Fd-depen-
dent enzymes revealed no obvious homology [1]. Then, docking of
Fd (and Fld) must be determined by general features of the pro-
teins rather than contacts with specific conserved amino acids.
The prosthetic groups of both proteins (flavin and [2Fe–2S]) are
eccentric and surrounded by patches of negatively charged resi-
dues, while their enzyme partners harbor a crown of positively
charged amino acids around their exposed cofactors [1]. Initial
interactions are therefore steered by electrostatic attractions that
help to stabilize the binary complexes, and serve to position the
corresponding prosthetic groups at the proper distance to allow
direct outer-sphere electron transfer between them. These charged
regions are remarkably insensitive to mutations, and different
accommodations of the two proteins (i.e., rotations) are allowed
without losing the ability for efficient electron transfer [29–31].

Although Fd and Fld differ in nearly all structural features, they
could be aligned on the basis of their Coulomb electrostatic poten-
tials. Applying the Hodgkin index to evaluate their similarity in this
sense, Ullmann et al. [32] obtained a significant overlapping. The
cofactors, rather than their centers of mass coincided in the align-
ments. Both proteins have strong dipole moments (380–700 Deb-
yes), with the vectors of the negative dipole pointing toward the
flavin ring in Fld and the iron–sulfur cluster in Fd [21,33]. These
considerations provided a conceptual framework to understand
why these electron carriers are able to interact with so many dif-
ferent enzymes, and why they can be swapped without major loss
in efficiency.

1.3. Ferredoxin: the Achilles’ heel of aerobic life?

Iron–sulfur clusters are sensitive to oxidation and low iron avail-
ability, which are the hallmarks of aerobic environments. And yet
they are probably the cofactors more diversely employed by contem-
porary organisms. Why aerobes rely so heavily on chemical groups
which appear ill-suited for an oxygen-rich habitat? Iron–sulfur
centers in general, and Fds in particular, are very ancient biocatalysts
that were already present in early organisms. Life in Earth originated
about 3.5 billion years ago (Ga) in an anaerobic environment where
oxygen was largely absent and Fe+2 and sulfide, plentiful (Fig. 1A).



A.F. Lodeyro et al. / FEBS Letters 586 (2012) 2917–2924 2919
Unlike organic prosthetic groups, iron–sulfur centers can be formed
spontaneously from these simple compounds, and eventually
assembled into extant polypeptide structures, since analogous
clusters can be created in vitro by incubating ferrous and sulfide salts
with organic thiolates. In addition, iron–sulfur centers exhibit great
chemical versatility: they can accept and donate electrons in a range
of oxido-reductive processes, act as Lewis acids during dehydration of
carbonyl compounds in hydro-lyases, and mediate derivatisation
of aliphatic metabolites by radical-based mechanisms [34]. These
remarkable traits favored dispersion of organisms containing
iron–sulfur proteins throughout the primordial anaerobic world,
and placed these cofactors among the earliest catalysts. Indeed, one
of the most provocative theories on the origin of life, developed by
Wächtershäuser [35,36], proposes that they actually were the first
catalysts and that life originated on the surface of pyrite (an iron–
sulfur complex) deposits in the oceans.

The preceding discussion was intended to explain why
iron–sulfur clusters were widespread when, approximately
Fig. 1. Interplay between geochemical changes and biological evolution and its
implications on the current Fld distribution. (A) Temporal relationships between
atmospheric O2 concentrations, availability of iron and sulfur and major evolution-
ary events along the Earth’s life (adapted from [80,81]). (B) Fld distribution. The
different colors indicate the two classes of Flds: red for the ‘short chain’ family
(�140 amino acids) and green for the ‘long chain’ family (�170 residues) [22].
Dashed lines indicate primary endosymbiotic events that gave rise to plastids and
mitochondria. Secondary endosymbioses were omitted for simplicity. Branch
lengths are not in scale.
2.75 Ga, cyanobacteria evolved photosystem II (PSII) and hence
oxygenic photosynthesis, relieving these prokaryotes from the
need of external electron donors. Oxygen concentrations remained
low over the following two billion years or so, limited by both the
paucity of oceanic phosphorous to support ATP synthesis, and by
oxygen removal through reaction with dissolved ferrous and sul-
fide ions [37]. The rise of oxygen levels at the brink of the Precam-
brian (�0.8 Ga) led to one of the most catastrophic evolutionary
stresses since early biotic history (Fig. 1A).

On the plus side, microbes were presented with the opportunity
to use oxygen as a terminal oxidant, an adaptation that required
surprisingly little molecular evolution [34]. Since aerobes kept
many of the catabolic and biosynthetic pathways present in their
anaerobic ancestors, maintenance of most iron–sulfur protein fam-
ilies was ensured. At the same time, oxygen build-up negatively
affected the function of these metalloproteins in a number of ways.
First, spin-pairing rules dictate that molecular oxygen accepts elec-
trons one at a time rather than in pairs, discouraging reaction with
most organic biomolecules but facilitating oxidation of transition
metals, which are good univalent electron donors. As a conse-
quence, oxygen oxidized ferrous iron in the environment to its fer-
ric form, which rapidly precipitated as ferric hydroxide or formed
insoluble complexes with anionic salts. The upshot was that as
oxygen accumulated, iron decreased its bioavailability and became
a limiting nutrient in many aerobic habitats (Fig. 1A) [34].

Second, partial reduction of oxygen generates oxidants with
even higher reactivity, such as hydrogen or organic peroxides and
the superoxide radical, collectively known as reactive oxygen spe-
cies (ROS). Even under optimal growth conditions, �5% of all elec-
trons moving through the photosynthetic or respiratory chains
are adventitiously delivered to oxygen with concomitant ROS gen-
eration. In photosynthetic organisms, this fraction increases
dramatically under adverse environmental conditions [38]. Stress-
dependent Fd down-regulation likely contributes to the establish-
ment of the oxidative condition by self-propagating successive
rounds of ROS synthesis. The decline in Fd amounts leads to over-
reduction of the PETC due to shortage of electron acceptors. Under
such circumstances the electron surplus could be passed straight to
oxygen resulting in ROS generation [39–41].

Iron–sulfur centers are vulnerable to ROS attack to various ex-
tents, depending on solvent exposure and the polypeptide environ-
ment surrounding the cluster. Oxidation yields unstable forms that
quickly decompose, resulting in protein inactivation and iron re-
lease. Elevated concentrations of free iron can wreak cellular havoc
and lead to oxidative damage by engaging in Fenton-type reactions
with hydrogen peroxide to generate the extremely toxic hydroxyl
radical [34].

Thus, the high iron demand that modern aerobes inherited from
their anaerobic ancestors does not suit well an oxygen-rich world.
Air-thriving organisms tackled these problems at various levels by
improving iron uptake, storage and mobilization, replacing
ROS-sensitive targets by resistant ones (i.e., Fd by Fld), and devel-
oping more sophisticated antioxidant and repair systems. The
many adjustments that have been made are expensive and bestow
only a limited capacity to tolerate this threat. It is doubtful that
iron–sulfur clusters could have emerged as central catalysts had
life originally evolved in an aerobic environment. Largely because
of their reliance on these cofactors, aerobes remain vulnerable to
iron restriction and oxidative stress.

1.4. Flavodoxin as a backup for ferredoxin in different organisms

Flavodoxins are found in all major prokaryotic taxa including
cyanobacteria and a-proteobacteria, the types of organisms that
gave origin to modern day chloroplasts and mitochondria
(Fig. 1B). As indicated above, the flavoprotein is absent from plants
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and animals, except for the ‘‘enslaved’’ Fld-like domains of certain
complex enzymes [22,42]. Fld absence in mitochondria seems to be
universal, suggesting that the original endosymbiont already
lacked the Fld gene, or that it was lost very early after integration.
The situation in photosynthetic organisms is different. Following
endosymbiosis, the gene was transferred to the nucleus of primi-
tive green algae and the product redirected to plastids [43]. Phylo-
genetic analysis of available eukaryotic Fld sequences indicates
that the gene is present in all major algal taxa [44,45], including
those resulting from subsequent endosymbiotic events such as
dinoflagellates, prymnesiophytes, diatoms and cryptomonads
[45,46]. However, it has not been found in streptophytes, the phy-
logenetic branch composed of embryophytes (land plants) and
charophytes [47–49]. This distribution suggests that the gene
was lost somewhere in the transition between green algae and ter-
restrial plants.

Although Fld expression is induced under oxidative and envi-
ronmental stress conditions, for instance during the soxRS response
of E. coli [50], iron deficit appears to be the most critical imperative
that determined its adaptive value [45]. The occurrence of this
electron shuttle has been more extensively studied in marine
organisms. Coastal waters typically contain high nutrient concen-
trations (including iron), due to inputs from land and sediments
[51]. On the contrary, iron tends to be chronically deficient in the
open oceans [51,52], where Fe levels could be 100- to 1000-fold
lower than in the coast [53]. Comparisons between related organ-
isms that have colonized the two habitats indicate that the mini-
mal amount of iron required for growth of coastal phytoplankton
is higher than that required by oceanic siblings [54].

As the atmosphere became oxidant and the oceans iron-
deficient, several mechanisms to survive iron limitation were
developed by marine microorganisms, such as high surface-to-vol-
ume ratio to aid nutrient uptake [55], a more extensive machinery
for metal storage [56], and a decrease of iron-rich PSI (12 iron
atoms per complex) in favor of PSII (2–3 iron atoms per complex)
[57]. Adaptation also included extensive replacement of iron-
dependent proteins by isofunctional counterparts [51,56,58].
Known examples are the use of the copper protein plastocyanin in-
stead of cytochrome c6 (a hemoprotein), of cobalt-containing ribo-
nucleotide reductase in place of the Fe-dependent isoenzyme, and
of Mn-, Cu/Zn- and Ni-containing superoxide dismutases [43,59–
61]. Within this context, expression of Fld as a backup of Fd is con-
sidered as the most crucial factor determining the colonization of
iron-poor waters by phytoplankton [62]. The importance of Fld in
the dynamics of sea ecology can be gauged by its use as a proxy
for iron stress in the oceans [46]. Evaluation of metagenomic data
showed that microorganisms lacking this flavoprotein are usually
confined to coastal areas while Fld-containing marine microorgan-
isms are preferably located in oceanic environments [56]. More-
over, closely related species may or may not contain Fld
depending on their habitats [46,63,64].

Iron utilization also posed a serious challenge to plants after
land colonization, but of a different nature. Iron is the fourth most
common element (at least in the Earth’s crust), and the problem of
iron acquisition in soil is not of paucity but of availability. The main
forms of iron in soils are ferric oxides, which are sparingly soluble
at neutral pH and even less in alkaline medium [65]. It is worth
noting that alkaline calcareous soils represent about one-third of
the planet’s cultivable land [65]. In this novel scenario, it is not
clear why a trait with adaptive value such as Fld was not selected.
One trivial explanation would be that the flavoprotein was unable
to cope with the many changes in the metabolic networks that oc-
curred during the radiation of terrestrial plants, and could no long-
er be used as a backup of Fd in these organisms. The following
sections describe observations that contradict this contention.
2. Expression of cyanobacterial flavodoxin complements
ferredoxin deficiency in transgenic plants

As discussed previously, the constraints for binding both Fd and
Fld to cognate partners are less stringent than those of typical
enzyme–substrate interactions. It was therefore not entirely unex-
pected that purified Fld could productively interact in vitro with
plant enzymes whose prokaryotic ancestors used this flavoprotein
as their common or occasional substrate. They include FNR, PSI and
thioredoxin reductase for NADP+ and thioredoxin reduction [15], as
well as cyclic electron transport by isolated plant thylakoids [66].
Anabaena Fld is even able to engage in electron transfer reactions
with the FNR from mammalian mitochondria [67], although this
reductase is structurally unrelated to plant or cyanobacterial FNR
and has a different evolutionary origin.

These observations strengthened the possibility that Fld could
still function in planta, and that its introduction into the plant gen-
ome could improve stress tolerance in the same way as in microor-
ganisms. The answers to these questions are not obvious. Even if
Fld were able to interact with plant redox partners in vivo, replace-
ment of Fd in stressed or iron-starved plants could be no longer
critical for the survival of the host organism. Other proteins with
higher sensitivity to these environmental hardships could have ap-
peared during the evolution of terrestrial plants, and Fld might
have become dispensable precisely because compensation of Fd
decline ceased to be of selective advantage. Indeed, plants face
the consequences of adverse environments (including Fd down-
regulation) by alternative strategies. They deploy complex re-
sponses involving hundreds of genes whose products combat the
stress situation at various levels, without resorting to the substitu-
tive strategy found in prokaryotes and algae.

In spite of this uncertain prognosis, introduction of an engi-
neered gene encoding a plastid-targeted Fld into the nuclear gen-
ome of various model and crop plants led to stable transformants
that accumulated a properly assembled, active Fld [15]. Although
the gene was placed under the control of constitutive promoters
in all cases, the resulting plants contained various levels of the for-
eign flavoprotein due to position effects during integration of the
T-DNA into the host genome [12,15,68]. When grown under nor-
mal conditions, these transformed plants did not differ signifi-
cantly from their wild-type (WT) siblings with respect to growth
rates, biomass accumulation, flower development and seed pro-
duction [12,15,68]. The highest expressing lines displayed pheno-
typic traits similar to those of the wild type, except for a slight
increase (�20%) in chlorophyll a and carotenoids levels [69]. In
contrast, they were able to withstand a remarkable range of envi-
ronmental adversities that proved detrimental to their WT coun-
terparts, including drought, high light intensities, heat, chilling,
ultraviolet radiation and poisoning with the contact herbicide
paraquat [15,68]. Furthermore, Fld expression prevented ROS-
triggered localized tissue death during inoculation with a non-host
pathogen [70], and allowed growth and reproduction in iron-
limited soils and media [12]. Interestingly, iron-starved Fld-
expressing lines accumulated low levels of iron, similar to those
of the wild type, and displayed a normal response to Fe deficit,
indicating that the presence of Fld did not interfere with processes
involved in iron status sensing, uptake or mobilization [12]. These
plants simply lived and reproduced on lower iron quotas. Finally,
transformation of either plant or rizhobia with a cyanobacterial
Fld gene delayed legume nodule senescence [68,71], and protected
nitrogen fixation activity of nodules exposed to salt or heavy metal
toxicity [68,72].

ROS accumulation, which was prominent in stressed WT plants,
was significantly mitigated in the transformants [15], especially in
chloroplasts [70]. Complementation of Fd functions by Fld was
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demonstrated by introducing a plastid-directed Fld into tobacco
plants in which Fd expression had been knocked down using
RNA antisense or RNA interference techniques [41]. Fd deficiency
caused growth arrest, leaf chlorosis and photosynthetic impair-
ment [6,39–41]. Expression of Fld resulted in partial recovery of
all these parameters, with nearly WT phenotypes obtained in
plants accumulating less than 15% of normal Fd levels [41]. Unex-
pectedly, expression of a plastid-directed Fd from cyanobacteria in
WT tobacco failed to increase stress tolerance. The transgenic
product declined even faster than the endogenous Fd when the
transformed plants were exposed to various environmental hard-
ships [18], revealing the existence of post-transcriptional control
in the expression of this protein, as initially reported by Petracek
et al. [11].

For all types of stresses assayed, the effect of Fld was dose-
dependent, and targeting of the product to chloroplasts was man-
datory. Transgenic plants that expressed Fld in high amounts in the
cytosol displayed WT levels of stress tolerance [12,15,70]. The
main conclusion drawn from these studies was that Fld contrib-
uted to the welfare of stressed plants by restoring chloroplast re-
dox homeostasis compromised by stress-dependent Fd decline.
The presence of the flavoprotein prevented electron misrouting
and ROS formation, and favored delivery of reducing equivalents
to productive metabolic, regulatory and dissipative pathways.
The amount and redox state of Fld are obviously important to
accomplish these tasks, suggesting that stress tolerance could be
further manipulated by increasing Fld levels and reduction rates.
In nuclear-transformed plants, accumulation of Fld in chloroplasts
was limited by plastid import efficiency of the chimeric Fld precur-
sor [15], with maximal leaf contents similar to those of endoge-
nous Fd, �3 lmol m�2 [18]. Likewise, Fld reduction by the PETC
is limited by electron transfer efficiency, which was about 50%
lower than that of plant Fd when assayed in vitro [15]. Attempts
to overcome these limitations are described in the following
section.
relationships between photosynthetic performance/stress tolerance and Fld doses
of transgenic tobacco plants. Details of models i (dotted line), ii (dashed line) and iii
(solid line) are given in the text. (B) Expression of Fld and sFNR in chloroplasts
increase tolerance to paraquat toxicity. Total chlorophyll (black bars) and carote-
noids (grey bars) remaining contents (left panel), and electrolyte leakage (right
panel) were measured on leaf discs from WT and transgenic plants after incubation
with 40 lM paraquat at 1000 lmol quanta m�2 s�1 for 7 h. Results are given as the
mean ± SD of percentages of pigment content relative to discs incubated in water
under the same condition, and of ion leakage relative to zero time.
3. Improvement of tolerance by manipulation of Fld levels and
redox state

3.1. Expression of Fld from the chloroplast genome. An overdose affair

For the analysis of dose dependency, Fld may be considered as a
substrate. It is therefore expected that its effects saturate above a
certain threshold (attained or not at the levels obtained in the
transgenic plants), or even become detrimental to plant fitness
(Fig. 2A). Introduction of the Fld gene directly into the tobacco
chloroplast genome by homologous recombination circumvented
the limits imposed by plastid import efficiency, resulting in trans-
plastomic plants expressing the flavoprotein at levels that were
�4-fold above those of endogenous Fd [69]. Fld could be recovered
as an active protein from leaves of the transformants, but even at
these high concentrations it remained unnoticed in phenotypic
terms in plants grown under normal conditions [69]. When these
lines were compared with WT and nuclear-transformed plants
expressing various levels of the flavoprotein, contents of photosyn-
thetic pigments and photosynthetic performance displayed a mod-
erate increase with Fld amounts up to 2.6 lmol m�2, and then
decreased to WT levels [69]. Tolerance to paraquat-mediated oxi-
dative stress also exhibited a bell-shaped response, with a signifi-
cant dose-dependent increase in tolerance followed by a drop in
the high-expressing line [69]. The results indicated that optimal
photosynthetic performance and higher stress tolerance were ob-
served at Fld levels comparable to those of endogenous Fd. Further
increases in Fld content become detrimental to plant welfare.
Therefore, the dose-dependency response of Fld expressed in plant
chloroplasts conforms to the behavior described by curve iii in
Fig. 2A.

It is possible that at the high levels obtained in the transplas-
tomic lines, Fld competes with endogenous Fds for reducing equiv-
alents generated at the PETC, and delivers them to stromal
acceptors with lower efficiency. It cannot be ruled out, however,
that an excess of electron acceptors at the reducing side of the
PETC might introduce perturbations in the chloroplast redox
homeostasis that the endogenous plastid systems are unable to
compensate [73,74].

3.2. Optimization of Fld reduction in vivo. The rehab

Acceptor side limitation at the PETC (namely, Fd and NADP+

shortage) is recognized as a major factor leading to runaway ROS
propagation during environmental stress episodes [39–41]. The
ability of Fld to bypass this blockade might be limited by the lower
efficiency of this flavoprotein as electron acceptor of the PETC.
Introduction of a second Fld reduction system could help to amelio-
rate this problem, and since NADPH build-up is another unwanted
consequence of stress episodes, overexpression of FNR seems to be
the logical choice to use the excess of NADPH as electron source for



Fig. 3. Proposed model for the protective mechanism of Fld and sFNR in chloroplasts. (A) WT plants under stress conditions. (B) Fld/sFNR-expressing plants under normal
growth conditions. (C) Fld/sFNR-expressing plants under stress situations. Details are given in the text; ox, oxidized; red, reduced.
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Fld reduction. Plant FNRs are made up of two structural domains,
bind extrinsically to the stromal side of thylakoids and are pre-
sumed to be membrane-bound when mediating NADP+ photore-
duction, whereas solubilized FNR catalyzes Fld reduction by
NADPH with high efficiency [2,75]. Expression of a pea FNR in to-
bacco chloroplasts resulted in partition of the foreign flavoprotein
between the thylakoids and the stroma [76]. The FNRs from
Anabaena and related cyanobacteria contain an extra N-terminal
domain, homologous to the CpcD phycobilisome linker polypep-
tide, which is responsible for membrane attachment through phy-
cobilisome binding [77]. This region can be excised to abolish
thylakoid interaction without affecting enzyme activity as an
NADPH-dependent Fd/Fld reductase [78].

A gene encoding a plastid-directed soluble FNR (sFNR) was
obtained by replacing the N-terminal domain of Anabaena FNR with
a chloroplast-targeting transit peptide. Expression of sFNR in tobac-
co chloroplasts led to transgenic plants whose growth phenotypes
and stress tolerance were similar to those of their WT siblings
[79]. The foreign enzyme was quantitatively recovered in the leaf
soluble fraction and exhibited NADPH-dependent catalytic activity.
Double-transgenic lines expressing both cyanobacterial Fld and
sFNR were generated by cross-fertilization of homozygous single
transgenic lines. Under optimal growth conditions, they had a high-
er NADP+/NADPH ratio, but failed to display phenotypic differences
with respect to WT plants [79]. In contrast, the double transgenic
lines exhibited higher tolerance to paraquat-mediated oxidative
stress, as revealed by a 5-fold decrease (relative to ‘‘ Fld only’’
siblings) in the amount of ion release due to membrane damage,
and by higher levels of pigment preservation (Fig. 2B). ROS build-
up was also differentially prevented in the Fld/sFNR-expressing
lines [79].

These results indicate that replenishment of the acceptor sink at
the PETC, and the presence of an additional electron source for Fld
reduction in the double-transgenic plants significantly increased
stress tolerance. This system would function by recycling NADP(H)
through the Fld/sFNR couple, thus relieving the electron pressure
on the PETC and preventing excessive reduction of the NADP(H)
pool under adverse situations. At the same time, proper delivery
of reducing equivalents to productive oxido-reductive pathways
of the chloroplast will be favored by a continuous stream of
reduced Fld. A model accounting for these observations is depicted
in Fig. 3. In WT plants under stress conditions, Fd levels decline and
NADPH accumulates, leading to over-reduction of the PETC and
ROS build-up (Fig. 3A). In plants expressing Fld and sFNR, Fd and
Fld can be reduced by both the PETC and sFNR. Fld can act in the
same chloroplast oxido-reductive pathways as Fd, but the iron–
sulfur protein will likely be the preferred electron shuttle
(Fig. 3B). Fld can replace declining Fd in stressed plants, restoring
delivery of reducing equivalents to productive electron accepting
routes in stressed double transgenic lines [4,15]. The activity of
sFNR will contribute to these Fld functions, and at the same time
will consume the NADPH surplus, preventing over-reduction of
the PETC and ROS propagation (Fig. 3C).
4. Conclusions and perspectives

Observations made in recent years have shed light on mecha-
nistic and evolutionary aspects concerning the adaptive value of
replacing Fd by Fld in stressed photosynthetic organisms and the
structural bases for functional equivalence between the two elec-
tron shuttles. The results obtained have underscored the impor-
tance of maintaining redox homeostasis in hostile environments,
and the deleterious effects resulting from its perturbation. Within
this context, Fld emerged as a valuable tool to investigate the
relationship between oxido-reductive processes and plant stress
responses, and to probe the multiple roles played by ROS in
stress-related sensing, signaling and regulation, as demonstrated
in the case of biotic interactions [70]. However, a comprehensive
understanding of the effects caused by Fd decline and Fld compen-
sation is still due and will require genome-wide approaches
involving extensive transcript and metabolite profiling. Introduc-
tion of a cyanobacterial Fld in plants led to transgenic lines with
increased tolerance to a remarkable variety of stresses from biotic,
abiotic and xenobiotic origin. These results indicate that stress-
dependent Fd decline continues to be an important issue compro-
mising plant survival, and that Fld still has adaptive value to
correct this danger. Then, the reasons underlying Fld loss from
the plant genome remain a mystery. One possibility is that the
gene was already absent in the coastal macroalgae from which
plants evolved. If iron limitation was indeed the major factor deter-
mining the value of Fld presence in the genome, selective pressure
to retain this flavoprotein might have been low in the iron-rich
coastal regions.
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Finally, the use of the Fld gene to generate stress-tolerant crops
has significant biotechnological potential and presents some un-
ique advantages: multiple stress tolerance can be obtained with
the introduction of a single gene, its prokaryotic origin precludes
regulatory complications in planta, and it shows no developmental
or reproductive penalties under normal growth conditions. A thor-
ough understanding of Fld function in plants under different envi-
ronmental regimes will help to design rational strategies to fully
exploit this novel approach in the agricultural market.
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