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Abstract The composition and concentration of polycyclic

aromatic hydrocarbons (PAHs) adsorbed on particles

smaller than 10 microns (PM10) were analyzed in an urban

area during a 2-year period from August 2011 to August

2013. Diagnostic ratios (DR) and positive matrix factor-

ization (PMF) were employed to assess emission sources.

To discount weather influence, a multiple linear regression

model was generated and also a photodecomposition index

was calculated for each sample. Despite the fact that mean

PM10 levels showed a similar pattern all around the year,

majority of PAHs showed higher concentrations during the

cold than the warm period, indicating a strong seasonal

variation. A 38% of PAHs variation could be explained by

meteorological variables, with wind speed, wind direction,

and dew point being the significant regressor variables in

the model. The source apportionment of PAHs was per-

formed using PMF although they are photosensitive com-

pounds. The sampling period was separated in warm and

cold seasons according to a photodecomposition index and

cold period was used. Also, DR were calculated. DR as

well as PMF analysis suggested that both gasoline and

diesel vehicular emissions are the main PAHs emission

sources in this urban area.

Polycyclic aromatic hydrocarbons (PAHs) are persistent

and ubiquitous pollutants that exist in the atmosphere in the

vapor as well as in the particulate phase. Low molecular

weight PAHs are usually distributed in the gas phase,

whereas high molecular weight PAHs are distributed in the

particulate phase. These compounds have been classified as

priority pollutants because of the toxicity as well as car-

cinogenic, mutagenic, and teratogenic effects (IARC

2010). Indeed, they are the main responsible for the toxi-

city of particles since most carcinogenic PAHs are asso-

ciated with airborne particles rather than in the gas phase

(Ravindra et al. 2008; Srogi 2007).

The presence and sources of PAHs have been exten-

sively studied worldwide (Lee et al. 2011; Liu et al. 2015;

Nizzetto et al. 2008; Tan et al. 2011). It is already accepted

that the main emission source of PAHs is the incomplete

combustion of biofuel (Zhang and Tao 2009) and indoor

fire wood (Shen et al. 2013). Although in some cities

burning biomass for heating is one of the major sources of

emission (Abdel-Shafy and Mansour 2015), this is not the

case for Cordoba city, where most houses are connected to

an extensive network of natural gas for domestic heating or

cooking. Other emission sources include coal and wood

combustion, vehicle exhaust, straw and waste burning,

cigarette smoking, and industrial production, such as metal,

coke, and iron production (He et al. 2014). Among these

sources, vehicle exhaust and certain industrial processes

are the main contributors (Mantis et al. 2005; Hien et al.

2007). Vehicle exhaust was even reported to be the most

predominant PAHs source, especially in regions where coal

and coke were replaced by gas or oil (Guo et al. 2003;

Hong et al. 2007; Lee and Kim 2007).

Besides emission sources, the concentration of PAHs in

the atmosphere is largely affected by meteorological
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variables, such as temperature, rainfall, solar intensity (Tan

et al. 2006; Zhou et al. 2005), and wind speed (He et al.

2014). As PAHs are adsorbed to particles, other variables

that influence their composition and concentration are

rainfall (Guo et al. 2003; Zhou et al. 2005), visibility, and

wind speed (He et al. 2014), among others. Li et al. (2006)

and Sikalos et al. (2002) reported that wind speed was one

of the variables that most influenced HAPs levels in the

atmosphere. During calm and atmospheric stability, the

dispersion of pollutants is minor; therefore, they accumu-

late increasing their concentration. Temperature is negative

related to PAHs concentration, because in warm periods

the photodegradation is bigger (Caricchia et al. 1999).

Also, higher temperatures imply that PAHs adsorbed to

particles become PAHs in gaseous phase (Zhao et al.

2011), and therefore when temperatures are lower, the

condensation of these compounds on the particles is higher

(Hong et al. 2007). Thus, higher concentrations of PAHs

are frequently found during the cold respect to the warm

periods in many urban areas (Hu et al. 2012; Tang et al.

2005; Zhou et al. 2005). Similarly, high concentrations of

particle-bound PAHs were already found during wintertime

in Cordoba city (Amarillo et al. 2014). However, the

influence of meteorological conditions and emission sour-

ces that could explain the temporal variation in PAH’s

composition is not fully understood yet.

Receptor models include many tools ranging from

simple mathematical calculations and basic physical

assumptions to complex models that require pre- and post-

data processing and several interfaces (Belis et al. 2013).

Diagnostic ratios (DR) are one of the simplest expressions

to assess the contribution of different sources to PAHs

atmospheric concentrations (Hanedar et al. 2011; Tobis-

zewski and Namieśnik 2012), whereas positive matrix

factorization (PMF) is a more complex technique that has

been extensively used because it allows source apportion-

ment studies even when there is no data on local source

profile inventories (Hanedar et al. 2014; Reff et al. 2007).

Several studies conducted in Argentina determined the

concentration of airborne particles in some populated

cities (Carreras et al. 2008, 2013; López et al. 2011;

Rehwagen et al. 2005). A characterization and source

identification study of particle matter have been carried

out previously in the city of Cordoba considering their

inorganic composition (López et al. 2011). However, little

attention had been paid to PAHs despite the fact that the

genotoxicity of particles is largely due to the presence of

these compounds (Amarillo and Carreras 2012; Carreras

et al. 2013). In the present study, we described the tem-

poral variation in particle phase PAHs concentration and

composition in relation to meteorological variables and

emission sources.

Materials and Methods

Study Area

Cordoba city is the second largest city in Argentina located

in the center of the country (31�240S, 64�110W) with a

population of 1.3 million people. Its topography is concave

which reduces air circulation and causes frequent thermal

inversions during the cold periods (Olcese and Toselli

2002). The climate is sub-humid, with an average annual

rainfall of 790 mm, concentrated mainly in summer. The

mean annual temperature is 17.4 �C and the prevailing

winds come from the NE, S and SE.

Automobiles are the main air pollution source in Cor-

doba city with a strong contribution of primary pollutants,

such as CO, NOx, and PM10. There also is contribution of

air pollutants from metallurgic and mechanical industries.

Previous studies have found that in Cordoba urban area, the

average PM10 and PM2.5 values are almost 2.5 and 2.8

times higher respectively than the corresponding European

Union limit values for air quality (López et al. 2011). In

addition, an increase in airborne particle concentration

have been related to higher morbidity due to respiratory

diseases (Amarillo and Carreras 2012; Carreras et al.

2008).

Sampling

Daily samples were taken from August 2011 to August

2013, obtaining a total of 314 samples. Total suspended

particles (TSP) were collected with a medium-volume

sampler (Handi-Vol Energética, Brazil) located 7 m high

on the roof of the Chemistry Department at the FCEFyN,

Cordoba University, working at a flow rate of 0.2 m3/min.

TSP were collected on glass fiber filters which were

dehumidified and weighted before sampling. After sam-

pling, filters were wrapped in aluminum foil conditioned in

a desiccator for 24 h to remove moisture and stored

refrigerated (-18 �C) until the analysis. Particle mass was

determined gravimetrically, considering filter weights

before and after the exposition and their concentration (lg/
m3) was obtained referring the mass to the filtered air

volume. PM10 was estimated by using a conversion factor

(PM10 = 0.62 9 TSP) (Gómez et al. 2003).

PAHs Determination

The organic fraction was extracted with dichloromethane

(DCM, HPLC grade, Chromanorm). The filters were

immersed in 40 mL DCM with ultrasound for two 30-min

periods using a cooling device fitted over the flask’s mouth

to avoid sample loss. The extracts were concentrated with a
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rotary evaporator, at 40 �C, evaporated under a soft nitro-

gen flow, filtered with Teflon filters (0.22 lm) and brought

up to 1 mL using acetonitrile. PAHs extracted from parti-

cles were analyzed by high-performance liquid chro-

matography (HPLC—Perkin Elmer series 200, USA) using

fluorescence detector, and a reverse phase C-18 column

(Luna 5u C18 100A). A gradient elution program was used

for mobile phases of acetonitrile and distilled deionized

water. The column temperature was 30 �C, and the flow

rate of the mobile phase was 1.8 L/min. Detection wave-

lengths were the same as used in previous work (Amarillo

et al. 2014).

Six-point calibration curves from 1 to 100 lg/L
(r2[ 0.95, p\ 0.001) were prepared from the 16 EPA

target PAHs standard solution (EPA 610 PAHs Mixture)

purchased from Supelco (Argentina). It contained Naph-

thalene (Naph), Acenaphthylene (Acl), Acenaphthene

(Ace), Fluorene (Fluo), Phenanthrene (Phe), Anthracene

(Anth), Fluoranthene (Flt), Pyrene (Pyr), Benzo[a]an-

thracene (BaA), Chrysene (Chry), Benzo[b]fluoranthene

(BbF), Benzo[k]fluoranthene (BkF), Benzo[a]pyrene

(BaP), Dibenzo[a,h]anthracene (DbahA), Benzo[g,h,i]per-

ylene (BghiP), and Indeno[1,2,3- c,d]pyrene (Ind). Acl and

Ind could not be determined, because the first has no flu-

orescence and Ind elutes between DBahA and BghiP,

which obstruct its identification. PAH detection limits were

found to be between 5 and 43 pg/m3. For statistical anal-

ysis, mean and standard deviation of PM10 bound-PAH

were calculated for the warm (spring and summer) and cold

(fall and winter) periods.

Meteorological Data

Meteorological data were obtained from the National

Weather Service for the entire sampling period. We cal-

culated daily averages for temperature (T) (�C), dew point

(DP) (�C), relative humidity (RH) (%), atmospheric pres-

sure (P) (hPa), wind speed (WS) (km/h) and visibility

(V) (km), and registered daily accumulated rainfall

(R) (mm). We also calculated daily mode values for wind

direction (WD) (�).

Statistical Analysis

To analyze the relationship between total PAHs concen-

tration and meteorological variables, we calculated Spear-

man correlation coefficients, whereas Kruskal–Wallis

analysis with Mann–Whitney U test (p\ 0.05) was per-

formed to evaluate the influence of the categorical vari-

ables WD and R on PAHs concentration. WD was

categorized as north, south, east, and west. R was catego-

rized in three ranges: 0–1, 1–10, and[10 mm.

Multiple Lineal Regression Model

A multiple linear regression model was run to explain the

concentration of PAHs using meteorological variables as

predictors, employing the maximum likelihood estimation

(REML) method (Di Rienzo et al. 2011). Total PAHs were

transformed to natural logarithm and year, season, month,

and day of the week were considered as crossed random

factors. The variables entering the model were chosen with

a step-wise method. The lack of independence between

samples was resolved by using order 1 autoregressive

correlation. AIC criteria were used to select the most par-

simonious model using Software InfoStat version 2013 (Di

Rienzo et al. 2011).

Source Apportionment

The diagnostic ratio (DR) method for PAH source identifi-

cation requires the comparison of pairs of frequently found

PAHs emissions (Ravindra et al. 2008). These ratios indi-

cate the prevalence of gasoline or diesel engines as well as

the relative contribution of traffic, domestic heating, wood

combustion, and other sources. Their values vary according

to the gas-particle partitioning of PAHs in the atmosphere

(Tasdemir and Esen 2007). Therefore, DR is highly affected

by ambient air temperature (Esen et al. 2008). Conse-

quently, to avoid underestimations of PAHs levels in the

particulate phase, we analyzed the PAHs photodecomposi-

tion rate in our samples through calculating the relative BaP

concentration [BaP/(BaP ? BbF)] (Park et al. 2011). Then,

we compared mean values of these photodecomposition

indexes comparing samples from winter and summer.

Because we found a significantly higher photodecomposi-

tion rate during summertime, only samples from the cold

period were used for the calculation of DR.

PMF is a multivariate tool developed by Paatero and

Tapper (1994) that decomposes a matrix of data sample

into two sub-matrices, the factor profiles and factor con-

tributions. It is used to resolve dominant positive factors on

the basis of observations, without detailed previous

knowledge of the sources and sources profiles. We used the

EPA PMF 5.0 software.

All receptor models, either DR or PMF, has the fol-

lowing assumptions: (1) sources profiles do not change

significantly over time or do so in a reproducible manner

representing a quasi-stationary system; (2) receptor species

do not react chemically or undergo phase partitioning

throughout transport from source to receptor (Belis et al.

2013). Therefore, PMF analysis was performed only with

samples collected during the cold season (autumn and

winter) because we already proved a higher photolysis rate

during the warm period.
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Before PMF analysis data needs to be prepared. Two

spreadsheets were made: one with concentration data of

each PAH ordered by date and the other with uncertainty

data associated with the same order. Outliers were elimi-

nated by identifying them in the time series graphs.

The analytical uncertainty associated with each PAH

determination was calculated according to Miller et al.

(2002) as

usj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:5 �MDLsjÞ2 þ ð0:1 � xsjÞ2
q

ð1Þ

where usj is the uncertainty, MDLsj is the method detection

limit and xsj is the PAH concentration, all referring to jth

species in the sth sample. The MDL was calculated for

each PAH according to Miller et al. (2002) as

MDL ¼ YB þ 3SB ð2Þ

where YB is the average signal of blanks and 3SB is three

times the standard deviation of blank samples. When the

measured values were below the MDL for species j, they

were replaced by half the MDL value and their associated

uncertainties were set at 5/6 of the MDL values (Wu et al.

2007). PMF analysis weights the relative importance of

PAHs according to their associated uncertainties while

makes a multivariate order and estimates emission sources.

The variables included in PMF analysis were selected

considering their signal to noise ratio (S/N). If S/N was less

than 0.2, the variable was excluded from the analysis. If S/

N was greater than 0.2 but less than 2, it was categorized as

weak and down-weighted, and if S/N was greater than 2, it

was categorized as strong (Paatero and Hopke 2003).

The most critical step in PMF analysis is to determine

how many factors explain data variability, because there is

no mathematical criteria to predict the optimal number of

factors (Paatero 2000) and a priori knowledge of the

modeled receptor sites is required (Belis et al. 2013).

Hence, for the determination of the number of factors, our

main consideration was to obtain a good fitting of the

model to the original data. Besides, the number of factors

was chosen to avoid redundancies among them, and this

was proved by analyzing scatter plots of each factor versus

the others.

Relationship of the Factors with Temporal

and Meteorological Variables

To complete the analysis of source apportionment, after

describing the influence of meteorological variables on

total PAHs, we analysed the annual variation of factors

(groups of PAHs that variate together a long time) using

the nonparametric Kruskal–Wallis analysis of variance

with Mann–Whitney U test. For meteorological variables,

we did a simple Spearman correlation between factors and

the continuous variables: T, DP, RH, P, WV, V, and R, and

Kruskal–Wallis for comparing factors according WD.

Results and Discussion

Particles and PAHs Levels

PM10 concentration for the study period ranged from 0.033

to 1022.484 lg/m3 with no significant seasonal variation

between the warm and cold periods (Table 1). The level of

particles increased over the last years in the city of Cor-

doba, doubling the values measured in the 1996–1997

period (Sbarato et al. 2000) and being 1.3 times higher than

the values measured in the 2009–2010 period (López et al.

2011), even surpassing the levels measured in other Latin

American cities, such as Santiago de Chile (Toro et al.

2014), San Pablo (Bourotte et al. 2005), and México City

(Amador-Muñoz et al. 2013). The overall average PM10

concentration for the entire period did not exceed the

standard of 150 lg/m3 (EPA 2013); however, 13.9% of

PM10 samples had values higher than 150 lg/m3, indicat-

ing that the condition of not exceeding this limit more than

once a year was not met.

Total PAHs concentration (TPAHs) adsorbed on parti-

cles ranged from 0.13 to 37.70 ng/m3 with an average

value of 4.5 ± 4.3 ng/m3 for the whole sampling period.

These values were higher than those reported for PAHs in

particulate phase in other urban areas, such as Baltimore

(1.59 ng/m3) in USA (Dachs et al. 2002), Naples in Italy

(2.19 ng/m3) (Di Vaio et al. 2016), or Kuala Lumpur in

Malaysia (2.03 ± 0.57 ng/m3) (Jamhari et al. 2014)—

similar to values obtained in La Plata, Argentina (4.74 ng/

m3) (Rehwagen et al. 2005), Flanders in Belgium (5.5 ng/

m3) (Brits et al. 2004) and smaller than values observed in

Lhasa (15 ng/m3) (Liu et al. 2013) and Guangzhou in

China (23.7 ng/m3) (Li et al. 2006).

Most individual PAHs had strong seasonal variations

with the exception of Naph, BkF, and BbF. For instance,

mean BaP concentration for the whole period was

0.17 ± 0.27 ng/m3 and showed significant differences

between the cold and warm seasons. These values were

smaller than the range observed in European urban sites for

BaP (0.4–2 ng/m3) (Hailwood et al. 2001). TPAHs con-

centration was higher during the cold than the warm period

(5.27 ± 5.32 vs. 3.74 ± 2.89 ng/m3) and was comparable

to the values reported for an industrial site in Argentina

(5.74 ng/m3) (Rehwagen et al. 2005). Higher values of

PAHs during the winter season also have been reported in

many other urban areas, with winter values that exceeded

summer values by a factor of 1.5–10 (Amodio et al. 2009;

Sharma et al. 2007; Zhu et al. 2009).
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Meteorological Variables

Average meteorological conditions for the whole study

period are shown in Table 2 and Fig. 1. Temperature, dew

point, and rainfall followed the regular pattern for the city

of Córdoba, which usually has humid summers and dry

winters. These prevailing climatic conditions, together with

the concave formation where the city is located, reduce the

air circulation and causes frequent thermal inversions in

autumn and winter (Amarillo et al. 2014).

Multiple Linear Regression Model

We adjusted a multiple linear regression model (Eq. 3),

employing the natural logarithm of TPAHs as dependent

variable and meteorological parameters that already

showed a significant relationship with the outcome, as

linear predictors. With this model, it was possible to

explain a 38% of TPAHs variability, according to a R2

value equal to 0.38 (p\ 0.05)

LnTHAPs ¼ 1:96þ 0:02WD Nþ 0:17WD W

�0:17WD S�0:02DP�0:02WS ð3Þ

where LnTPAHs is the natural logarithm of total PAHs,

WD_N, WD_W, WD_S are Wind Direction from North,

West, and South, respectively (�); DP is dew point (�C) and
WS is Wind Speed (km/h).

TPAHs were inversely associated with wind speed in

agreement with Li et al. (2006)_ENREF_28_ENREF_28

Table 1 Seasonal average

concentration and standard

deviation (SD) of PM10,

individual and total polycyclic

aromatic hydrocarbons (PAHs)

(ng/m3) measured in Cordoba

City during 2011–2013

Whole period Cold season Warm season

Mean SD Mean SD Mean SD

PM10 98.423 72.315 96.453 74.098 100.361 70.617

Naphtalene 1.913 2.342 2.079 2.312 1.755 2.363

Acenaphtene 0.101 0.201 0.127* 0.270 0.075* 0.083

Fluorene 0.361 0.542 0.508* 0.609 0.213* 0.418

Phenanthrene 0.285 0.361 0.331* 0.384 0.241* 0.331

Anthracene 0.007 0.010 0.010* 0.012 0.004* 0.005

Fluoranthene 0.208 0.34 0.309* 0.445 0.107* 0.117

Pyrene 0.120 0.207 0.190* 0.268 0.051* 0.066

Benz[a]anthracene 0.191 0.253 0.263* 0.324 0.119* 0.118

Chrysene 0.162 0.305 0.247* 0.398 0.079* 0.125

Benzo[b]fluoranthene 0.390 0.630 0.437 0.782 0.343 0.426

Benzo[k]fluoranthene 0.260 0.491 0.127 0.151 0.388 0.648

Benzo[a]pyrene 0.165 0.266 0.240* 0.343 0.092* 0.121

Dibenzo[a,h]anthracene 0.048 0.068 0.071* 0.082 0.024* 0.036

Benzo[ghi]perylene 0.371 0.402 0.463* 0.506 0.280* 0.230

Total PAH 4.500 4.341 5.266* 5.321 3.741* 2.892

* Significant differences between seasons (p\ 0.05)

Table 2 Meteorological conditions during the sampling period in Córdoba City (2011–2013)

Variables Whole period Cold season Warm season

Mean SD Min Max Mean SD Min Max Mean SD Min Max

T (�C) 19.06 6.22 3.38 34.34 15.02 4.78 3.38 24.24 23.57 4.22 10.6 34.34

DP (�C) 11.31 6.08 -5.78 24.46 7.63 5.67 -5.78 19.04 14.91 3.92 1.06 24.46

P (hPa) 965 5 949 983 967 5 953 981 964 5 950 983

RH (%) 60.21 11.78 31.46 94.96 61.43 12.91 31.46 90.46 58.85 10.23 33.30 94.96

WS (km/h) 8.66 4.52 0 27.29 7.27 4.33 0 27.29 10.22 4.21 0.17 22.54

V (km) 9.66 0.79 3.08 13.75 9.64 0.80 4.47 10.42 9.69 0.79 3.08 13.75

R (mm) 1393.1 193.4 1199.7

T temperature, DP dew point, P atmospheric pressure, RH relative humidity, WS wind speed, V visibility, R accumulated rainfall
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and Sikalos et al. (2002)_ENREF_44, who described that

wind speed was one of the variables that influenced the

most PAHs concentration attributing the increasing PAHs

concentration in the atmosphere to the limited pollutant

dispersion during calm and stable atmospheric conditions.

Wind direction was the meteorological variable with the

highest influence on TPAHs concentration. Higher values

were observed when winds came from the west side, where

it is located a main avenue with intense medium and heavy

traffic during all day. Figure 2 shows the concentration of

PAHs according WD. We also observed a negative rela-

tionship with dew point, probably related to the high

photodegradation rate that takes place during the warm

period (Tham et al. 2008) and the fact that particle bound

PAHs are easily transferred to the gaseous phase with high

temperatures (Zhao et al. 2011).

Source Apportionment

Regarding the source apportionment methodology, some

authors still use DR to assess pollutant emission sources

(Park et al. 2011; Tobiszewski and Namieśnik 2012),

although this methodology should be used with caution,

because their results can be rather confusing (Ravindra

et al. 2006). Ratios can be altered due to the reactivity of

some PAH species with other atmospheric species

(Robinson et al. 2006) or the PAHs photolysis may occur

during the sampling procedure (Tsapakis and Stephanou

2003). Nevertheless, DR can be useful for exploratory

analysis in sampling areas with unknown emission sources.

With this purpose, we calculated several different diag-

nostic ratios using only data from the cold period to avoid

differences due to PAHs photodegradation (Table 3).

Most ratios indicated that PAHs came from vehicular

emissions, either diesel or gasoline, whereas the [Flt/

(Flt ? Pyr)] ratio indicated a biomass burning origin.

However, there was only a slight difference between the

values of this last ratio for coal combustion and biomass

Fig. 1 Wind rose for the whole

sampling period in Córdoba city

(winter 2011 to winter 2013)

Fig. 2 Average concentration of total polycyclic aromatic hydrocar-

bons (TPAHs) (ng/m3) according to wind direction (decadegrees)
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burning (0.5 vs. 0.6), suggesting this was not a conclusive

result.

Regarding the PMF analysis, the best fit for the model

was obtained with two factors (Fig. 3). The most important

factor in terms of mass contribution was factor 1 (63.7%);

the compounds that contributed the most to this factor were

BghiP (22.35%), BbF (14.73%), Fluo (10.37%), and BaA

(10%). This factor was attributed to vehicle emissions,

because BghiP specifically is a tracer of gasoline engine

vehicles (Kulkarni and Venkataraman 2000). Besides, high

molecular weight PAHs are the dominant emissions of

light-duty gasoline vehicles (Fujita et al. 2007). Indeed, a

high factor loading for BghiP suggests gasoline-powered

vehicles (Teixeira et al. 2012), whereas Guo et al. (2003)

also include BaA, BaP, BbF, and BghiP as source markers

for gasoline emission.

The second factor in term of mass contribution was

factor 2 (36.3%), with a high loading of Naph (67.66%)

and a small contribution of Phe (10.13%). Naph is a

characteristic marker of volatilization from creosote or coal

tar, while high loadings of Phe were attributed to either

coal combustion or unburned petroleum from vehicles

(Suman et al. 2016). If that was the case, the temperature

would be strongly correlated with this factor, because it

affects the gas-particle conversion rate. However, we did

not find any relationship between the contribution of this

factor and temperature (results not shown). Therefore, we

could not attribute the levels of Phe to unburned coal and

concluded that the main emission source of the organic

compounds associated with factor 2 is the incomplete

combustion of fossil fuels from vehicles. Indeed, Naph and

Phe have already been mentioned as the most abundant

PAHs in diesel emissions (He et al. 2010). Moreover,

previous studies found that diesel emissions have a high

factor loading for Flt, Phe, Ant, and Pyr (Fang et al. 2004;

Omar et al. 2002; Ravindra et al. 2006), and the major

source of light weight PAHs are trucks powered by diesel.

We observed a fairly good correlation between the

measured and modeled individual PAHs (r2[ 0.7), which

suggested a good model performance; the best estimations

were found for BbF (r2 = 0.95), Chry (R2 = 0.91), and

BaA (r2 = 0.90).

To complete our understanding of source apportion-

ment, we described the relationship of the factors with

meteorological variables. Factor 1 showed a positive rela-

tion with P and a negative one with WS and V. Factor 2

was positive related to T and DP (Table 4). When com-

paring factors according WD, no differences were found,

although total PAHs do relate with WD as described in

‘‘Multiple Linear Regression Model’’ section. The inter-

pretation of these results can be explained considering that

diesel vehicles emit more gas-phase PAHs and fewer par-

ticulate-phase PAHs than gasoline-powered vehicles

(Zielinska et al. 2004). PAHs emitted by gasoline are heavy

and are mostly in particulate phase and when the wind is

stronger the atmosphere is cleared of particles and conse-

quently those PAHs decrease their concentration. PAHs

emitted by diesel vehicles are light and their presence in

Table 3 Comparison between average diagnostic ratios (DR) calculated from the concentration of PAHs measured during the cold season in

Cordoba City and reference values mentioned in the bibliography

DR Reference

value

Indicator source Mean DR in

this study

Probable sources References

BaP/

(BaP ? Chry)

0.5 Diesel 0.50 Diesel Guo et al. (2003), Khalili et al. (1995)

0.73 Gasoline

BaP/BghiP \0.6 Non traffic emissions 2.95 Traffic emissions Katsoyiannis et al. (2007)

[0.6 Traffic emissions

BbF/BkF [0.5 Diesel 3.96 Diesel Fang et al. (2004), Park et al. (2002),

Ravindra et al. (2006)

Fluo/

(Fluo ? Pyr)

[0.5 Diesel 0.65 Diesel Fang et al. (2004), Ravindra et al. (2006)

\0.5 gasoline

Flt/(Flt ? Pyr) \0.4 Petrogenic 0.60 Grass, wood, coal

combustion

Roberto et al. (2009)

0.4–0.5 Fossil fuel combustion

[0.5 Grass, wood, coal

combustion

BaA/

(BaA ? Chry)

0.2–0.35 Coal combustión 0.58 Vehicular emissions,

combustión

Akyüz and Çabuk (2010), Yunker et al.

(2002)[0.35 Vehicular emissions,

combustion

\0.2 Petrogenic
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the particles is conditioned to the temperature, because

they alternate between gas and particulate phases. When

temperatures are low in winter, volatile and semi-volatile

PAHs condensate into preexisting particles (Ho et al.

2009).

Conclusions

Although the inorganic characterization of PM10 in the city

of Cordoba have already been studied, there was almost no

information regarding the organic compounds associated

with this type of particles. This is an important issue from

the human health point of view, because most PAHs found

in urban atmospheres are classified as genotoxic. To our

knowledge, this is the first study in Argentina to assess

PAHs emission sources in urban environments.

Variations in total PAHs concentration could be

explained in 38% by meteorological conditions, particu-

larly wind speed, wind direction, and dew point tempera-

ture. Those variables influenced in different ways the PAHs

composition in accordance with molecular weight, partic-

ularly the two factors or sources of PAHs. The emission

rates of those sources would not explain the variation on

PAHs composition, because PM10 concentration had no

seasonal differences. Furthermore, these meteorological
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variables can be used to estimate PAHs values when there

are no real measurements available.

Although the use of receptor models to estimate PAH

emission sources have some limitations because of differ-

ent photodecomposition rates, it was still possible to esti-

mate their emission sources avoiding data from the warm

period. Our results provide evidence that light and heavy

traffic are the main PAHs emission sources in the urban

area. Therefore, to reduce the levels of organic pollutants

effective control, measures should be applied to reduce

mobile sources in the city.

Another limitation of our research is that we used esti-

mated PM10 values. PAHs bound to particles could be

under- or overestimated. We only measured particulate

phase PAHs; therefore, the concentration of these com-

pounds in the atmosphere could be higher due to the

presence of gas phase PAHs, particularly during the warm

period. However, we do not expect too much change dur-

ing the cold period. Hence, results of the source appor-

tionment analysis are still valid.

Despite the limitations, the present study provides im-

portant information regarding the variables affecting PAH

composition and concentration in an urban environment

with strong climatic and seasonal differences contributing

to the air quality management.
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Atmos Environ 45:5450–5457. doi:10.1016/j.atmosenv.2011.07.

003

Mantis J, Chaloulakou A, Samara C (2005) PM10-bound polycyclic

aromatic hydrocarbons (PAHs) in the Greater Area of Athens,

Greece. Chemosphere 59:593–604
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