Tumor and Stem Cell Biology

Estrogen Receptor Alpha Mediates Progestin-Induced Mammary Tumor Growth by Interacting with Progesterone Receptors at the *Cyclin D1/MYC* Promoters

Sebastián Giulianelli¹, José P. Vaqué⁴, Rocío Soldati¹, Victoria Wargon¹, Silvia I. Vanzulli², Rubén Martins³, Eduardo Zeitlin³, Alfredo A. Molinolo⁴, Luisa A. Helguero¹, Caroline A. Lamb¹, J. Silvio Gutkind⁴, and Claudia Lanari¹

Abstract

Synthetic progesterone used in contraception drugs (progestins) can promote breast cancer growth, but the mechanisms involved are unknown. Moreover, it remains unclear whether cytoplasmic interactions between the progesterone receptor (PR) and estrogen receptor alpha (ER α) are required for PR activation. In this study, we used a murine progestin-dependent tumor to investigate the role of ER α in progestin-induced tumor cell proliferation. We found that treatment with the progestin medroxyprogesterone acetate (MPA) induced the expression and activation of ER α , as well as rapid nuclear colocalization of activated ER α with PR. Treatment with the pure antiestrogen fulvestrant to block ER α disrupted the interaction of ER α and PR in vitro and induced the regression of MPA-dependent tumor growth in vivo. ER α blockade also prevented an MPA-induced increase in CYCLIN D1 (CCND1) and MYC expression. Chromatin immunoprecipitation studies showed that MPA triggered binding of ER α and PR to the CCND1 and MYC promoters. Interestingly, blockade or RNAi-mediated silencing of ER α inhibited ER α , but not PR binding to both regulatory sequences, indicating that an interaction between ER α and PR at these sites is necessary for MPA-induced gene expression and cell proliferation. We confirmed that nuclear colocalization of both receptors also occurred in human breast cancer samples. Together, our findings argued that ER α -PR association on target gene promoters is essential for progestin-induced cell proliferation. Cancer Res; 72(9); 2416–27. ©2012 AACR.

Introduction

Breast cancer is the most frequently diagnosed cancer and a leading cause of cancer death in women worldwide (1). Although most of the evidence suggests estrogens as the major etiologic factor in breast cancer (2), experimental and epidemiologic evidence, reviewed recently (3–5), also points to the involvement of progesterone receptors (PR) in breast cancer development and progression. However, the mechanisms by which PR participate in tumor growth are not yet well understood. Considering that PR is usually used as a marker of estrogen receptor alpha (ER α) functionality (6), it may be intuitive to think that there is a sequential effect on ER α inducing PR expression. It has been reported that an early

Authors' Affiliations: ¹Institute of Experimental Biology and Medicine, IBYME-CONICET; ²National Academy of Medicine; ³Policlínica Bancaria, Buenos Aires, Argentina; ⁴Oral and Pharyngeal Cancer Branch, NIDCR, NIH, Bethesda, Maryland

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Current address of L.A. Helguero: Universidade de Aveiro, Aveiro, Portugal.

Corresponding Author: Claudia Lanari, Institute of Experimental Biology and Medicine, IBYME-CONICET, V. Obligado 2490 C1428ADN, Buenos Aires, Argentina. Phone: 054-011-4783-2869; Fax: 054-011-4786-2564; E-mail: lanari.claudia@gmail.com

doi: 10.1158/0008-5472.CAN-11-3290

©2012 American Association for Cancer Research.

cytoplasmic interaction between ER α and PR isoform B (PR_B) is necessary to activate c-Src/p21^{ras}/Erk cascade by progestins (7), which in turn phosphorylates PR. Moreover, the regions through which both receptors interact have been identified (8). Conversely, Boonyaratanakornkit and colleagues have proposed that a polyproline motif in the amino-terminal domain of PR is sufficient to mediate c-Src tyrosine kinase activation by progestins (9).

Using a progestin-dependent murine mammary carcinoma, C4-HD (10) and the human T47D breast cancer cells, which are also stimulated by progestins (11, 12), we show that a genomic interaction between ER α and PR is essential for progestin-induced gene expression and tumor cell proliferation. Chromatin immunoprecipitation (ChIP) using T47D cells, confirms that PR is activated in the absence of ER α . However, the presence of both activated receptors at the *MYC* or *CYCLIN D1* (*CCND1*) promoters is required to trigger gene expression and cell proliferation. Moreover, the nuclear colocalization of both receptors in human breast cancer samples suggests that a genomic interaction between activated ER α and PR may be a common event in breast cancer growth.

Materials and Methods

Antibodies

PR (C-19 and H-190X), Erk1/2 (sc-94), ER α (MC-20 and HC-20X), AIF (sc-5586), BAX (sc-493), BCL/XL (sc-634), and IgG

(sc-2027) are rabbit polyclonals (Santa Cruz Biotechnology); PR (Ab7) and ER α (Ab10) are mouse monoclonals and ER α (SP1, #RM-9101) a rabbit polyclonal (Thermo Scientific); CCND1 (#2978), pSer118 ER α (#2515), pSer167 ER α (#2514), MYC (#5605) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; #2118) are rabbit polyclonals (Cell Signaling Technology). Mouse monoclonal pSer162 PR_B, pSer190 PR, and pSer294 PR were a gift from Dr. D. Edwards (BCM, Houston, TX); ER α (M7047) and PR (M3568) are mouse monoclonals (Dako); pSer294 PR (Ab61785) and Ki67 (Ab15580), are rabbit polyclonals (Abcam). Secondary antibodies were obtained from Vector Labs.

Reagents

4['], 6-Diamidino-2-phenylindole (DAPI), medroxyprogesterone acetate (MPA, 10 nmol/L), and RU-38486 (RU, 10 nmol/L) were purchased from Sigma. ICI 182.780 (ICI) was a gift from AstraZeneca.

Animals

Two-month-old virgin female BALB/c mice (IByME-Animal Facility) were used. Animal care and manipulation were in agreement with institutional and reference guidelines (13).

In vivo experiments

Depot MPA (20 mg) was used as a progestin. C4-HD tumors were subcutaneously transplanted into MPA-treated BALB/c mice as previously described (10). When tumors reached a size of approximately $50~\rm mm^2$, $6~\rm mice$ were treated subcutaneously, as described (14), with Fulvestrant (FUL; AstraZeneca), $6~\rm received$ no other treatment, and the MPA depot was removed in another $6~\rm mice$.

Human breast cancer tissue samples

Breast cancer resection specimens from 15 patients immediately frozen at -70°C were provided by Bancario Hospital, Buenos Aires. The study was approved by the Institutional Review Board.

Cell lines

Human T47D cells obtained from American Type Culture Collection were validated by Genetica DNA Laboratories Inc. by short tandem repeat profiling and maintained as described (15). Passages lower than 15 were used.

Cell proliferation

Primary cultures of C4-HD tumors were carried out as described previously (16). Cell proliferation was evaluated by either $[^3H]$ -thymidine uptake (16) or cell counting. C4-HD and T47D cells were plated with Dulbecco's Modified Eagle's Medium/F12 (Sigma) plus 10% fetal calf serum (FCS; BioSer) for 48 hours. After starving for 24 hours with 1% steroid-stripped FCS (chFCS), the cultures were incubated with the experimental solutions.

Gene silencing

T47D cells were seeded in 12- or 96-well plates and transfected with short interfering RNAs (siRNA) to human

ERα (ESR1_8 and ESR1_10, QIAGEN), human CCND1 (ONTARGETplus SMARTpool CCND1 from Thermo, or a pool of CCND1_5 and CCND1_6 from QIAGEN), or a nonspecific siRNA (SI03650318, QIAGEN) using HiPerFect transfection reagent (QIAGEN). Cells were used 48 hours posttransfection.

Immunohistochemistry

Sections of formalin-fixed, paraffin-embedded tissues were reacted with different antibodies using the avidin–biotin peroxidase complex technique (Vector Lab) and counterstained with hematoxylin (17). Positive cells were counted in 10 high-power fields (HPF, 1,000×) of each section and expressed as the mean \pm SEM of the percentage of the ratios between the number of events and the cell number/HPF.

Immunofluorescence and colocalization

Tumors. Frozen tumor sections were fixed in formalin, postfixed in 70% ethanol, blocked, and incubated with the primary antibodies and fluorescein isothiocyanate/TX-conjugated secondary antibodies, and counterstained with DAPI as described previously (18). Images were obtained using a Nikon Eclipse E800 Confocal Microscope and Nikon DS-U1 with ACT-2U software.

Cells. Cultures growing on chamber slides were fixed in 70% ethanol and processed as described previously (18). To quantify nuclear colocalization of PR and ER α , we used the Pearson's correlation coefficient (R_r). Nuclei (200) of selected samples were analyzed by using PSC Colocalization plug-in (ImageJ-NIH; ref. 19). R_r ranges between -1 (perfect negative correlation) to +1 (perfect positive correlation) with 0 meaning no correlation.

Tumor and cell extracts

Tumors were homogenized and processed to obtain nuclear purified fractions (20) and total cell extracts prepared using M-PER mammalian protein extraction reagent (Pierce). Nuclear cell culture extracts were obtained and proteins quantified as described previously (21).

Immunoprecipitation assays

Nuclear extracts containing 0.5 to 1 mg of proteins were subjected to immunoprecipitation (IP) using $2\,\mu g$ of PR or ER α antibodies and rocked overnight at 4°C. The immunocomplexes were then captured by adding protein A-agarose (Santa Cruz) processed as described (18) and subjected to Western blots.

Western blots

Tumor, cell extracts (100 μ g proteins/lane), or immunoprecipitated proteins were separated on discontinuous polyacrylamide gels and detected as previously described (20).

Activation of reporter genes

The PRE-Luc vector used was a gift from Dr. C. Gardmo (Karolinska Institutet, Stockholm, Sweden; ref. 22) and assays were conducted as described previously (18).

RNA preparation and real-time quantitative PCR

Total RNA was isolated from cultures with TRIzol Reagent (Invitrogen) and converted to cDNA as described previously (18). Specific oligos for human MYC (NM_002467.4) and CCND1 (NM_053056.2) were designed using Primer-Blast (NCBI; Supplementary Table S1). GAPDH (NM_002046.3) expression was used as a normalization control. Data from 3 experiments were combined to determine gene expression changes using $2^{(-\Delta C_t)}$ formula. A melting curve was generated for every run to confirm assay specificity.

ChIP and sequential ChIP assays

After treatment, cells were fixed with 1% paraformaldehyde for 30 minutes; ChIP assays carried out as recommended by Diagenode using the HighCell# ChIP kit. Specific oligos for human CCNDI and MYC promoters were designed using Primer-Blast (NCBI; Supplementary Table S1). The data from each immunoprecipitate (IgG, PR, and ER α) was normalized to the corresponding inputs of chromatin before IP, normalized to IgG/input data, and expressed as relative to the control. Five experiments were combined to determine receptor binding to gene promoters. Sequential ChIP (ChIP-reChIP) was carried out using the Re-ChIP-IT kit (Active Motif). Data from each sequential immunoprecipitates (PR/ER α and ER α /PR) were normalized to the corresponding inputs before IP, normalized to IP IgG/IgG data, and expressed as relative to the control.

Statistical analysis

ANOVA and Tukey multiple post t test were used to evaluate differences of means of multiple samples, and Student t test was used to compare means of 2 different groups. In all graphs, the mean \pm SEM is shown, and experiments were repeated at least 3 times. Significant differences between control and treated cells were indicated with asterisk (*, P < 0.05; **, P < 0.01; ***, P < 0.001).

Results

ERas plays a key role in C4-HD tumor growth in vivo

We have previously shown that C4-HD tumors that express ERα and PR grow in MPA- or progesterone (Pg)-treated female mice (10) and that the blockade of PR induces complete tumor regression (23). This experimental system provided an opportunity to explore the role of ERa in progestin-induced tumor growth by using the pure antiestrogen FUL. Surprisingly, FUL induced a complete regression of tumors growing in the presence of MPA (Fig. 1A), and this was associated with a decrease in both PR isoforms and ER α expression, as evaluated by Western blot (Fig. 1B) and immunohistochemistry (Fig. 1C). Expression of ERa after MPA withdrawal was negligible, however, a significant increase in PR was observed after MPA removal, suggesting that, in the progestin-dependent C4-HD tumor, although MPA downregulates PR expression, it may be required to maintain high levels of ERα expression *in vivo* (Fig. 1C). Moreover, activated ER α (pSer167 and pSer118 ER α) was also high in MPA-treated tumors (Supplementary Fig. S1A). FUL-induced tumor regression was associated with a cytostatic effect, as shown by a decrease in the mitotic index (Ki67 quantification, Supplementary Fig. S1B), and in the expression of 2 progestin-regulated proteins, CCND1 and MYC (Fig. 1C). In addition, in FUL-treated tumors, an increase in apoptosis (Supplementary Fig. S1B), associated with a decrease in BCL/XL, and an increase in BAX and AIF (Supplementary Fig. S1C) expression were observed. These results indicated that activated ER α contributes to progestin-dependent tumor growth.

$ER\alpha$ and PR interact in the nuclei of MPA-stimulated C4-HD cells *in vitro* and this interaction is necessary to induce cell proliferation

The fact that high levels of PR, but not of ERα, were observed in the nuclei of C4-HD tumors after MPA removal, led to hypothesize that both receptors participated in growth stimulation. Therefore, we investigated the effect of the blockade of $\text{ER}\alpha$ on MPA-induced cell proliferation and the role of MPA on ERα and PR expression in vitro. In C4-HD cultures, ICI inhibited MPA-induced proliferation as shown by [3H]-thymidine uptake (16), cell counting (Fig. 2A), or bromodeoxyuridine staining (Supplementary Fig. S2A). Similarly, blocking ERa expression using siRNAs also inhibited the MPA-induced increase in [³H]-thymidine uptake (Supplementary Fig. S2B). A time course analysis of ERa and PR expression after ICI treatment showed an early downregulation of ER α (6 hours), although high levels of PR were still detected after 24 hours (Supplementary Fig. S2C), indicating that the blockade of MPAinduced cell proliferation by ICI was not associated with PR downregulation.

An increase in both nuclear ERa and PR immunoreactivity and nuclear colocalization was observed in MPA-treated cells (Fig. 2B). A time course analysis of the interaction revealed that they start colocalizing as early as 5 minutes after MPA incubation with a decrease after 1 hour (Fig. 2B). In cells treated for 30 minutes with MPA+ICI, there was a decrease in nuclear and an increase in cytosolic ERa staining (Fig. 2C left, arrows). These results suggested that ICI disrupts the molecular interaction induced by MPA. Similar incubations were done with the corresponding phospho-receptor antibodies. Phospho-Ser118 ERa staining increased after 30 minutes of MPA treatment and colocalized with pSer162 PR_B (Fig. 2C, middle) or pSer294 PR (Fig. 2C, right). These observations suggested that ERa and PR may be forming part of the same complexes in their active state (24). No cytosolic or membrane colocalization of PR and ER α was observed in MPA-treated cells and no staining was observed in hormone receptor-negative murine LM3 (25) breast cancer cells (data not shown). Moreover, using frozen samples from C4-HD tumors growing in MPA-treated mice, we confirmed the nuclear colocalization between PR/ERa in vivo (Fig. 2D, left). Finally, we corroborated the interaction between both receptors by co-IP assays using nuclear extracts from MPA-treated C4-HD tumors. Proteins were immunoprecipitated with 2 different PR or ERa antibodies and blotted accordingly (Fig. 2D, right). These results

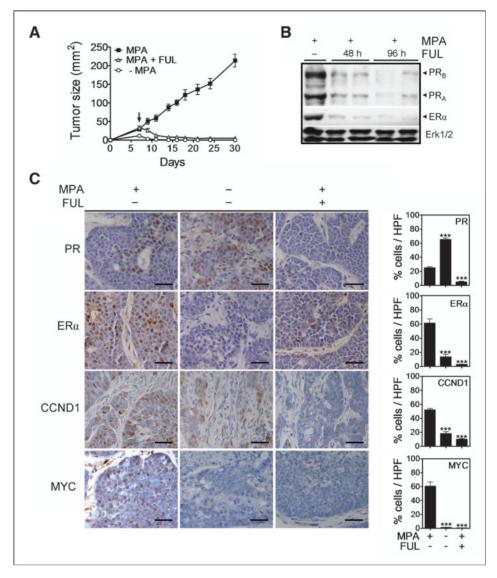


Figure 1. Antiestrogen treatment induces the regression of C4-HD tumors growing with MPA. A, MPAtreated mice carrying C4-HD tumors were FUL treated or not (5 mg/wk, arrow) or operated for MPA removal. Animals were followed for 25 days and the tumor size (length > width) plotted (mean \pm SEM). B, Western blots of PR_B (115 kDa), PR_A (83 kDa, C-19), and ER α (66 kDa, MC-20) in tumors from the experiment shown in A. Total Erk1/2 was used as a loading control. C, immunohistochemical studies of PR (C-19), ER α (MC-20), CCND1, and MYC expression in tumor samples from A. 48 hours after treatment initiation. Bar, 60 μm. Right, quantification of protein expression.

suggested that both PR isoforms can participate in a nuclear complex with $\text{ER}\alpha.$

Nuclear interaction between ER α and PR in human breast cancer

To investigate whether the colocalization between ER α and PR was unique for our murine model, we evaluated the expression of ER α , PR, and pPR in 15 frozen breast cancer samples. In 4 of them (2 ductal and 2 lobular carcinomas), we found a high degree of nuclear colocalization (Fig. 3A). We found a mild colocalization in 3 samples and a sporadic colocalization in other 2 samples. No staining was observed in receptor negative tumors (Fig. 3B). Co-IP assays carried out using purified nuclear extracts from 2 positive samples and a negative control confirmed the nuclear interaction between ER α and PR (Fig. 3C). These results suggested that the interaction between ER α and PR has an important and yet unexplored role in human breast cancer.

$ER\alpha$ and PR interaction in the nuclei of progestin-stimulated T47D cells is necessary to induce cell proliferation

To further investigate the role of ER α in MPA-induced cell proliferation we used T47D cells. MPA increased the nuclear colocalization between ER α and PR during the first 5 to 10 minutes and then a decrease was observed after 30 minutes of treatment (Fig. 4A). No cytosolic or membrane colocalization of PR and ER α was observed. Using phospho-specific antibodies, we showed that pSer162 PR_B and pSer294 PR colocalized with ER α after 10 minutes of MPA incubation (Supplementary Fig. S3A and S3B). Purified nuclear extracts from untreated or MPA-treated cells were immunoprecipitated with PR or ER α antibodies. We observed a significant increase in pSer294 PR (P<0.01) and in ER α (P<0.05), or in total PR (P<0.01), respectively, as compared with immunoprecipitates from untreated cells (Fig. 4B). Cellular fractionation was controlled by Western blot using anti-tubulin or anti-Sp1 antibodies

2419

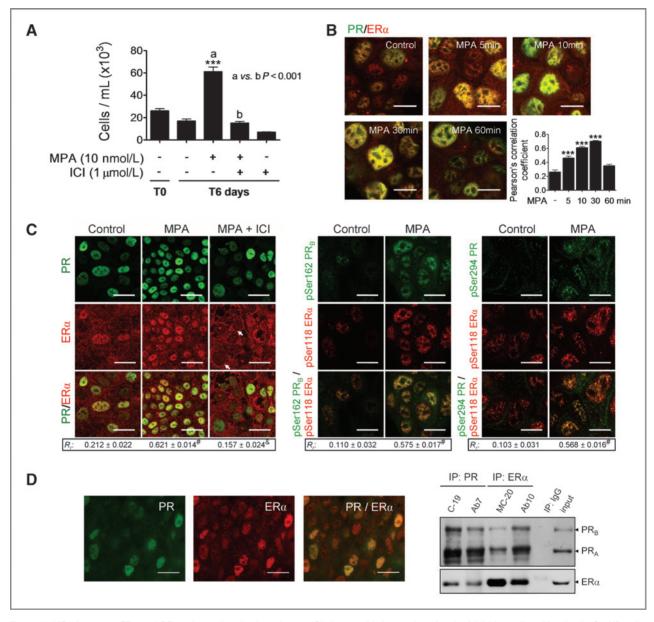
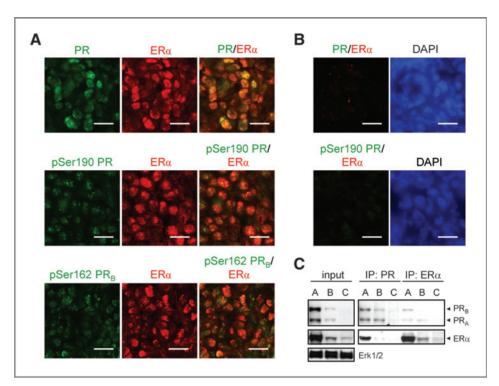



Figure 2. MPA increases ER α and PR nuclear colocalization whereas ICI disrupts this interaction, thereby inhibiting cell proliferation in C4-HD cells. A, C4-HD cells were grown and then starved in 1% chFCS for 24 hours. Cells were counted before (T0) and after 6 days (T6) of treatment. A representative experiment of the 3 is shown (mean \pm SEM). B, confocal images of cells showing the increase in the nuclear colocalization of PR (Ab7) and ER α (MC-20) after a time-dependent incubation with MPA. All pictures were obtained the same day using the same microscope settings. Bar, 15 μ m. The quantification of nuclear PR/ER α colocalization was carried out as described in Materials and Methods using the Pearson's correlation coefficient (R_r). C, left, confocal images of cells double stained for PR and ER α after 30 minutes of incubation with MPA and ICI (1 μ mol/L). Arrows, cytoplasmic or membrane ER α staining. R_r (mean \pm SEM): #, P < 0.001 MPA versus Ctrl, and &, P < 0.001 MPA versus MPA+ICI. Middle and right, nuclear colocalization of pPR (Ser162 PR $_B$ and Ser294 PR) and pSer118 ER α after 30 minutes of MPA incubation. Bar, 30 μ m. R_r : #, P < 0.001. D, left, confocal images of C4-HD tumors growing in MPA-treated mice double stained for PR (Ab7) and ER α (MC-20). Bar, 30 μ m. Right, nuclear extracts of MPA-treated tumors were immunoprecipitated using protein A-agarose beads coupled with PR or ER α antibodies and immunoblotted with the corresponding antibodies (PR: Ab7 and ER α : MC-20). Immunoprecipitated extracts with rabbit anti-IgG were used as controls. Input, C4-HD nuclear extracts. A representative experiment of 3 is shown.

(Supplementary Fig. S3C). These results showed that both PR isoforms interact with ER α in the cell nuclei of human progestin-treated cells. We then explored the role of ER α in MPA-driven proliferative responses. ICI (0.1 and 1 μ mol/L) dramat-

ically inhibited DNA synthesis to levels similar to those of the antiprogestin RU (Fig. 4C). In addition, we used 2 different siRNAs that decreased ER α expression (Fig. 4D, left) and also inhibited MPA-induced [3 H]-thymidine uptake (Fig. 4D, right).

Figure 3. Interaction between PR and ERa in human breast cancer tissue samples. A. confocal immunofluorescence images of frozen sections from a PR+/ER invasive ductal carcinoma showing nuclear colocalization between total PR (M3568), pPR, and ER α (SP1). Bar, 40 µm. B, no staining is observed in a PR⁻/ER⁻ sample under the same conditions. Nuclei were counterstained with DAPI. Bar. 40 μm . C, nuclear extracts from 2 PR⁺/ER⁺ tumors (A and B) and one PR- tumor (C) were immunoprecipitated using PR (M3568) or ERα (SP1) antibodies and immunoblotted with the corresponding antibodies. Input, purified nuclear extracts from each tumor used in IP assavs

The inhibition of ER α expression prevents MPA-induced *CCND1* and *MYC* expression in T47D cells

As part of their proliferative activity, progestins induce the expression of CCND1 (18, 26-30) and MYC (18, 31, 32) mRNA in T47D cells. We analyzed their time-dependent expression in response to MPA. We observed an early increase (15 minutes) after MPA incubation that lasted 24 hours, except for a decrease observed 1 hour (CCND1) or 3 hours (MYC) after treatment (Fig. 5A). The increase in mRNA correlated with an early and gradual increase in protein expression (Supplementary Fig. S4). The knockdown of CCND1 using siRNAs prevented DNA synthesis triggered by MPA (Fig. 5B). We therefore used ICI or siRNAs to analyze the contribution of ERα to gene transcription activated by MPA. The inhibition of ERa blocked the MPA-dependent transcription of both CCND1 and MYC genes (Fig. 5C and D). All this data suggested that ERa activity, presumably through its ability to interact with PR by forming nuclear complexes, can control the expression of key proliferative genes in response to progestins.

ER α inhibition blocks the MPA-induced activation of reporter genes and prevents ER α , but not PR binding to *CCND1* and *MYC* promoters in T47D cells

To further understand the role of ER α mediating MPA transcriptional activities, we evaluated the effect of ICI on the activation of a reporter luciferase assay controlled by the progesterone response element (PRE) sequence in T47D cells. ICI inhibited MPA-induced PRE-luc expression (Fig. 6A) and induced the downregulation of ER α , whereas PR was still expressed even after 48 hours of ICI incubation (Supplementary Fig. S3D). Moreover, MPA induced a higher PRE-luc

activity in MDA-MB-231 cells stably transfected with PR_B, when they were cotransfected with ERa (Supplementary Fig. S5). These results strongly suggested a role for the PR/ERa complexes in the regulatory elements of MPA-regulated genes. To confirm the binding of both receptors to the same promoter regions, we used ChIP analysis on CCND1 and MYC regulatory sequences. In Fig. 6B we show a schematic representation of both gene promoters, highlighting the PRE and estrogen response element (ERE) sites in each case, as well as the primers used in ChIP/qPCR analysis. Cells were incubated with MPA (10 minutes) and the chromatin subjected to IP with PR- or ERα-specific antibodies. DNA fragments were amplified by qPCR with 3 pairs of primers for each gene, previously used by others to report PR binding to those sequences (refs. 31, 33, 34; Fig. 6B). The recruitment of ER α and PR to the sites at +5 to 6 Kb (ChIP primers C) was used as a negative control of receptor binding (Fig. 6B). Specific binding of both receptors was detected at the same promoter regions in each gene (ChIP primers A and B) after MPA treatment (Fig. 6C and D, left and middle panels). We then evaluated whether PR and $\text{ER}\alpha$ were simultaneously bound to the \textit{CCND1} and MYC gene promoters by using a sequential ChIP assay. PR or ERa antibodies were used in the first IP, and ER α or PR antibodies in the sequential ChIP (reChIP). qPCR analysis clearly showed that PR and ER α co-occupy the CCND1 and MYC promoters after 10 minutes of MPA stimulation (Figs. 6C and D, right panels). These findings suggested that progestins induce the assembly of PR/ERa protein complexes at both promoters to control its transcriptional activation in breast cancer cells.

To further understand the molecular mechanism driving these effects, we evaluated $ER\alpha$ and PR binding to these regulatory sequences when we inhibited $ER\alpha$. PR binding to

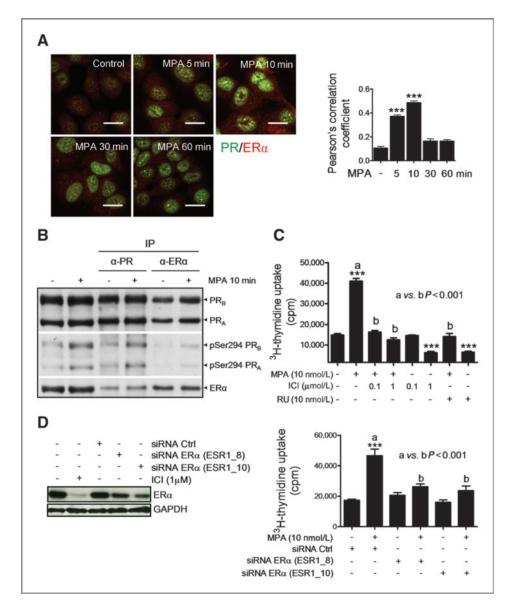


Figure 4. MPA increases cell proliferation and the ERα/PR nuclear interaction in T47D cells: the blockade of $\text{ER}\alpha$ prevents the MPA-induced proliferative effect. A, confocal images of immunofluorescence using PR (Ab7) and ERα (SP1) antibodies in cells treated as described in Fig. 2. Bar, 15 μ m. The nuclear PR/ER α colocalization was estimated through the Pearson's correlation coefficient. B. nuclear extracts of untreated or MPA-treated cells were immunoprecipitated using protein A-agarose beads coupled with PR (C-19) or ER α (SP1) antibodies and immunoblotted with the corresponding antibodies (PR: C-19 and pSer294, ERα: SP1). A representative experiment of 3 is shown. C, [3H]-thymidine uptake assays. After attachment. cells were starved and treated for 48 hours with experimental solutions. A representative experiment of 3 is shown D. left. Western blots showing ER α (SP1) expression in extracts from cells either treated or not with ICI for 48 hours. transfected with 2 different siRNAs for human ERα or a nonspecific siRNA GAPDH was used as a loading control. Right, [3H]thymidine uptake assays. Transfected cells with siRNAs were seeded, starved, and either treated or not with MPA for 48 hours. A representative experiment of 3 is

both gene promoters was unaffected by the presence of ICI (Fig. 7A) or siRNA to ER α (Fig. 7B), although they did prevent ER α binding. These data indicated that both proteins need to interact at the *CCND1* and *MYC* promoters to induce gene transcription and cell proliferation, supporting our hypothesis that the presence of ER α at those promoters is required to induce PR-mediated gene expression.

Discussion

In this study we have shown that a progestin can induce a direct and transient nuclear interaction between ER α and both PR isoforms at the promoters of 2 progestin responsive proto-oncogenes, namely *CCND1* and *MYC*. Moreover, this activity can have dramatic effects on breast cancer cell proliferation and seems to be dependent on ER α actions, as its inhibition with ICI induced complete regression of C4-HD tumors grow-

ing in the presence of the progestin. Thus, our results suggest that a combined treatment with antiestrogens and antiprogestins can be beneficial to breast cancer patients. As it has previously been reported (35), the cotreatment with antiprogestins plus selective estrogen receptor modulators may have an additive effect. Moreover, MPA-independent murine mammary carcinomas, C4-HI, respond better to a combination of tamoxifen and mifepristone than to both single agents (36).

We confirmed our observations in the murine model, using T47D cells in which the inhibition of ER α activity resulted in a complete blockade of MPA-dependent MYC and CCDNI gene transcription and cell proliferation. The fact that progestins exerted growth inhibitory effects on MDA-MB-231 cells stably transfected with PR (37) but stimulated cell proliferation in models that coexpress ER α and PR (11, 12, 15, 16, 38), also suggests that both receptors cooperate to trigger cell proliferation. In this regard, it is known that the human MYC gene

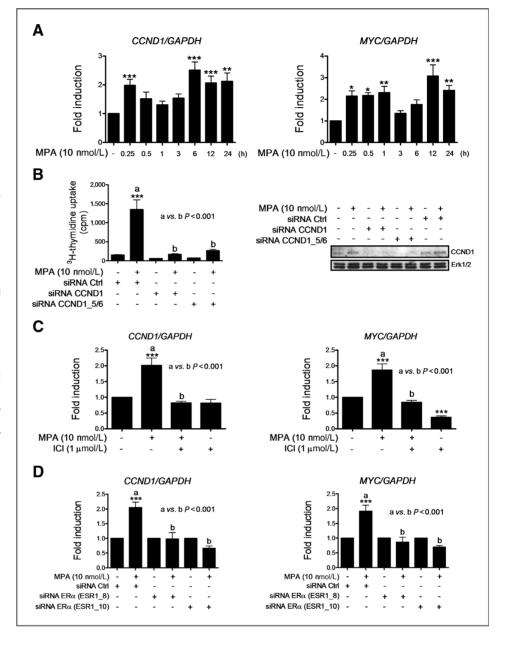


Figure 5. ERα mediates MPAinduction of CCND1 and MYC in T47D cells. A, CCND1 (left) and MYC (right) mRNA levels relative to GAPDH were measured by qPCR after MPA-treatment. B. left. the blockade of CCND1 expression by using 2 different siRNA pools prevents the MPA-induced increase in I3H1-thymidine uptake. Cells were transfected and treated as described in Fig. 4D. A representative experiment (mean \pm SEM) of 3 is shown. Right, the expression of CCND1 in untransfected or siRNAtransfected cells was evaluated by Western blot using Erk1/2 as a loading control. Cells were untreated or MPA-treated for 24 hours. C and D, CCND1 (left) and MYC (right) mRNA expression relative to GAPDH was evaluated by qPCR using cells treated for 15 minutes with MPA and/ or ICI, or transfected with 2 siRNAs for human ERα.

promoter contains a functional PRE that mediates the binding of activated PR (18, 31, 39) and we also identified other consensus PRE half sites (40) that might also bind PR (Fig. 6B). Moreover, it has recently been reported that ERE half sites at the *MYC* proximal promoter (Fig. 6B) are not responsive to estrogens (41). It may be possible that after progestin treatment, these sites might also bind ER α in complexes with PR. In addition, we have recently shown in T47D cells that MPA induces the binding of PR, transcription factors (TF), such as STAT5, and nuclear tyrosine kinase receptors (RTK), such as FGFR-2, to the same regions of the *MYC* promoter (18). The results reported herein indicate that activated ER α could be present in the same multimeric protein complexes as supported by NoShift electrophoretic mobility shift assays

(ref. 18; Fig. 7C -iii-). The regulation of human *CCND1* by progestins may be more complicated, as no canonical PRE sites have been described in its promoter and accordingly, it has been suggested that PR regulates *CCND1* expression by nongenomic mechanisms (7, 9, 34). The 2 models of cytoplasmic signaling pathways activated by Pg are shown in Fig. 7C. Model -i- proposes that an early interaction between ER α and PR_B is necessary for c-Src/p21^{Ras}/Erk, PI3K/Akt, and JAK/STAT activation (7, 8, 42); conversely, model -ii- proposes that a polyproline motif in the amino-terminal domain of PR is sufficient to activate cell signaling pathways (9). Albeit a cytoplasmic as well as membrane localization of PR has been shown (21), we were not able to find PR colocalizing with ER α at these sites. Activated growth factor receptors, usually RTKs, may

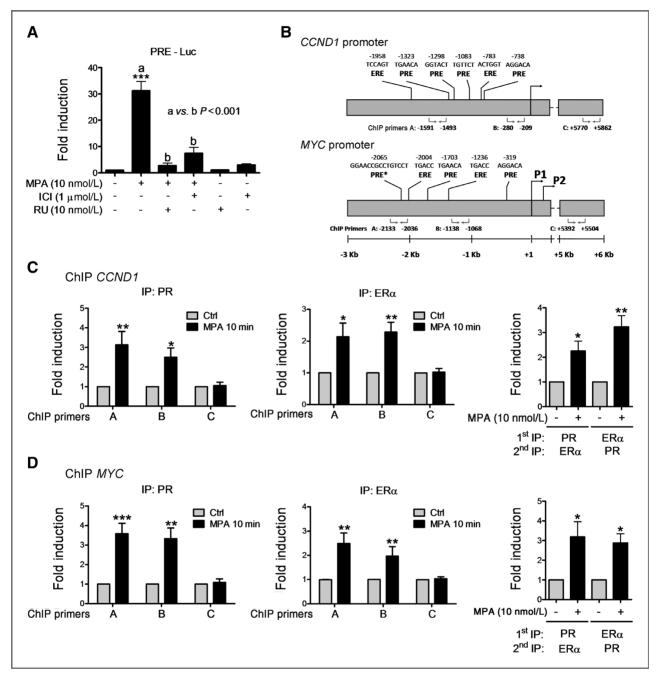


Figure 6. MPA induces the binding of PR and ER α to both CCND1 and MYC promoters in T47D cells. A, cells transfected with a PRE-luc plasmid were treated or not for 24 hours and processed to measure luciferase. A representative experiment of 3 is shown (mean \pm SEM). B, schematic representation of predicted PRE or ERE half sites in the upstream promoter regions of human CCND1 (top) and MYC (bottom) genes, and qPCR primers used for ChIP assays. *, PRE-like sequence described by Moore and colleagues (31). Cells were either treated or not with MPA and processed for ChIP/qPCR studies to detect the presence of PR (H-190X, left) and ER α (HC-20X, middle) on CCND1 (C) and MYC promoters (D). A, B, and C represent the ChIP primers shown in B, with C serving as a negative control region of nuclear receptor binding. Data from ChIP-reChIP experiments using ChIP primers A (B) on CCND1 (C, right) and MYC (D, right) promoters are shown. Cells treated or not with MPA for 10 minutes were first immunoprecipitated with PR (H-190X) or ER α (HC-20X) antibodies, and then immunoprecipitated using either ER α or PR antibodies. qPCR and data analysis were carried out as detailed in Materials and Methods.

stimulate cytoplasmic signaling pathways, that in turn induce PR phosphorylation and activation in both the absence or presence of steroids (15, 43). Both models propose that these nongenomic effects of Pg-activated MAPKs use TF at the *CCND1* promoter, inducing gene transcription and subsequently cell

proliferation (43; Fig. 7C - ν -). However, it has been recently shown that PR may have genomic effects at the *CCNDI* promoter (34, 44), even as a coactivator of STAT3 (26; Fig. 7C - $i\nu$ -). In this study, we showed for the first time that PR and ER α share the same progestins-sensitive regions at *CCNDI* and *MYC* promoters

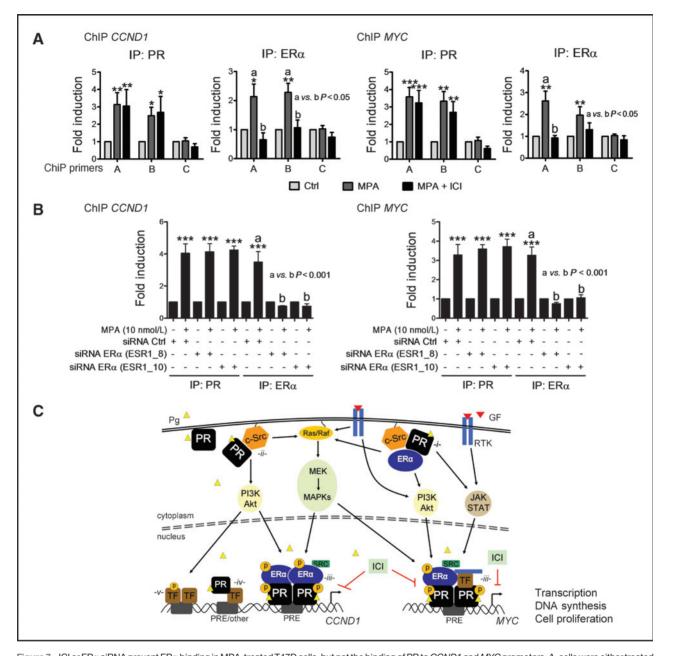


Figure 7. ICI or $ER\alpha$ siRNA prevent $ER\alpha$ binding in MPA-treated T47D cells, but not the binding of PR to CCND1 and MYC promoters. A, cells were either treated or not with MPA (10 nmol/L) or MPA + ICI (1 μ mol/L) for 10 minutes and processed for ChIP/qPCR studies to detect the presence of PR (H-190X) and $ER\alpha$ (HC-20X) on CCND1 (left) and MYC (right) promoters. ChIP primers were used as in Fig. 6C. B, cells were treated with Ctrl siRNA or $ER\alpha$ siRNAs as shown in Fig. 4D, starved, and either treated or not with MPA (10 nmol/L) for 10 minutes and processed for ChIP/qPCR studies (using ChIP primers A for both genes, Fig. 6B) to detect the presence of PR (H-190X) and $ER\alpha$ (HC-20X) on $ER\alpha$ (HC-20X) on $ER\alpha$ (right) promoters. C, integration of the proposed genomic and nongenomic models for $ER\alpha$ interaction after progestin treatment. See text for details.

(Fig. 7C -iii-). Interestingly, we found distinct consensus PRE half sites (40) at the *CCND1* promoter (Fig. 6B), which might bind activated PR, as shown for others genes (45, 46). Aligned with our observations, the hypothesis that both ER α and PR can interact at the gene promoter level has been proposed by other authors in different contexts (44). However, this is the first report showing that PR and ER α are recruited to the same sites at the *CCND1* and *MYC* promoters after PR activation by MPA. It has been

described that SRC (steroid receptor coactivator) proteins may also participate in this response (47), but we have not yet studied their involvement in this setting. Our results also show that antiestrogenic concentrations of ICI ($\leq 1~\mu mol/L)$ block the formation of MPA-induced PR/ER α nuclear complexes, inhibiting gene transcription and cell proliferation, without affecting the activation and binding of PR at the gene promoter. This implicates a change in the paradigm that a rapid, nongenomic

interaction between PR_B and $ER\alpha$ is necessary to activate the c-Src/p21^{ras}/Erk cascade and PR by progestins. Whether the genomic interaction described here also involves ERID domains (8) at PR, remains to be investigated.

The expression of MYC and CCND1 constitutes an early and transient event mediated by MPA, and it is quite conceivable that PR/ERα complexes driven effects are required to unwind the chromatin. This may be followed by the recruitment of other transcription factors, and full transcription of proliferative oncogenes. In addition, this activity could also be required for transcription events induced by other mitogens such as epidermal growth factor (48). On the other hand, MYC can also be involved in the activation of cyclins (D1, D2, E1, and A2), cyclin-dependent kinases (CDK4), and in the downregulation of cell-cycle inhibitors (49).

Finally, in this study we also showed that both receptors interact in the nuclei of selected human breast cancer samples, suggesting that ligand-independent hormone receptor activation may also be implicated in breast cancer tumor growth in patients. Thus, it is possible to speculate that patients showing higher levels of $PR/ER\alpha$ colocalization may have a better response to a combined antiprogestin–antiestrogen therapy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors' Contributions

Conception and design: S. Giulianelli, J.P. Vaqué, A.A. Molinolo, J.S. Gutkind,

References

- Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893–917.
- Santen R, Cavalieri E, Rogan E, Russo J, Guttenplan J, Ingle J, et al. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann N Y Acad Sci 2009:1155:132–40.
- Aupperlee M, Kariagina A, Osuch J, Haslam SZ. Progestins and breast cancer. Breast Dis 2005;24:37–57.
- Lange CA, Sartorius CA, Abdel-Hafiz H, Spillman MA, Horwitz KB, Jacobsen BM. Progesterone receptor action: translating studies in breast cancer models to clinical insights. Adv Exp Med Biol 2008;630: 04, 111
- Lange CA. Challenges to defining a role for progesterone in breast cancer. Steroids 2008;73:914–21.
- 6. Cho H, Aronica SM, Katzenellenbogen BS. Regulation of progesterone receptor gene expression in MCF-7 breast cancer cells: a comparison of the effects of cyclic adenosine 3',5'-monophosphate, estradiol, insulin-like growth factor-I, and serum factors. Endocrinology 1994;134:658–64.
- Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, et al. Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 1998;17:2008–18.
- Ballare C, Uhrig M, Bechtold T, Sancho E, Di Domenico M, Migliaccio A, et al. Two domains of the progesterone receptor interact with the estrogen receptor and are required for progesterone activation of the c-Src/Erk pathway in mammalian cells. Mol Cell Biol 2003;23: 1994–2008.
- Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL, et al. Progesterone receptor contains a proline-rich motif

Development of methodology: S. Giulianelli, J.P. Vaqué, V. Wargon, L.A. Helguero, C.A. Lamb, J.S. Gutkind

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Giulianelli, R. Soldati, V. Wargon, S.I. Vanzulli, R. Martins, E. Zeitlin

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S. Giulianelli, J.P. Vaqué, A.A. Molinolo, C. Lanari Writing, review, and/or revision of the manuscript: S. Giulianelli, J.P. Vaqué, A.A. Molinolo, L.A. Helguero, C.A. Lamb, J.S. Gutkind, C. Lanari

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Giulianelli

Study supervision: S. Giulianelli, C. Lanari

Acknowledgments

The authors thank Dr. C. Gardmo (Karolinska Institutet, Stockholm) for providing the PRE-Luc plasmid, Dr. D. Edwards (BCM, Houston, TX) for the pPR antibodies, AstraZeneca (UK) for providing Fulvestrant, Dr. María Gorostiaga, Pablo DoCampo, and Bruno Luna for excellent technical assistance, and Dr. A. Pecci for helpful assistance.

Grant Support

This work was supported by SECYT (PICT2007/932), Carrillo-Oñativia Fellowships 03/04, CONICET and Fundación Sales. J.S. Gutkind, A.A. Molinolo, and J.P. Vaqué are supported by the Intramural Research Program (NIDCR-NIH). S. Giulianelli and V. Wargon are fellows of CONICET. C.A. Lamb and C. Lanari are members of the Research Career, CONICET. S. Giulianelli received awards from Avon Foundation to present data at the AACR Meetings 2009–2011, and he received an ICRETT fellowship (UICC) to carry out ChIP studies in Dr. Gutkind's Laboratory.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 3, 2011; revised February 29, 2012; accepted March 1, 2012; published OnlineFirst March 6, 2012.

- that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell 2001;8:269–80
- Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati R, Bottino MC, et al. The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer 2009:16:333–50.
- Hissom JR, Moore MR. Progestin effects on growth in the human breast cancer cell line T-47D-possible therapeutic implications. Biochem Biophys Res Commun 1987;145:706–11.
- Lange CA, Richer JK, Horwitz KB. Hypothesis: Progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals. Mol Endocrinol 1999;13:829–36.
- Institute of Laboratory Animal Resources CoLSNRC. Guide for the care and use of laboratory animals. Washington, D.C.: National Academy Press: 1996.
- 14. Osborne CK, Coronado-Heinsohn EB, Hilsenbeck SG, McCue BL, Wakeling AE, McClelland RA, et al. Comparison of the effects of a pure steroidal antiestrogen with those of tamoxifen in a model of human breast cancer. J Natl Cancer Inst 1995;87:746–50.
- Giulianelli S, Cerliani JP, Lamb CA, Fabris VT, Bottino MC, Gorostiaga MA, et al. Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth: A role for the FGF-2/FGFR-2 axis. Int J Cancer 2008;123: 2518–31
- Lamb CA, Helguero LA, Fabris V, Lucas C, Molinolo AA, Lanari C.
 Differential effects of raloxifene, tamoxifen and fulvestrant on a murine mammary carcinoma. Breast Cancer Res Treat 2003;79:25–35.
- 17. Soldati R, Wargon V, Cerliani JP, Giulianelli S, Vanzulli SI, Gorostiaga MA, et al. Inhibition of mammary tumor growth by estrogens: is there a specific role for estrogen receptors alpha and beta? Breast Cancer Res Treat 2010;123:709–24.

Cancer Res; 72(9) May 1, 2012

- Cerliani JP, Guillardoy T, Giulianelli S, Vaque JP, Gutkind JS, Vanzulli SI, et al. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Res 2011;71:3720–31.
- French AP, Mills S, Swarup R, Bennett MJ, Pridmore TP. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat Protoc 2008;3:619–28.
- 20. Helguero LA, Viegas M, Asaithamby A, Shyamala G, Lanari C, Molinolo AA. Progesterone receptor expression in medroxyprogesterone acetate-induced murine mammary carcinomas and response to endocrine treatment. Breast Cancer Res Treat 2003;79:379–90.
- 21. Bottino MC, Cerliani JP, Rojas P, Giulianelli S, Soldati R, Mondillo C, et al. Classical membrane progesterone receptors in murine mammary carcinomas: agonistic effects of progestins and RU-486 mediating rapid non-genomic effects. Breast Cancer Res Treat 2011;126:621–36.
- Gardmo C, Kotokorpi P, Helander H, Mode A. Transfection of adult primary rat hepatocytes in culture. Biochem Pharmacol 2005;69: 1805–13
- Cerliani JP, Giulianelli S, Sahores A, Wargon V, Gongora A, Baldi A, et al. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia. Medicina (B Aires) 2010;70:529–32.
- 24. Weigel NL, Moore NL. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 2007;21:2311–9.
- 25. Urtreger A, Lapeda V, Puricelli L, Rivelli A, Vidal MC, Lustig E, et al. Modulation of fibronectin expression and proteolytic activity associated with the invasive and metastatic phenotype in two new murine mammary tumor cell lines. Int J Oncol 1997;3:489–96.
- 26. Beguelin W, Diaz Flaque MC, Proietti CJ, Cayrol F, Rivas MA, Tkach M, et al. Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Mol Cell Biol 2010;30:5456–72.
- 27. Boonyaratanakornkit V, McGowan E, Sherman L, Mancini MA, Cheskis BJ, Edwards DP. The role of extranuclear signaling actions of progesterone receptor in mediating progesterone regulation of gene expression and the cell cycle. Mol Endocrinol 2007;21:359–75.
- 28. Musgrove EA, Hamilton JA, Lee CS, Sweeney KJ, Watts CK, Sutherland RL. Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression. Mol Cell Biol 1993;13:3577–87.
- 29. Saitoh M, Ohmichi M, Takahashi K, Kawagoe J, Ohta T, Doshida M, et al. Medroxyprogesterone acetate induces cell proliferation through up-regulation of cyclin D1 expression via phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB cascade in human breast cancer cells. Endocrinology 2005;146:4917–25.
- Skildum A, Faivre E, Lange CA. Progesterone receptors induce cell cycle progression via activation of mitogen-activated protein kinases. Mol Endocrinol 2005;19:327–39.
- Moore MR, Zhou JL, Blankenship KA, Strobl JS, Edwards DP, Gentry RN. A sequence in the 5' flanking region confers progestin responsiveness on the human c-myc gene. J Steroid Biochem Mol Biol 1997;62:243–52
- 32. Musgrove EA, Lee CS, Sutherland RL. Progestins both stimulate and inhibit breast cancer cell cycle progression while increasing expression of transforming growth factor alpha, epidermal growth factor receptor, c-fos, and c-myc genes. Mol Cell Biol 1991;11:5032–43.
- Katiyar P, Ma Y, Riegel A, Fan S, Rosen EM. Mechanism of BRCA1mediated inhibition of progesterone receptor transcriptional activity. Mol Endocrinol 2009;23:1135–46.

- 34. Quiles I, Millan-Arino L, Subtil-Rodriguez A, Minana B, Spinedi N, Ballare C, et al. Mutational analysis of progesterone receptor functional domains in stable cell lines delineates sets of genes regulated by different mechanisms. Mol Endocrinol 2009;23: 809–26
- Nishino T, Ishibashi K, Hirtreiter C, Nishino Y. Potentiation of the antitumor effect of tamoxifen by combination with the antiprogestin onapristone. J Steroid Biochem Mol Biol 2009;116: 187–90.
- Wargon V, Helguero LA, Bolado J, Rojas P, Novaro V, Molinolo A, et al. Reversal of antiprogestin resistance and progesterone receptor isoform ratio in acquired resistant mammary carcinomas. Breast Cancer Res Treat 2009;116:449–60.
- 37. Lin VC, Ng EH, Aw SE, Tan MG, Ng EH, Chan VS, et al. Progestins inhibit the growth of MDA-MB-231 cells transfected with progesterone receptor complementary DNA. Clin Cancer Res 1999;5: 395–403.
- Vazquez SM, Mladovan A, Garbovesky C, Baldi A, Luthy IA. Three novel hormone-responsive cell lines derived from primary human breast carcinomas: functional characterization. J Cell Physiol 2004;199: 460–9.
- Dressing GE, Hagan CR, Knutson TP, Daniel AR, Lange CA. Progesterone receptors act as sensors for mitogenic protein kinases in breast cancer models. Endocr Relat Cancer 2009;16:351–61.
- 40. Jacobsen BM, Horwitz KB. Progesterone receptors, their isoforms and progesterone regulated transcription. Mol Cell Endocrinol 2011 Sep 17. [Epub ahead of print].
- 41. Wang C, Mayer JA, Mazumdar A, Fertuck K, Kim H, Brown M, et al. Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol Endocrinol 2011;25:1527–38.
- Vicent GP, Nacht AS, Zaurin R, Ballare C, Clausell J, Beato M. Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin. Mol Endocrinol 2010:24:2088–98.
- 43. Lange CA. Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word? Mol Endocrinol 2004;18:269–78.
- 44. Cicatiello L, Addeo R, Sasso A, Altucci L, Petrizzi VB, Borgo R, et al. Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol 2004;24:7260–74.
- 45. Fernandez-Valdivia R, Mukherjee A, Creighton CJ, Buser AC, DeMayo FJ, Edwards DP, et al. Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology 2008;149: 6236–50
- 46. Buser AC, Obr AE, Kabotyanski EB, Grimm SL, Rosen JM, Edwards DP. Progesterone receptor directly inhibits {beta}-casein gene transcription in mammary epithelial cells through promoting promoter and enhancer repressive chromatin modifications. Mol Endocrinol 2011;25:955–68.
- **47.** O'Malley BW, Kumar R. Nuclear receptor coregulators in cancer biology. Cancer Res 2009;69:8217–22.
- Lange CA, Yee D. Progesterone and breast cancer. Womens Health (Lond Engl) 2008;4:151–62.
- Gonzalez V, Hurley LH. The c-MYC NHE III(1): function and regulation. Annu Rev Pharmacol Toxicol 2010;50:111–29.