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ABSTRACT

Context. Embedded planets disturb the density structure of the ambient disk, and gravitational back-reaction possibly will induce a
change in the planet’s orbital elements. Low-mass planets only have a weak impact on the disk, so their wake’s torque can be treated
in linear theory. Larger planets will begin to open up a gap in the disk through nonlinear interaction. Accurate determination of the
forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm
(FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested.

Aims. We study the process of planet-disk interaction for low-mass planets of a few Earth masses, and reanalyze the numerical
requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we
study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic
conditions.

Methods. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To
strengthen our conclusions we perform a detailed numerical comparison where several upwind and Riemann-solver based codes are
used with and without the FARGO-algorithm.

Results. With respect to the wake structure and the torque density acting on the planet, we demonstrate that the FARGO-algorithm
yields correct a correct and stable evolution for the planet-disk problem, and that at a fraction of the regular cpu-time. We find that
the resolution requirements for achieving convergent results in unshocked regions are rather modest and depend on the pressure scale
height H of the disk. By comparing the torque densities of two- and three-dimensional simulations we show that a suitable vertical
averaging procedure for the force gives an excellent agreement between the two. We show that isothermal and adiabatic runs can

differ considerably, even for adiabatic indices very close to unity.

Key words. accretion, accretion disks — planet-disk interactions — methods: numerical — hydrodynamics — protoplanetary disks

1. Introduction

Very young planets that are still embedded in the protoplanetary
disk will disturb the ambient density by their gravity. This will
lead to gravitational torques that can alter the orbital elements
of the planet. For massive enough planets, the wake becomes
nonlinear, and gap formation sets in. In numerical simulations
of embedded planets, different length scales have to be resolved,
in particular when studying low-mass planets. On the one hand,
the global structure has to be resolved to be able to obtain the
correct structure of the wakes, i.e. the spiral arms generated by
the planet, which requires a sufficiently large radial domain. The
libration of co-orbital material on horseshoe streamlines requires
a full azimuthal extent of 2 & radians to be properly captured. On
the other hand, the direct vicinity of the planet has to be resolved
to study detail effects, such as horseshoe drag or accretion onto
the planet.

To ease computational requirements, often planet-disk sim-
ulations are performed in the two-dimensional (2D) thin disk
approximation, because a full three-dimensional (3D) treatment
with high resolution is still very time-consuming. However, even
under this reduced dimensionality, the problem is still com-
putationally very demanding. The main reason is the strongly
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varying timestep size caused by the differentially rotating disk.
Because the disk is highly supersonic with (azimuthal) Mach
numbers of about 10 to 50, the angular velocity at the inner
disk will limit the timestep of the whole simulation, even though
the planet or other regions of interest are located much farther
out. Changing to a rotating coordinate system will not help too
much owing to the strong differential shear. To solve this par-
ticular problem and speed up the computation, Masset (2000a)
has developed a fast orbital advection algorithm (FARGO). This
method consists of an analytic, exact shift in the hydrodynami-
cal quantities by approximately the average azimuthal velocity.
The transport step utilizes only the residual velocity, which is
close to the local sound speed. Depending on the grid layout and
the chosen radial range, a very large speed-up can be achieved,
while at the same time the intrinsic numerical diffusion of the
scheme is highly reduced (Masset 2000a,b).

The original version of the algorithm has been implemented
into the public code FARGO, which is very often used in planet-
disk and related simulations. The accuracy of the FARGO-
algorithm has been demonstrated in a detailed planet-disk com-
parison project utilizing embedded Neptune and Jupiter mass
planets (de Val-Borro et al. 2006). There, it has been shown
that it leads to identical density profiles near the planet and total
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torques acting on the planet. Meanwhile, similar orbital advec-
tion algorithms have been implemented into a variety of dif-
ferent codes in two and three spatial dimensions, e.g. NIRVANA
(Ziegler & Yorke 1997; Kley et al. 2009), ATHENA (Gardiner &
Stone 2008; Stone & Gardiner 2010), and PLUTO (Mignone et al.
2007, 2012). Despite these widespread applications, it has been
claimed recently that usage of the FARGO-algorithm (here in
connection with ATHENA) may lead to an unsteady behavior of
the flow near the planet, which even affects the wake structure of
the flow farther away from the planet (Dong et al. 2011b).

In the same paper, Dong et al. (2011b) note that a very
high numerical grid resolution is required to obtain a resolved
flow near the planet. In particular, they analyze the smooth, un-
shocked wake structure close to the planet and infer that a min-
imum spatial resolution of about 256 gridcells per scale height
H, of the disk is needed to obtain good agreement with linear
studies. New simulations with a moving mesh technique also
seem to indicate the necessity of very high resolutions (Duffell
& MacFadyen 2012).

Because a robust, fast, and reliable solution technique is
mandatory in these types of simulations, we decided to address
the planet-disk problem for a well defined standard setup, which
is very close to the one used in Dong et al. (2011b). To an-
swer the question of the validity of the FARGO-algorithm and
estimate the resolution requirements, we applied several dif-
ferent codes to an identical problem. These range from classi-
cal second-order upwind schemes (e.g. RH2D, FARGO) to mod-
ern Riemann-solvers such as PLUTO. The characteristics of these
codes are specified in Appendix A.

Another critical issue in planet-disk simulations is the selec-
tion of a realistic treatment of the gravitational force between the
disk and the planet. Because the planet is typically treated as a
pointmass and located within the numerical grid, regularization
of the potential is required. In addition, physical smoothing is
required to account for the otherwise neglected vertical thick-
ness of the disk. The magnitude of this smoothing is highly rele-
vant, since it influences the torques acting on the planet (Masset
2002), and the smoothing parameter has even entered analyti-
cal torque formulas (Masset & Casoli 2009; Paardekooper et al.
2010). Because the 2D equations are obtained by a vertical av-
eraging procedure, the force should be calculated by a suitable
vertical integration as well. This approach has been undertaken
recently by Miiller et al. (2012), who show that the smoothing
length is indeed determined by the vertical thickness of the disk,
and is roughly on the order of 0.7 H. They show in addition that
the change of the disk thickness induced by the presence of the
planet has to be taken into account. Because in recent simula-
tions very short smoothing lengths have been used in 2D sim-
ulations (Dong et al. 2011b; Duffell & MacFadyen 2012), we
compare our 2D results on the standard problem to an equiva-
lent 3D setup and infer the required right amount of smoothing.

Finally, we performed additional simulations for differ-
ent equations of state. The first set of simulations deals with
the often used locally isothermal setup, while in comparison
simulations we explore the outcome of adiabatic runs. This is
important because some codes may not allow for treating an
isothermal equation of state. Here, we use different values for
the ratio of specific heat y. In particular, a value of y very close
to unity has often been quoted as closely resembling the isother-
mal case. We show that this statement can depend on the physi-
cal problem. In particular, in flows where the conservation of the
entropy along streamlines is relevant, there can be strong differ-
ences between an isothermal and an adiabatic flow, regardless
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of the value chosen for y. For the planet-disk problem this has
already been shown by Paardekooper & Mellema (2008).

In the following Sect. 2 we describe the physical and numer-
ical setup of our standard model, and present the numerical re-
sults in Sect. 3. The validity of the FARGO-algorithm is checked
in Sect. 4. Alternative setups (nearly local, 2D versus 3D, adia-
batic) are discussed in Sect. 5. The transition of the wake into
a shock front is discussed in Sect. 6, and in the last section, we
summarize our results.

2. The physical setup

We study planet-disk interaction for planets of the very low
masses that are embedded in a protoplanetary disk. Most of our
results shown refer to 2D simulations, using the vertically inte-
grated hydrodynamic equations. For validation and comparison
purposes, some additional full 3D models were performed using
a similar physical setup. In all cases, we assumed that the disk
lies in the z = 0 plane and used, for the 2D models, a cylin-
drical coordinate system (r, ¢, z), while in the 3D case we used
spherical polar coordinates (R, ¢, 6).

We considered locally isothermal, as well as adiabatic mod-
els. In the first case, the thermal structure of the disk was kept
fixed, and for the standard model we chose a constant aspect ra-
tio, h = H/r. Here r is the distance to the star and H the local
vertical scale height of the disk

Cs

H= o, (1)
where c¢; is the isothermal sound speed and Qg = (GM../ 2
is the Keplerian angular velocity around the star. During the
computations the orbital elements of the planet remained fixed
at their initial values; i.e., we assumed no gravitational back-
reaction of the disk on the planet or the star. This allows the
problem to be formulated scale free in dimensionless units.
The planet, whose mass is specified in terms of its mass ratio
q = M,/M., is placed on a circular orbit at the distance r = 1
and has angular velocity , = 1;i.e., one planetary orbit in these
units is 27. The initial surface density X is constant and can be
chosen arbitrarily since it scales out of the equations.

In the 2D case, the basic equations for the flow in the r — ¢
plane are given by equation of continuity
0z

o+ V@) =0, 2)

the momentum equation

»
66—;' +V-(Suu) = —VP + SFoy, 3)

and the equation of energy

%+V-(eu)=—PV-u. “4)
ot

Here, e is the energy density (energy per surface area), and
P = (y — 1)e denotes the vertically integrated pressure. In the
isothermal case the energy equation is not evolved and the pres-
sure reduces to P = 2c§, where cs(r) is a given function. The
external force

Fext = Fi + Fp + Finertial» ()

contains the gravitational specific forces (accelerations) exerted
by the star, the planet, and the inertial specific forces due to the
accelerated and rotating coordinate system.
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Table 1. Physical and numerical parameter for the 2D standard model,
which consists of a locally isothermal, 2D disk with an embedded
planet.

Parameter Symbol Value
mass ratio q=M,/M. 6x107¢
aspect ratio h=H/r 0.05
nonlinearity parameter M = ¢'/3/h 0.36
kinematic viscosity v 1078
potential smoothing & 0.1H
radial range Fmin — Fmax 0.6-1.4
angular range Dmin — Pmax 0-2m
number of gridcells N, X N, 256 x 2004
spatial resolution Ar H/16
damping range at 7y, 0.6-0.7
damping range at ryax 1.3-14

For the gravitational force generated by the central star and
the inertial part of the force, we use standard expressions. The
planetary force is more crucial because it influences, for exam-
ple, the magnitude of the torque generated by the planet. In our
2D standard model, we derive it from a smoothed potential and
use the very common form

GM,

2D _
\Pp - N

2 2
(2+€)

) (6)

where s is the distance from the planet to the gridpoint under
consideration, and €, the smoothing length to the otherwise point
mass potential. It is introduced to avoid numerical problems at
the location of the planet. Then, F, = —V‘I’gD. Alternatively, we
use in the 2D simulations a vertically averaged version of F),
following Miiller et al. (2012), which we outline in more detail
below.

Even though we use a nonzero but very low viscosity, we
do not specify those terms explicitly in the above equations, as
for example in Kley (1999). The viscosity is so low, that it does
not influence the flow on the relevant scales but is just included
to enhance stability and smoothness of the flow. In the invis-
cid case, the dynamical evolution of the system is controlled by
the planet-to-star massratio ¢ and the pressure scale height H. A
dimensional analysis by Korycansky & Papaloizou (1996) has
shown that the relevant quantity is the nonlinearity parameter

1/3
q/

m=L )

2.1. The standard model

The standard model refers to a 2D disk with a locally isothermal
setup, where the temperature is a given function of radius, which
does not evolve in time. The parameters for our standard model
are specified in Table 1. The first two quantities, the mass and the
aspect ratio, determine the problem physically. Since we intend
to model the linear case in the standard model, we chose a small
planet with ¢ = 6 x 107, which refers to a 2Mg,q, planet for
a solar-mass star. We assume i = 0.05 for the disk’s thickness.
For later purposes, we list the nonlinearity parameter in the third
row, which is 0.36 here. All results are a function of ¢ and H
only, if we assume a vanishing viscosity. In the present situa-
tion, where we indeed model the inviscid case, we nevertheless
chose a small nonzero kinematic viscosity v = 1078, given in

units of ap Qg (ap). This is equivalent to an a-value of 4 x 107°
for a H/r = 0.05 disk, a value that is considered to be much
lower than even a purely hydrodynamic viscosity in the disk. We
opted for the very low nonzero value for numerical purposes.
For the planetary gravitational potential \P?P, we chose a value
of € = 0.1H in the standard model. We selected this small value
for €, primarily for comparison reasons to make contact to the
recent simulations of Dong et al. (2011b,a), who suggest a very
small smoothing length. Below we demonstrate that, for physi-
cal reasons, a much larger smoothing is required, which can be
obtained by a suitable vertical averaging procedure (Miiller et al.
2012).

A whole annulus is modelled with a radial range from 7y, =
0.6 to rmax = 1.4. We chose this domain size to capture all of
the torque-producing region, which has a radial range of typi-
cally a few vertical scale heights, see e.g. D’Angelo & Lubow
(2010). The computational domain is covered by an equidistant
grid that has 256 x 2004 gridcells. This results in a resolution
of H/16 at the location of the planet for the standard model. To
reduce or even avoid reflection from the inner and outer bound-
aries we applied a damping procedure where, within a specified
radial range, all dynamical variables are damped towards their
initial values. Specifically, we used the prescription described in
de Val-Borro et al. (2006), and write

dX X - Xo

T R(r), (®)
where X € {X,u,}, and R(r) is a ramping function increasing
quadratically from zero to unity (at the actual boundary) within
the radial damping regions. The relaxation time 7 is given by a
fraction of the orbital periods Top at rmin and rax. Here, we use
a value of 7 = 0.037 . For more details on the procedure, see
de Val-Borro et al. (2006). We note that it is sufficient to only
damp the radial velocity u, (plus uy in 3D simulations), which
may be useful in radiative simulations where the density strati-
fication may not be known a priori. In test simulations (not dis-
played here) that use a wider radial range, we have found iden-
tical results for the torque and wake structure induced by the
planet.

2.2. Initial setup and boundary conditions

The initialization of the variables X, T, u,, us was chosen such
that without the planet the system would be in an equilibrium
state. Here, we chose a constant X, and a temperature gradient
such that the aspect ratio & = H/r is constant. That results in
T(r) o r~!, which is fixed for the (locally) isothermal models.
The radial velocity is zero initially, u, = 0, and for uy we as-
sume a nearly Keplerian azimuthal flow, corrected by the pres-
sure gradient

up(t = 0) = r (1-12)". )

The planet with mass ratio ¢ is placed at » = 1 and ¢ = x, i.e. in
the middle of the computational domain. For some models the
gravitational potential of the planet is slowly switched on within
the first five orbital periods, while others do not use this ramping
procedure for the potential. For low-mass planets, the results that
are typically evaluated at 30 T (i.e. £ = 30 - 27), and there is
no difference between these two options.

Near the inner and outer radial boundaries the solution is
damped towards the initial state, using the procedure as de-
scribed above. In addition we use reflecting boundaries directly
at rpin and rpa. In the azimuthal direction we use periodic
boundaries.
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2.3. Numerical methods and codes

Because one goal of this paper is to verify the accuracy of
numerical methods, we applied several different codes to this
physical problem. The 2D case was run using the following
codes FARGO, NIRVANA, RH2D, and PLUTO. All of these are fi-
nite volume codes utilizing a second-order spatial discretiza-
tion. Additionally, all are empowered with the orbital advec-
tion speed-up known as the FARGO-algorithm, as developed by
Masset (2000a), but can be used without this algorithm as well.
The first three codes in the list have been used and described
in de Val-Borro et al. (2006). The last code, PLUTO, is a mul-
tidimensional Riemann-solver based code for magnetohydrody-
namical flows (Mignone et al. 2007), which has been empowered
recently with the FARGO-algorithm (Mignone et al. 2012).

In the standard 2D setup, the simulations were performed in
a cylindrical coordinate system that corotates with the embed-
ded planet, and the star is located at the origin. This implies that
inertial forces, such as Coriolis and centrifugal force, as well as
an acceleration term to compensate for the motion of the star,
have to be included in the external force term Fy. Additionally,
the FARGO-algorithm is applied, which leads to a speedup of
around ten for the standard model, and possibly even more for
the higher resolution models. For testing purposes the FARGO-
algorithm can be alternatively switched on or off.

The 3D models are run in spherical polar coordinates. For
reference we quote the inertial terms and their conservative
treatment in Appendix C. These are run using the following
codes FARGO3D, NIRVANA, and PLUTO, where FARGO3D is a
newly developed 3D extension of FARGO. For a description
see Appendix A. For the timestep we typically use 0.5 of the
Courant number (CFL). In Sect. 4 we describe the outcome of
the comparison in more detail.

3. Results for the standard case

To set the stage and illustrate the important physical effects, we
first present the results of our simulations for the 2D standard
case using the parameters according to Table 1. For the simu-
lations in this section we used the RH2D code unless otherwise
stated. Below, we discuss the variations from the standard model.

After the insertion of the planet, the planet’s gravitational
disturbance generates two wakes in the form of trailing spiral
arms. The basic structure of the surface density, X, is shown in
Fig. 1. As seen from the plot, the damping procedure ensures
that reflections by the radial boundaries are minimized. There is
indication of vortex formation as can be seen by the additional
structure on the righthand side of Fig. 1. Vortices induced by
the planet occur for low-viscosity disks and have already been
seen in earlier simulations (see e.g. Li et al. 2005; de Val-Borro
et al. 2006; Li et al. 2009). Here, we do not discuss this issue any
further.

The relevant quantity to study the physical consequences of
the interaction of the embedded planet with the ambient disk is
the gravitational torque exerted on the planet by the disk. For
that purpose it is very convenient to calculate the radial torque
distribution per unit disk mass, dI'(r)/dm, which we define here,
following D’ Angelo & Lubow (2010), through the definition of
the total torque, Iy, acting on the planet

[t =27 f £(r) X(r) rdr. (10)
dm

Here, dI'(r) is the torque exerted on the planet by a disk annulus
of width dr located at the radius r and having mass dm. Because
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Fig. 1. Density structure of the 2D standard model as generated by an
embedded planet with ¢ = 6 x 107 in a disk having the aspect ratio
H/r = 0.05. Shown is the configuration after 30 7. The density is
scaled linearly.
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Fig.2. Total torque, I'y, in units of Iy (see Eq. (12)), acting on the
planet vs. time for the 2D standard model. Shortly after insertion, the
torque is positive and approximately constant between 10 and 40 or-
bits. At later times it saturates due to mixing of the material within the
horseshoe region.

dI'(r)/dm scales with the mass ratio squared and as (H/r)™*, we
rescale our results accordingly in units of

dF) 2 2 2(H)_4
— | =Q(apayg | —| .
(dm 0 PR ap

where the index p denotes that the quantities are evaluated at the
location of the planet, which has the semi-major axis a,. The
time evolution of the total torque, I', is displayed in Fig. 2 for
the first 500 orbits. The total torque is stated in units of

(1)

H\™?
2 4.2
Lo = 2o Qp(ap)apg (a_p) : (12)
In this simulation, the planetary potential has been ramped up
during the first five orbits. After insertion of the planet, the total
torque becomes first positive and remains constant at this level
for about 30 orbits. In this phase the co-orbital torque, in par-
ticular the horseshoe drag, is fully unsaturated and gives rise
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Fig. 3. Radial torque density in units of (dI'/dm), (see Eq. (11)) at 30
and 200 Ty, for the 2D standard model. The torque enhancement and
spike near r = 1 at t = 307,y is due to the unsaturated corotation
torque. At later times, here shown at t = 200 T, only the Lindblad
contributions due to the spiral arms remain.

to a total positive torque. In our situation of an isothermal disk
this comes about because of a nonvanishing vortensity gradient
across the horseshoe region, which generates a strong positive
corotation torque (Goldreich & Tremaine 1979) in this case. The
vortensity, which is defined as vorticity divided by surface den-
sity, is given here by

_ (Vxw),
S

As can be seen from this definition, the radial gradient of ¢ is
ocr=3/2 for a constant T disk, which leads to the strong vortensity-
related torque. However, owing to the different libration speeds,
the material within the corotation region mixes, and the gra-
dients of potential vorticity and entropy are wiped out in the
absence of viscosity (Balmforth & Korycansky 2001; Masset
2001). Consequently, the torques drop again and oscillate on
timescales close to the libration time towards a negative equilib-
rium value, which is given by the Lindblad torques generated by
the spiral arms. This saturation of the vortensity-related torque
related torque has been analyzed, for example, by Ward (2007)
through an analysis of streamlines within the horseshoe region
for an inviscid disk, and later through 2D hydrodynamic simula-
tions by Masset & Casoli (2010) and Paardekooper et al. (2011).
The strength of the (positive) corotation torque depends strongly
on the smoothing of the gravitational potential. For the chosen
small € = 0.1 this results in a positive total torque. For more re-
alistic values of € = 0.6—0.7, I, will usually be negative, see
Sect. 5.2.

To study the spatial origin of the torques we analyzed the
radial torque density for the standard model. In Fig. 3 the
torque density dI'/dm, according to Eq. (11) is displayed vs.
radius in units of (dI'/dm)y. Two snapshots are displayed, one
at t = 30 T, where the torque is fully unsaturated and one at
t = 200 T, where the torque is saturated. We note that, for the
torque calculation, we used a tapering function near the planet to
avoid contributions of material that is bound to the planet, or is
so close that it yields large torque fluctuations due to numerical
discretization effects. We use the form as given in Crida et al.
(2008) which reads as

-1
s—r
1
0.1r, )+ ] ’

13)

f(s) = [exp (— (14)

12
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0.2

My/M,) (§/5g) / (x/H)'2

0

-0.2

04 | | | | |
(+y/H) - 3 (IK/H) /4

Fig.4. Normalized azimuthal density profile of the inner and outer
wakes at radial distances +4/3H away from the planet at 30 7', for
the isothermal 2D standard model. The coordinates x and y refer to lo-
cal Cartesian coordinates, see Eq. (15). The “plus” sign in the x-axis
label refers to the blue curve at r, — 4/3H, and the “minus” sign to the
red curve at r, +4/3H. The upstream side of the wake is to the left for
both curves.

with a tapering length of r, = 0.8 Ry. Here, Ry = (¢/3)'ay is

the Hill radius of the planet. Such tapering is particularly useful
for massive planets that form a disk around them (Crida et al.
2009). Around lower mass planets, with M < 0.6, circumplane-
tary disks do not form (Masset et al. 2006) and a large tapering is
not required. Indeed, we found that for values of r; in the range
of 0.4—1.0 Ry there is not a large difference in the measured
torques in equilibrium. For example, the variations in the total
torque in Fig. 2 are less than 5%.

The torque density in the fully saturated phase, at t =
200 To, (Fig. 3, blue line), is positive inside of the planet and
negative outside of the planet. The positive contribution of this
Lindblad torque comes from the inner spiral arm, and the nega-
tive part from the outer one. The distribution at the earlier time,
t = 30 Tow, shows an additional contribution and spike just in-
side of the planet. This part is due to the horseshoe drag, which
is subject to the described saturation process.

To study the wake properties generated by the planet, we
used here a quasi-Cartesian local coordinate system centered on
the planet to allow direct comparison to previous linear results.
Specifically, we define

and y=(b—dp)rp- (15)

In Fig. 4 the relative density perturbations for the inner and outer
wakes are shown along the azimuth. They are displayed at a
radial distance of x = +4/3H from the location of the planet.
For the normalization of the perturbed density we first define the
thermal mass of the planet

x=(r—rp)

3

My, =[5
th — GQ

) = M,, (16)
p

where the quantities have to be evaluated at the location of the
planet. Then, the ratio of the planet mass to the thermal mass is
given by
My _aq
M[h h3
Now, we follow Dong et al. (2011b) and scale 6 = X(¢p) — Xy by
the planet mass (in units of My,) and normalize by x/H.

= M. a7
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Fig.5. Radial torque density of the 2D standard-problem in units of
(dI'/dm), at 30 Ty, for different codes at the standard resolution.

Owing to the radial temperature variation and the cylindrical
geometry, the inner and outer wake differ in their appearance.
However, the general shape and magnitude are very similar to
the linear results that have been obtained for the local shearing
sheet model (see Goodman & Rafikov 2001; Dong et al. 2011b).
Differences in the amplitude are presumably due to a different
normalization. Because our results (in all simulations and with
all codes) are consistently by a factor of 3/2 greater than those
of Dong et al. (2011b), we suspect that they might have used the
normalization of My, as given by Goodman & Rafikov (2001),
which differs exactly by this factor. At the displayed distance
from the planet, the wake is expected to be in the linear regime,
which results in a smooth maximum. For this reason we do not
expect a strong dependence on the numerical resolution. In the
following, we only use the outer wake to check for possible vari-
ations due to setup, numerical methods, and resolution.

4. Testing numerics

To validate our results and demonstrate that the FARGO-
algorithm yields accurate results, we varied the numerical setup,
and used several different codes on the same physical problem.
In this section we describe our studies in more detail.

4.1. Using different codes on the 2D standard model

To support our findings on the torque density and wake form
and to demonstrate the accuracy of the used codes, we ran the
2D standard model in the isothermal and the adiabatic version
using all of the above codes. All simulations use the FARGO-
setup and were run in the same (standard) resolution. The
isothermal results for the torque density are shown in Figs. 5
and 6, where the latter displays an enlargement of the first.
Clearly, the results agree extremely well between the different
codes. This includes the standard Lindblad torques, as well as the
detailed structure of the corotation torque. The FARGO3D code
was used in its 2D version for this test.

Recently, it has been shown by Dong et al. (2011b) and
Rafikov & Petrovich (2012) that the torque density I'(r) changes
sign at a certain distance from the planet in contrast to the stan-
dard linear results (Goldreich & Tremaine 1979). Here, we show
that this effect is reproduced in our simulations, for all codes. In
Fig. 6 we show that this reversal occurs at a distance r. ~ 3.1H
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Fig. 6. Radial torque density in units of (dI'/dm), at 30 Ty, for the
standard setup for various code. This is an enlargement of Fig. 5.
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Fig.7. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 T, for different codes at the standard resolution.

away from the planet in good agreement with the linear results
of Rafikov & Petrovich (2012). Again, all codes agree well on
this feature, with only FARGO3D showing small deviations.

The corresponding wake form at x = r, + 4H is displayed in
Fig. 7. It is identical for all four cases, which shows the consis-
tency and accuracy of the results and codes.

4.2. The FARGO treatment

In Fig. 8 the wake form is analyzed for three different numeri-
cal uses of the FARGO-algorithm on the 2D standard setup. The
first, a red curve, corresponds to the standard reference case us-
ing a corotating coordinate system and the FARGO-algorithm.
For the second, the blue curve, the simulation was performed in
the inertial frame and using FARGO. In the mechanism of the al-
gorithm, the quantities in each ring are first shifted according to
the overall mean angular velocity of the ring, and then advected
using the residual velocity (Masset 2000a). As a result, theo-
retically it should not matter whether the coordinate system is
rotating or not. This is exactly what we find in our simulations,
since the blue curve is very similar to the red one. Small dif-
ferences can be produced by the planetary potential, which is
time dependent in the latter case, as the planet is moving, and
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Fig.8. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 Ty, for the code RH2D using different timesteps
and a non-rotating frame.
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Fig.9. Normalized azimuthal density profile of the outer wake at the
radius rp+4/3H at 30 T, using the FARGO-code at different resolutions.

it lies at different locations with respect to the numerical grid.
Also, the number of timesteps used until 30 7y, are identical
for two runs (12 866 steps). The third, the green curve, corre-
sponds to a model in the corotating frame without using the
FARGO-algorithm. Because of the small timestep size in this
case, over ten times more timesteps had to be used in this case
(137750 steps). Nevertheless, the wake form is identical. These
runs indicate that the FARGO-algorithm captures the physics of
the system correctly. At the same time, it comes with a much
larger timestep, thereby much reducing the computational cost.
This also applies to modern Riemann-solvers such as PLUTO, as
shown in Sect. 5.4.

4.3. Testing numerical resolution

To estimate the effect of numerical resolution, we ran the
2D standard model using gridsizes ranging from 182 x 1418 all
the way to 4096x32 064. This is equivalent to grid resolutions of
H/10 to H/256. As shown in Fig. 9, the results are nearly identi-
cal at all resolutions. The first two, lower resolution cases have a
slightly lower trough just in front of the wake and a smaller am-
plitude. As discussed later in Sect. 6, the results for the different
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Fig.10. Normalized azimuthal density profile of the outer wake at the
radius r,+4/3H at 30 T, using the FARGO-code with different Courant-
numbers (CFL). The physical setup differs slightly from the standard
problem and is described in Sect. 4.4. In the upper panel the differ-
ences of the individual runs with respect to the standard, CFL = 0.5, are
displayed.

resolutions are this similar because at this distance to the planet
the wake is in the linear regime and has not steepened to a shock
wave yet. The resolution requirements at the shock front is ana-
lyzed in Sect. 6.

4.4. Testing timestep and stability

Finally, we would like to comment on possible timestep limita-
tions due to the gravitational force generated by the planet. In
our simulations we never found any unsteady evolution when
using orbital advection. In contrast, the results of Dong et al.
(2011b) indicate an unsteady behavior for longer timesteps.
They attribute possible instabilities to a violation of an additional
gravity-related timestep criterion and advocate using very small
timesteps, which would render the FARGO-algorithm inapplica-
ble in very many cases.

To test this statement specifically, we performed a suite
of simulations on a very similar setup to the one used by
Dong et al. (2011b) in their Fig. 12. Owing to the difficulty of
RH2D and FARGO to use a Cartesian local setup, we used here
a computational domain exactly as before with a gridsize of
1024 x 8016, which gives a resolution of 64 gridcells per scale-
height H. The planet mass is 1.33 Mg, Which is equivalent
to a mass ratio g = 4 X 107° or M, = 32X 1072 My,. For
the potential smoothing we chose € = 0.08 H, which yields a
planetary potential that is nearly identical to that of Dong et al.
(2011Db). In Fig. 10 we display the results (using FARGO) for dif-
ferent timestep sizes as indicated by the corresponding Courant-
number. The CFL = 0.5 case corresponds to our standard case.
We made the timestep longer (CFL = 0.8) as well as shorter,
down to CFL = 0.05. All cases yield identical results and do not
show any sign of instability. In the upper panel the differences
of the individual runs with respect to the standard, CFL = 0.5,
are displayed. The performed runs with the RH2D, FARGO, and
FARGO3D codes yield identical results, again with no signs of
unsteady behavior. Here, FARGO3D was run in the 2D version,
both with the setup as indicated above and with the local setup
of Table 3, with resolution 4/64. For all our runs, past the first
two orbits the wake profile at x = 1.33H has achieved conver-
gence to better than the 1% level, regardless of the value of the
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Fig.11. Total torque ', in units of I'y (see Eq. (12)), acting on the
planet vs. time. Shown are the 2D standard model (red) and a globally
isothermal case (blue), with a different density profile, such that the
potential vorticity gradient vanishes.

timestep size. In Appendix B we reanalyzed possible stability
requirements in the presence of gravity and find indeed stability
for the timestep sizes used with the FARGO-algorithm.

For these runs we switched off the physical viscosity com-
pletely. We find that the result for the wake displayed in Fig. 10
is, in fact, due to the special scaling of the axes, identical to
that of the standard problem as shown in the previous plots.
Additionally, we have not seen any sign of unsteady behavior.
All of this indicates that our low value of the kinematic viscos-
ity, v = 1078 (in dimensionless units), is essentially negligible.

5. Using alternative setups

To illustrate how variations in individual properties of the stan-
dard model influence the outcome, we performed additional sim-
ulations, which are described in this section.

5.1. Different radial stratification

As shown above, in the initial evolution after embedding the
planet the total torque is positive owing to a strong positive
horseshoe drag. The strength of this effect depends on the radial
gradients of potential vorticity, entropy (for simulations with en-
ergy equation), and temperature (Baruteau & Masset 2012). To
minimize this effect, we present an additional, alternative setup
where the gradients of potential vorticity (vortensity) and tem-
perature vanish exactly. For this reason, we chose a setup with
a density gradient = oc 7732 and T = const. The time evolution
of the total torque for this model is displayed with the standard
case in Fig. 11. Clearly, after the short switch-on period of the
planet mass, the total torque is negative and constant throughout
the evolution. This demonstrates that, for this density profile,
¥ o 7732, which resembles (coincidently) the minimum mass
solar nebula, there is indeed no corotation torque present, and
the flow settles directly to the Lindblad torque. The final value
for the total Lindblad torque differs slightly for the two models
due to the different gradients in density and temperature. We note
that for this setup, with a vanishing vortensity gradient, there are
also no vortices visible during the initial evolution.
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Table 2. Numerical parameter for the 3D standard model.

Parameter Symbol Value
smoothing radius Fsm 0.25Ry
radial range Ruin — Rmax 0.6-1.4
angular range Dmin — Pmax 0-2n
meridional range Bmin — Omax 82°-90°
number of gridcells N, X Ny X Ny 256 x 2004 x 39
spatial resolution Ar H/16
damping range at Ry 0.6-0.7
damping range at Ry 1.3-14

T T
— 2D:e=0.1H
———————— 2D: integrated force

0.05

dT/dm / (dT/dm),
(=}

-0.05

0.1 ¢ | | | | | | | ]
-4 -3 -2 -1 0 1 2 3 4
(r—ap)/H

Fig. 12. Radial torque density in units of (d['/dm), at 30 T,y for 2D
and 3D simulations of the standard setup. The red curve corresponds
to that in Fig. 3, the blue line to a 2D model with a vertical integrated
gravitational force, and the green to the 3D model (using NIRVANA).

5.2. Comparing 2D and 3D simulations

The setup of the described standard case reduces the physical
planet-disk problem to two dimensions. However, even though
the disk may be thin, corrections are nevertheless expected be-
cause of its finite thickness. We investigated this by performing
full 3D simulations using the same physical setup as in the stan-
dard 2D model. The treatment of the inertial forces is outlined
in Appendix C. The additional numerical parameters are listed in
Table 2. The spatial extent and numerical resolution are identical
to the 2D model. The initialization of the 3D density was chosen
such that the surface density is constant throughout. In the ver-
tical direction the density profile was initialized with a Gaussian
profile as expected for vertically isothermal disks. The temper-
ature is constant on cylinders. For the gravitational potential of
the planet we chose the so-called cubic-form (Kley et al. 2009),
which is exact outside a smoothing radius ry,, and smoothed by
a cubic polynomial inside of rgy,,. The advantage of this form lies
in the fact that in 3D simulations the smoothing is required only
numerically, and the cubic potential allows us to have the ex-
act potential outside a specified radius, here ryy,. To calculate the
torque the same tapering function (Eq. (14)) as has been used
before.

In Fig. 12 we show the normalized torque density dI'/dm
for 2D simulations in comparison to a full 3D simulation us-
ing the same physical setup. Due to the finite vertical extent, the
torques of the 3D model are substantially less than for the corre-
sponding 2D setup. As Miiller et al. (2012) have shown recently,
this discrepancy can be avoided by performing a suitable vertical
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Fig.13. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 T,y, for 2D and 3D simulations of the standard
setup. The color coding is identical to Fig. 12.

averaging procedure of the gravitational force. Specifically, the
force acting on each disk element in a 2D simulation is calcu-
lated from the projected force that acts in the midplane of the
disk. Denoting the distance of the disk element to the planet
with s, the force density (force per area) is given by

Fos)=— [ o2 4o —omys [ —L
p Os p (52+Z2)% s

where ¥}, is the physical 3D potential generated by the planet.
For the vertical density stratification, a Gaussian density pro-
file can be assumed for a vertically isothermal disk as a first
approximation. However, the change in the vertical density as
induced by the planet has to be taken into account. The results
using this averaging prescription in an approximate way (Miiller
et al. 2012) is also shown additionally in Fig. 12. The overall
behavior and magnitude is very similar to the full 3D results.
For comparison, a 2D model using a fixed € = 0.7H (instead of
0.1H of the standard model) for ¥2P yields similar amplitude as
the full 3D model but a slightly different shape (see Fig. 14).

In Fig. 13 we show the corresponding wake profile for the
2D and 3D setups. For the 3D case, the surface density is ob-
tained by integration along the 6 direction at constant spherical
radii, R. Here, the wake amplitude of the full 3D model is again
reduced in contrast to the flat 2D case, with € = 0.1. The 2D
model using the integrated force algorithm yields here again a
better agreement. The 3D results displayed in these plots were
obtained with NIRVANA, but using the new code FARGO3D yields
identical results, as demonstrated in Fig. 14.

These results demonstrate clearly that the e-parameter in the
2D planetary potential (\PgD) cannot be chosen arbitrarily small,
but has to be similar to the scale height H of the disk. Near the
planet, a reduction is required to account for the reduced thick-
ness, see Miiller et al. (2012). As a result, the value of e = 0.1 H
as chosen for the standard setup is too small to yield good agree-
ment with vertically stratified disks, and serves here only as a
numerical illustration to connect to previous linear and numer-
ical results (Goodman & Rafikov 2001; Dong et al. 2011b). As
shown by Miiller et al. (2012), a value of € = 0.7 H yields similar
amplitudes to the 3D case, in particular for the Lindblad torque,
see Fig. 14. However, as can be seen from the figure, for the
e-potential the relative strengths of the inner and outer torques
differ from the full 3D and the 2D vertically integrated case.

(18)

—— NIRVANA: 3D
-------- FARGO3D 1

0.04 -

dT/dm / (dT/dm),

(r-ap)/H

Fig.14. Radial torque density in units of (dI'/dm)y at 30 Ty, for the
3D and 2D simulations of the standard setup. Compared are two 3D
simulations (using NIRVANA and FARGO3D) with a 2D simulation, using
e=0.7.

Table 3. Setup for the alternative quasi-local model.

Parameter Symbol Value
mass ratio q=M,/M. 32x 1078
aspect ratio h=H|r 0.01
nonlinearity parameter M = ¢'*/h 0.32
potential smoothing & 0.06H
radial range Fmin — Fmax 0.94-1.06
angular range Pmin — Pmax ~ —0.32-0.32 rad
number of gridcells N, X N, 384 % 2048
spatial resolution Ar H/32

Notes. The parameters have been chosen according to Dong et al.
(2011b).

5.3. Using a quasi-local setup

To demonstrate the agreement of our simulations with previ-
ously published local results, e.g. by Dong et al. (2011b,a),
we changed the computational setup, which is listed briefly in
Table 3. Despite using cylindrical coordinates, the setup is in
fact identical to a model used by Dong et al. (2011b). The very
small thickness H of the disk and the small planet mass min-
imize curvature effects and make the problem more local. The
nonlinearity parameter for this local model is M = 0.32, which
is similar to the standard case. This quasi-local model was run in
a 2D and 3D setup using FARGO3D. The 3D case was run again
in spherical polar coordinates with the same spatial resolution
as in the 2D setup of Table 3. For the gravitational smoothing a
length of two gridcells was chosen, which is equivalent here to
€ = 0.06 H. For the 2D simulations we used RH2D and FARGO,
while for the 3D simulations we used NIRVANA and FARGO3D.
All these codes are based on the standard ZEUS-method and are
enhanced with the FARGO-speedup, see Appendix A for details.

In Fig. 15 we compare the torque density of the 2D stan-
dard model to the quasi-local model. In a local setup any corota-
tion torques saturate very quickly, possibly due to the very small
(quasi-periodic) domain in the angular direction. To match this
condition, the standard model is shown here at 2007, when
the corotation torques have nearly saturated. The overall shape
and magnitude of the two models is qualitatively in very good
agreement, which supports the scaling with (dI'/dm)y. For the
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Fig. 15. Radial torque density in units of (dI'/dm),. The standard setup
with g = 6 X 107%, h = 0.05 at 200 Ty, is compared to the quasi-local
model with ¢ = 3.2 x 1078, = 0.01 at 30 T,y The local calculation
utilizes the FARGO3D-code in the 2D setup.
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Fig.16. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 Ty,. Compared is the standard setup with g =
6 x 107°, h = 0.05 to the quasi-local model with ¢ = 3.2 x 1078,
h=0.0l.

local models a symmetric shape with respect to the location of
the planet is expected, while for standard model the outer torques
are greater in magnitude. This can explain some differences.

In Fig. 16 we compare the wake form of the standard model
(as shown in Figs. 4, 13) to the more local alternative model for
the 2D setup. The two curves agree very well indeed, despite
the huge difference in parameters for the planet mass and the
disk scale height. We attribute the small differences to curvature
effects. We note that, thanks to the local character of this setup,
the curves for inner and outer wakes at r, + 4/3 look identical
for the quasi-local model.

In Fig. 17 we compare the torque density of the 3D standard
model to the 3D quasi-local model. As in the 2D case, now the
overall shape and magnitude of the two models are again quali-
tatively in good agreement. The local model shows a symmetric
shape with respect to the location of the planet, as expected. For
both cases a similar reduction of amplitude is seen in comparison
to the 2D case.

In Fig. 18 we compare the wake form of the standard model
to the local alternative model for the full 3D setup. This time
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Fig.17. Radial torque density in units of (dI"/dm), for full 3D models.
Compared is the standard setup with ¢ = 6 x 107, 1 = 0.05 at 30 Ty
(using NIRVANA) to the quasi-local model with ¢ = 3.2x 1078, h = 0.01
at 30 Ty, (using FARGO3D).
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Fig.18. Normalized azimuthal density profile of the outer and inner
wake at the radii r, = 4/3H for full 3D models. Compared is the stan-
dard setup with ¢ = 6 x 107, h = 0.05 at 30 Ty, for the outer and inner
wakes, to the quasi-local model with g = 3.2 x 1078, h = 0.01 at 30 Ty,
only at the outer wake.

the two curves for the outer wake again agree very well, despite
the huge difference in parameters. The profile for the inner wake
of the standard model deviates from the outer wake as for the
previous 2D setup. For the local model, inner and outer wakes
are again identical, as expected.

5.4. Adiabatic simulations

The assumption of isothermality is only satisfied approximately
in protoplanetary disks. Because cooling times can be long, it
may be more appropriate to take the energy equation into ac-
count. To study the influence of the equation of state on the out-
come, we performed purely adiabatic simulations, which solve
the energy equation (Eq. (4)), together with an ideal equa-
tion of state. The result of such an approach is presented in
Fig. 19, where the radial torque density is displayed for the stan-
dard isothermal model, along with two adiabatic models using
v = 1.4 and 1.01. The adiabatic results require rescaled units be-
cause the adiabatic sound speed is greater than the isothermal
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Fig.19. Radial torque density in units of (dI'/dm), (see Eq. (11)) at
30 Ty for the 2D standard model for an isothermal and an adiabatic
setup using y = 1.01 and y = 1.40. The units for (dI'/dm), and H have
been changed for the adiabatic runs, such that H — yH.

one by a factor /y. As a result, the pressure scale length is in-
creased by the same factor, which enters (through H) the units
for (dI'/dm) and I'y. Obviously, there is a huge difference in the
horseshoe torque between isothermal and adiabatic runs, while
the Lindblad contributions are similar, once correctly scaled. The
adiabatic runs yield similar results for the two y values through-
out. The strong torque enhancement in these adiabatic simu-
lations comes from the entropy-related part of the corotation
torque, which is driven by a radial gradient of entropy across
the horseshoe region (Baruteau & Masset 2008).

This result is interesting because sometimes an isothermal
situation is mimicked with an adiabatic simulation using a
y-value very close to unity. In particular, this may be required
by those Riemann solvers that do not allow isothermal condi-
tions to be treated. Our results show that such an approach has
to be treated very carefully, as shown already by Paardekooper
& Mellema (2008). They argue that compressional heating near
the planet plays an important role in determining the torques.
Additionally, in an adiabatic situation the entropy is conserved
along streamlines, which is not the case for isothermal flows.
Reducing the value of y even further yields the same results. In
general, an adiabatic flow with y — 1 approaches truly isother-
mal flow only in the the case of a globally constant temperature.

After a few libration times the horseshoe region is well
mixed, and the entropy and potential vorticity gradients across
the horseshoe regions are wiped out, so the horseshoe torques
disappear and the Lindblad contributions remain. This situation
is displayed in Fig. 20 for an evolutionary time of 500 orbits.
Now, the isothermal model agrees well with the adiabatic one.

We also applied several codes on the adiabatic setup. In
Fig. 21 we display the same results for the adiabatic situation
using y = 1.01. Again, all codes agree very closely, even though
now the numerical methodology is vastly different, because
some use a second order upwind scheme (RH2D and FARGO)
while PLUTO uses a Riemann-solver. Only very near to the planet
do the results differ slightly.

6. Shock formation

For the damping of the wake, it is important where the tran-
sition to a shock occurs. As a shock indicates a discontinu-
ous change in the fluid variables, numerical codes often have
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Fig.20. Radial torque density in units of (dI'/dm), (see Eq. (11)) at
500 Ty, for the 2D standard model for an isothermal and an adiabatic
setup using y = 1.01 and y = 1.40. The units for (d['/dm), and H have
been rescaled as in Fig. 19.
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-0.2 L
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(r—ap)/H

Fig.21. Radial torque density in units of (dI'/dm), (see Eq. (11)) at
30 T for the adiabatic standard model using an ideal equation of state
with y = 1.01. Three different codes have been used, RH2D and FARGO
are 2nd-order upwind schemes and PLUTO is a Riemann solver.

difficulty resolving the structure in detail. To analyze this, we
plot in Fig. 22 the maximum density in the wake as a function
of radius for various resolutions of the computational grid. At
the radius of the planet, the density obviously has its maximum,
and it drops on both sides. The previous curves for the wake
profile were taken near the minimum value of the density max-
imum. Here, all resolutions show an identical maximum of the
wake amplitude. As we demonstrated in Sect. 4.3, the form of
the wake thus does not depend very strongly on resolution at a
distance of |x| = 4/3H.

Farther away from the planet, beyond a distance |x| > 2H the
curves begin to differ for the various resolutions. This clearly in-
dicates the nonconvergence of the simulations. We attribute this
to the formation of a shock wave. In fact, at a distance x; ~ 2H
from the location of the planet, the speed of the wake becomes
supersonic with respect to the local Keplerian flow. The crite-
rion as given by Goodman & Rafikov (2001) indicates a shock
formation at a distance of ~2.9H from the planet for our nonlin-
earity parameter, M = 0.36, which consistent with our findings.
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Fig.22. Maximum of the density in the spiral wake as a function of
radius for the 2D isothermal standard model at 30 T,4. Different nu-
merical resolutions are shown using FARGO.

At very high spatial resolutions, i.e. above a grid resolution of
64 gridcells per scale height (1024 x 8016), the curves begin
to converge in the shock region. Far away from the planet, the
damping action of the boundary condition begins to set in be-
yond |x| % 6H (r = 1.3), and the curves coincide again.

In Fig. 23 the azimuthal density profile is shown at a radial
location r = r,+5H = 1.25. At this location the wake is expected
to have turned into a shock wave. Owing to the trailing nature of
the wake, we define the variable y here slightly different from
before through

y=(¢_¢p)r~

From the figure it is obvious that the wake has turned into a
shock at this location. At our standard resolution (256 x 2004)
there is no indication of any shock front. The overall form is
very smooth with the presence of large oscillations behind the
wake. With increasing numerical resolution the shock becomes
resolved better and better, but only at the very highest resolu-
tion does the wake turn into a discontinuous jump. The oscilla-
tions behind the front diminish and move closer to the front with
increasing resolution. Numerical experiments show that these
oscillations can be damped out by increasing the strength of vis-
cosity. However, this also smears out the shock front. It has been
suggested that these oscillations stem from the chosen numerical
scheme and occur for very weak shocks (Rein 2010).

7. Summary

Through a series of 2D and 3D simulations using different com-
putational methods and codes we have explored in detail the
numerical requirements for studies of the planet-disk problem.
In our analysis we focused on the torque density acting on the
planet and the structure of the wake generated by the planet.
With respect to the applicability of the fast orbital advection
algorithm, FARGO, we have shown that it leads to consistent
numerical results that agree extremely well with non-FARGO
studies. The achievable gain in speed can be significant. For the
setup used here we found a speed-up of more than a factor of 10.
The method works well in the presence of embedded planets,
does not show any signs of unsteady behavior, and can be ap-
plied in two or three spatial dimensions. Since it is also appli-
cable in conjunction with magnetic fields, new possibilities for
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Fig.23. Normalized azimuthal density profile of the outer wake at the
radii r, + 5H at 30 Ty, for the 2D isothermal standard model. Different
numerical resolutions are shown.

numerical studies of turbulent accretion disks open up (Mignone
et al. 2012).

We extend previous treatments of the gravitational potential
of embedded planets (Masset 2002; Miiller et al. 2012) to very
low-mass planets in extremely thin disks. We confirmed that, for
physical reasons, the planetary potential has to be smoothed in
2D simulations with about € = 0.6 H — 0.7 H. Models where the
gravitational force is obtained directly through a vertical inte-
gration always yield reasonable agreement with full 3D simula-
tions. The use of very short smoothing lengths below € = 0.6 H
in 2D simulations is not recommended, because then the forces
in the vicinity of the planet are strongly overestimated, which re-
sults in an unphysical enhancement of the torque and wakes that
are too strong.

Through a careful resolution study, we showed that the
smooth wake structure at distances below about 2 H of the planet
can be resolved well and consistently, already with the very low
resolution of 8 to 16 cells per scale height. The results are clearly
converged for 32 gridcells per H. For longer distances from the
planet, the spiral wake turns into a shock wave, and much higher
resolution may be required. We found that around a resolution of
about 100 gridcells per H convergence can be achieved. Because
this high resolution is only required near the spiral shocks and
the flow is relatively smooth outside, numerical methods that
adaptively refine this crucial region may be the method of choice
in the future.

For adiabatic flows we confirmed earlier findings
(Paardekooper & Mellema 2008) that the unsaturated horseshoe
drag shows a strong deviation from the isothermal case. Using
the appropriate scaling, the adiabatic corotation torques are
independent of y and do not converge to the isothermal case,
even in the limit y — 1. As a result, the procedure of modelling
the isothermal case with simulations of y close to unity has to
be treated with care. In the final saturated case, where all the
corotation effects have been wiped out, isothermal and adiabatic
results agree perfectly, once the correction to the sound speed
has been applied.

In Appendix B we show that we do not find any additional
timestep criterion due to the planetary potential, and we also do
not notice any unstable evolution in the case of using the or-
bital advection. The question why using the ATHENA-code in-
stabilities occur in the simulations (Dong et al. 2011b) may
be connected to the treatment of orbital advection in that code
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(Stone & Gardiner 2010), which is apparently different from the
implementation in the FARGO-code. One should also notice that
the conservative treatment of Coriolis forces is mandatory in
such simulations to properly conserve angular momentum (Kley
1998).

We have demonstrated that the planet-disk interaction prob-
lem may be regarded as a very good test to validate an implemen-
tation of orbital advection, because it admits a nearly analytic
solution to which a code output can be compared. This is not the
case for simulations of turbulent disks, where no such known so-
lutions exist. We hope that the presented results and comparison
simulations may serve as a useful reference for other researchers
in this field.
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Appendix A: The codes

For our comparison simulations we utilized the following codes:
NIRVANA: In its original (FORTRAN) version a ZEUS-like
second-order upwind scheme (Ziegler & Yorke 1997), with
the option of fixed nested grids and magneto-hydrodynamics
(MHD). It can be used in two or three dimensions and can use
different coordinate systems. Recently, it has been improved to
include radiative transport and the FARGO-treatment (Kley et al.
2009).

RH2D: A 2D radiation hydrodynamics code for different coor-
dinate systems, originally developed for treating the boundary
layer in accretion disks (Kley 1989) and later adapted to the
planet disk problem (Kley 1999).

FARGO: A 2D, special purpose code for disk simulations that
first featured the FARGO-algorithm (Masset 2000a). The code is
publicly available at: http://fargo.in2p3. fr/,and has been
used frequently in planet-disk and related simulations.

FARGO3D: A code based on similar algorithms to the standard
FARGO-code, but aimed at being more versatile, as it includes
Cartesian, cylindrical and spherical geometries, in one, two or
three dimensions, with arbitrary grid limits. Its hydrodynami-
cal core has been written from scratch, and it includes an MHD
solver based on the method of characteristics and constrained
transport. It is parallelized using the Message Passing Interface
(MPI) and a slab domain decomposition. It is intended in the
near future to run distinctly on clusters of CPUs or GPUs,
and it will be made publicly available as the successor to the
FARGO-code.

PLUTO: A multidimensional Riemann-solver based code for
MHD flows (Mignone et al. 2007), which can also be
used in the purely hydrodynamic setup. Additionally, it
has been empowered recently by the FARGO-algorithm
(Mignone et al. 2012). PLUTO is also freely available at
http://plutocode.ph.unito.it.

The first three codes in the list have been used and described
in an earlier code comparison project on the planet-disk prob-
lem (de Val-Borro et al. 2006). There, more massive planets
of Neptune and Jupiter mass embedded in viscous and inviscid
disks have been studied for a large number of codes, the focus
was on the gap structure of the disk, and the total torques have
been analyzed.

Appendix B: Timestep limitation in the presence
of gravity

Numerically, we expect that possibly gravity might cause prob-
lems if, due to the gravitational acceleration g, a parcel of ma-
terial travels more than about half a gridcell of length Ax in one
timestep At. This requires the additional gravitational criterion

1/2
A

Atg < (—x) :
g

Using now the smoothed planetary potential of Eq. (6) we find
that the maximum force is given by

(B.1)

GM,

Jmax = — k (BZ)
€

with k = 2/33/2 ~ 0.4. To obtain the strongest limitation on At
we substitute gmax in Eq. (B.1) and obtain

2Ax e\
L) . (B.3)

o s e (2

We compare this limit now to the regular Courant condition
when using orbital advection which is given by

A
Afc = c—x (B.4)
S
and find
12
AIG ~12 262
' _ =) . B.5
v Vo7 (B.5)

If there should be no additional timestep limitation generated by
the gravity then this ratio should be larger than one. Writing now
for the grid resolution Ax = H/N we finally find that

k H*

N > 32 M (B.6)
for stability. With k = 0.4, ¢ = 0.1H, and M = 0.36 we find for
the necessary resolution N =~ 10. This is indeed fulfilled even
for our lowest resolution. We point out that this limit formally
only applies to flows without pressure (dust). If around the planet
the envelope is hydrostatic, no additional criterion is required.
Switching on the planetary potential slowly will ensure stability
throughout the evolution as will an initial atmosphere around the
planet (Duffell & MacFadyen 2012).
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Appendix C: The 3D hydrodynamic equations
in a rotating frame

For reference we state here the 3D hydrodynamic equations in a
rotating coordinate frame. In a coordinate system rotating with
the (constant) angular velocity €, omitting pressure terms, any
external forces (eg. gravitation) and viscosity, the momentum
equation reads as

1
6—u+uVu=—29xu+§V[(er)2].

o (C.1)

We now use spherical polar coordinates (7, ¢, 8), where r is the
radial coordinate, ¢ the azimuthal angle, and 6 the usual polar
coordinate measured from the z-axis. NOTE, that we use in this
Appendix the same symbol r for the spherical radial coordinate.
For rotation around the z-axis, Q = Qe,, the individual equations
are

ou, 1 . .
6ut +uVu, = — (ui + ug) +rQ%sin 6 + 2u,L2sin 6, (C.2)
r
Ouy Uy Uglly, COLO .
—+uVu, = ———— —————-=2Q(sin u, + cos bug) , (C.3)
ot r r
o , u2cotd
e uVuy = A, +2Qu, cos § + Q*rsin G cos 6.
r r
(C4)
Introducing the angular velocity w through
uy, = rsinfw, (C.5)
we may write for the three equations (C.2-C.4)
ou, u;
6ut +uVu, = -2 4 rsin? 0w+ Q) (C.6)
r
Ouy )
¥ +uVu, = — (w + 2Q) (sin Ou, + cos Oug) , (C.7)
6u9 Uprlg . 2
E+uVu9=——+rsm90059(a)+Q) . (C.8)
r

One sees that in the radial and meridional () momentum equa-
tion only the centrifugal part (w + Q) and occurs in the angular
momentum (¢) equation only the Coriolis term (2€).

C.1. Conservative treatment of Coriolis terms in the angular
momentum equation

Defining the fotal specific angular momentum

he = r*sin® 6 (w + Q) (C.9)
and using the continuity equation (in 3D) we may write

Oph

gt‘ + V- (phu) = 0 (C.10)
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Fig.D.1. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 T,,. Compared is the standard setup with g = 6 X
107%, 4 = 0.05 and the quasi-local model with ¢ = 3.2x 107%,4 = 0.01
to the linear theoretical results of Goodman & Rafikov (2001).

for the angular momentum Eq. (C.7). Expanding A this may be
written as

0 [pr sin 6 (u¢ + rQsin 9)]
ot

+V. [prsin@(uw +rQsin6’)u] =0.
(C.1D)

The validity of (C.11) can be easily checked by expanding the
terms and making use of the continuity equation. Then one
arrives at Eq. (C.7). In a numerical method that evolves u,,
Eq. (C.11) should be used to solve the angular momentum
transport conservatively.

Appendix D: Comparing to linear results

After submission of the original manuscript, Ruobing Dong
generously supplied us with the data of the linear results of
Goodman & Rafikov (2001). In Fig. D.1 we compare their data
to our results for the 2D simulations using the standard setup of
Table 1 and the quasi-local setup of Table 3. The overall agree-
ment of our full nonlinear results with the linear case is very
good. The small differences between the results are comparable
to what Dong et al. (2011b) found in their study. We note that
their vertical scaling differs by a factor of 3/2.
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