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Abstract
Considering a five-dimensional (5D) Riemannian spacetime with a

particular stationary Ricci-flat metric, we have applied the recently de-
veloped Extended General Relativistic theory to calculate the lower
limit for the size of some relevant galaxies: the Milky Way, Andromeda
and M87. Our results are in very good agreement with observations.

1 Introduction, basic equations and motiva-

tion

The standard 4D General Relativity and its Newtonian weak-field limit fail at

describing the observed phenomenology when it is applied to cosmic structure
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on galactic and larger scales. To reconcile the theory with observations we

need to assume that ∼ 85 % of the mass is seen only through its observational

effect and that ∼ 74 % of the energy content of the universe is due to either to

an arbitrary cosmological constant or to a not well defined dark energy fluid.

The cosmological constant problem appears to be so serious as the dark matter

problem. The Einstein equations admit the presence of an arbitrary constant

Λ. Since observations indicate Λ > 0, the dark energy fluid has negative

pressure. Current observations suggest ω = −1 at all probed epochs[1], so

models more sophisticated than a simple Λ could seem in principle unnecessary.

In a previous paper[2] we developed a extended general relativistic formal-

ism from which we obtained an effective 4D static and spherically symmetric

metric which give us ordinary gravitational solutions on small (planetary and

astrophysical) scales, but repulsive (anti gravitational) forces on very large

(cosmological) scales with ω = −1. Our approach is an unified manner to de-

scribe dark energy, dark matter and ordinary matter in the framework of the

induced matter theory[3]. In this letter we extend our calculations to study

the lower limit for the size of some galaxies (the Milky Way, Andromeda and

Messier 87) of interest.

1.1 5D massive test particles dynamics

In a previous work[2] we have considered a 5D extension of General Relativity

such that the effective 4D gravitational dynamics has a vacuum dominated,

ω = −1, equation of state. The starting 5D Ricci-flat metric gab, there consid-

ered is determined by the line element[2, 4]

dS2 =

(
ψ

ψ0

)2 [
c2f(r)dt2 − dr2

f(r)
− r2

(
dθ2 + sin2(θ) dφ2

)] − dψ2, (1)

where f(r) = 1 − (2Gζψ0/(rc
2))[1 + c2r3/(2Gζψ3

0)] is a dimensionless func-

tion, {t, r, θ, φ} are the usual local spacetime spherical coordinates employed

in general relativity and ψ is the space-like extra dimension that following the

approach of the induced matter theory, will be considered as non-compact.

Furthermore, the space-like coordinates ψ and r have length units, meanwhile

θ and φ are angular coordinates, t is a time-like coordinate and c denotes the

speed of light. We shall consider that ψ0 is an arbitrary constant with length

units and the constant parameter ζ has units of (mass)(length)−1.

For a massive test particle outside of a spherically symmetric compact

object in 5D with exterior metric given by (1) the 5D Lagrangian can be
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written as

(5)L =
1

2
gabU

aU b =
1

2

(
ψ

ψ0

)2
[
c2f(r)

(
U t

)2 − (U r)2

f(r)
− r2

(
Uθ

)2 − r2sin2θ
(
Uφ

)2

]
− 1

2

(
Uψ

)2
.

(2)

We shall take θ = π/2. Since t and φ are cyclic coordinates, hence their

associated constants of motion pt and pφ, are

pt ≡ ∂ (5)L

∂U t
= c2

(
ψ

ψ0

)2

f(r)U t, (3)

pφ ≡ ∂ (5)L

∂Uφ
= −

(
ψ

ψ0

)2

r2Uφ. (4)

Using the constants of motion given by (3) and (4), we can express the five-

velocity condition as follows:

(
ψ0

ψ

)2
p2
t

c2f(r)
−

(
ψ

ψ0

)2
(U r)2

f(r)
− p2

φ

r2

(
ψ0

ψ

)2

− (
Uψ

)2
= c2. (5)

After rearranging some terms and using the expression for f(r), the equation

(5) can be written as

1

2
(U r)2 +

1

2

(
ψ0

ψ

)2 (
Uψ

)2
+ Veff (r) = E. (6)

If we identify the energy E as

E =
1

2

(
ψ0

ψ

)4

(p2
t c

−2 + p2
φψ

−2
0 ) − c2

2

(
ψ0

ψ

)2

. (7)

the effective 5D potential Veff(r) results to be

Veff(r) = −
(
ψ0

ψ

)2
Gζψ0

r
+

(
ψ0

ψ

)4 [
p2
φ

2r2
− Gζψ0p

2
φ

c2r3

]

− 1

2

(
ψ0

ψ

)2
[(
Uψ

)2
(

2Gζψ0

c2r
− r2

ψ2
0

)
−

(
rc

ψ0

)2
]
. (8)

However, we are interested in the study of this potential for massive test par-

ticles on static foliations ψ = ψ0 = c/H0, such that the dynamics evolves on

an effective 4D manifold Σ0. From the point of view of an relativistic observer,

this implies that Uψ = 0.
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1.2 Physics on the 4D manifold Σ0

When we take a foliation {Σ0 : ψ = ψ0} on (1), we obtain the induced metric

given by the 4D line element

dS2
ind = c2f(r)dt2 − dr2

f(r)
− r2

[
dθ2 + sin2(θ) dφ2

]
, (9)

which is known as the Schwarzschild-de Sitter metric. From the relativistic

point of view, observers that are on Σ0 move with Uψ = 0. We assume that

the induced matter on Σ0 can be globally described by a 4D energy momentum

tensor of a perfect fluid Tαβ = (ρc2 +P )UαUβ−Pgαβ, where ρ(t, r) and P (t, r)

are respectively the energy density and pressure of the induced matter, such

that

P = −ρc2 = − 3c4

8πG

1

ψ2
0

, (10)

which corresponds to a vacuum equation of state. We associate the energy

density of induced matter ρ to a mass density of a sphere of physical mass

m ≡ ζψ0 and radius r0. If we do that, it follows that m and the radius

r0 of such a sphere are related by the expression ζ = r3
0/(2Gψ

3
0), such that

Gζ =
√

3/9 and there is only a single Schwarzschild radius. In this case

the Schwarzschild radius is rSch = ψ0/
√

3 ≥ r0. When it is greater than

the radius of the sphere of parameter ζ , the compact object has properties

very close to those of a black hole on distances 1 � r/ψ0 > rSch/ψ0. This

condition holds when Gζ ≤ 1/(2
√

27) � 0.096225. For Gζ >
√

3/9 one obtains

f(r) < 0 and there is not Schwarzschild radius. When Gζ ≤ √
3/9 there are

two Schwarzschild radius, an interior rSi
and an exterior one rSe , such that

by definition f(rSi
) = f(rSe) = 0. In this paper we shall focus in this last

possibility which is relevant for astrophysical scales. We shall assume that we

live on the 4D hypersurface ΣH0 : ψ0 = cH−1
0 , H0 being H0 = 73 km

sec
Mpc−1 the

present day Hubble constant.

When one takes Uψ = 0, the induced potential Vind(r) on the hypersurface

Σ0 is given by

Vind(r) = −Gm
r

+
p2
φ

2r2
− Gm

c2
p2
φ

r3
− c2

2

(
r

ψ0

)2

, (11)

where m = ζψ0 is the effective 4D physical mass. The confining force Φψ =

ε/ψ0 is perpendicular to the penta-velocities Uμ on all the hypersurface Σ0, so

that the system is conservative on Σ0. Hence Φψ cannot be interpreted as a

fifth force.
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The first two terms in the right hand side of (11) correspond to the classical

potential, the third term is the usual relativistic contribution and the last term

is a new contribution coming from the 5D metric solution (1). The acceleration

associated to the induced potential (11) reads

a = −Gm
r2

+
p2
φ

r3
− 3Gm

c2
p2
φ

r4
+
rc2

ψ2
0

. (12)

The condition for circular motion of the test particle (dVind/dr) = 0 ac-

quires the form

r5 − Gm

c2
ψ2

0r
2 +

p2
φψ

2
0

c2
r − 3Gm

c4
p2
φψ

2
0 = 0. (13)

By expressing the equation (6) as a function of the angular coordinate φ (indeed

assuming 1/u = r = r(φ)), we obtain, after make the derivative with respect

to φ, the orbit equation on 4D

d2u

dφ2
+ u+ c2p−2

φ ψ−2
0 u−3 =

(
Gm

c2

)
p−2
φ +

(
3Gm

c2

)
u2. (14)

This equation is almost the same that the one usually obtained in the 4D gen-

eral theory of relativity for an exterior Schwarzschild metric with the exception

of the third term on the left hand side. This new term could be interpreted as

a new contribution coming in this case from the extra coordinate.

1.3 Motivation

It is well known that galaxies are finite in size. However, from the gravitational

point of view this fact cannot be explained in a satisfactory manner. From the

observational point of view it is considered that the limit of one galaxy is where

the angular velocity of matter around the center is zero: φ̇ = 0. At this radius,

the squared momentum p2
φ

p2
φ =

c2

(c/H0)2

(Gm(c/H0)
2 − r3c2)

(c2r − 3Gm)
, (15)

becomes zero. Hence, we shall consider some examples of galaxies to determine

their size once we know the masses of the BH which are in the center of each

one of these galaxies. This radius will be that for which pφ(rsize) = 0 in eq.

(15):

rsize =

(
Gm

H2
0

)1/3

. (16)
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However, this radius should be only a lower limit for the galactic size, because

in our calculation we are neglecting the galactic mass outside the BH.

In in this letter, we shall deal with size of galaxies in the present day, so

that we shall consider that (c/H0) is the present day Hubble horizon. However,

for very distant galaxies one should take into account the horizon of the galaxy

at the moment of the signal emission.

2 Some examples

In this letter we are interested to study galaxies to estimate its size once we

know the compact object [or black hole (BH)] which is in its center. This kind

of galaxies has spiral arms which evolves on the plane perpendicular to the

angular moment.

2.1 Milky Way

The immediate case to be studied is our galaxy (or Milky Way), which has in its

center a BH of a mass ∼ 4.1×106 M�[5]. It is agreed that the Milky Way is a

barred spiral galaxy, with observations suggesting that it is a spiral galaxy. The

stellar disk of the Milky Way galaxy is approximately 105 ly in diameter, and

is considered to be, on average, about 103 ly thick. It is estimated to contain

at least 200 billion stars and possibly up to 400 billion stars, the exact figure

depending on the number of very low-mass, or dwarf stars, which are hard

to detect, especially more than 300 ly from the Sun, and so current estimates

of the total number remain highly uncertain, though often speculated to be

around 250 billion. In the figure (1) we plot the evolution of p2
φ as a function

of the galactic radius. It is obvious from the graphic that the lower limit of

the radius of our galaxy is close to 5× 104 ly, in agreement with observations.

The Galactic Halo extends outward, but is limited in size by the orbits of

two Milky Way satellites, the Large and the Small Magellanic Clouds, whose

distance is at about 1.8×105 ly [6]. In our model it corresponds with a galactic

mass of 2 × 108 M�, which is very close to the Milky Way mass.

2.2 Andromeda

Another case of interest is the Andromeda galaxy. It is also known as Messier

31, M31 (or NGC 224). Andromeda is the nearest spiral galaxy to the Milky

Way. M31 was the second galaxy in which stellar dynamics revealed the pres-

ence of a supermassive black hole[7]. Axisymmetric dynamical models implied
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BH masses of (1 − 10) × 107M�. The smallest masses were given by disk

models, and the largest were given by spherical models. Hubble Space Tele-

scope (HST) spectroscopy reveals a dark mass (presumed black hole) located

at the center of this cluster with an estimated mass of 1.4±0.7
0.3×108 M�[8]. In

the figure (2) we show the evolution of p2
φ for three different BH mass values

(3.0 × 107M� with thick line, 6.2 × 107M� with thin line and 1.0 × 108M�

with points), as a function of the minimum galactic radius. From the graphic

we infer that the radius of Andromeda is greater than 1.2 × 105 ly for a BH

mass greater than 6.2×107M�. Since the observations agree with a minimum

galactic radius close to 1.2 × 105 ly, we infer that the BH mass in the core of

Andromeda would have a mass close to 6.2 × 107M�.

2.3 Messier 87

A very interesting example is the galaxy Messier 87 (or M87). At the core is

a supermassive BH with mass estimated in the range (2.4− 6.5)× 109 M�[9].

M87 forms the primary component of an active galactic nucleus that is a

strong source of multiwavelength radiation, particularly radio waves. A jet of

energetic plasma originates at the core and extends out at least 5000 ly[10].

In the figure (3) it is shown that its bound radius rM87 is really bigger than

other galaxies, rM87 being in the range (4.05 × 105 < rM87 < 5.65 × 105) ly.

3 Final Comments

We have calculated the lower radius for three different galaxies (the Milky Way,

Andromeda and Messier 87) using the estimation for the BH masses in their

core of these ones. Our results agree very good with observations. In view of

our calculations we conclude that the mass of the BH in the Milky Way should

be close to ∼ 4.1×106 M� for a minimum radius close to rMW � 4.9×104 ly.

Moreover, taking into account that our galaxy is limited in size by the orbits

of two Milky Way satellites (whose distance is at about 1.8×105), we conclude

that our galaxy mass should take a mass of at least 2 × 108 M�.

In the case of Andromeda, we conclude that the mass of the BH in its center

should be close to rA � 6.2×107 M� in order to obtain a minimum galactic size

close to rA � 1.2×105 ly. Finally, for the range of masses (2.4−6.5)×109 M�,

our calculations conclude that the bound radius rM87, of Messier 87 should be

in the range (4.05 × 105 < rM87 < 5.65 × 105) ly.

Overall, we have shown how the here adopted theory of extended General

Relativity implies the existence of the radius rsize for a given gravitational
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source. Beyond this radius the gravitational force becomes repulsive. As dis-

cussed above for the three example cases, this radius is yet compatible with

the observed size of the source.
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Figure 1: p2
φ as a function of the Milky Way galactic radius rMW [in light years

(ly)] for a BH mass 4.1 × 106M�.
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Figure 2: p2
φ as a function of the Andromeda galactic radius rA [in light years

(ly)] for three different BH masses: 3.0 × 107M� with thick continuous line,

6.2 × 107M� with thin continuous line and 1.0 × 108M� with points.
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Figure 3: p2
φ as a function of the M87 galactic radius rM87 [in light years (ly)]

for two different BH masses: 2.4×109 M� with points and 6.0×109M� with

continuous line.
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