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Abstract
Considering a five-dimensional (5D) Riemannian spacetime with a
particular stationary Ricci-flat metric, we have applied the recently de-
veloped Extended General Relativistic theory to calculate the lower
limit for the size of some relevant galaxies: the Milky Way, Andromeda
and M87. Our results are in very good agreement with observations.

1 Introduction, basic equations and motiva-
tion

The standard 4D General Relativity and its Newtonian weak-field limit fail at
describing the observed phenomenology when it is applied to cosmic structure
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on galactic and larger scales. To reconcile the theory with observations we
need to assume that ~ 85 % of the mass is seen only through its observational
effect and that ~ 74 % of the energy content of the universe is due to either to
an arbitrary cosmological constant or to a not well defined dark energy fluid.
The cosmological constant problem appears to be so serious as the dark matter
problem. The Einstein equations admit the presence of an arbitrary constant
A. Since observations indicate A > 0, the dark energy fluid has negative
pressure. Current observations suggest w = —1 at all probed epochs[1], so
models more sophisticated than a simple A could seem in principle unnecessary.

In a previous paper|[2] we developed a extended general relativistic formal-
ism from which we obtained an effective 4D static and spherically symmetric
metric which give us ordinary gravitational solutions on small (planetary and
astrophysical) scales, but repulsive (anti gravitational) forces on very large
(cosmological) scales with w = —1. Our approach is an unified manner to de-
scribe dark energy, dark matter and ordinary matter in the framework of the
induced matter theory[3]. In this letter we extend our calculations to study
the lower limit for the size of some galaxies (the Milky Way, Andromeda and
Messier 87) of interest.

1.1 5D massive test particles dynamics

In a previous work[2] we have considered a 5D extension of General Relativity
such that the effective 4D gravitational dynamics has a vacuum dominated,
w = —1, equation of state. The starting 5D Ricci-flat metric g4, there consid-
ered is determined by the line element|2, 4]

%o f(r)

where f(r) = 1 — (2G(o/(rc?))[1 + 13 /(2G¢3)] is a dimensionless func-
tion, {t,r,0, ¢} are the usual local spacetime spherical coordinates employed
in general relativity and v is the space-like extra dimension that following the
approach of the induced matter theory, will be considered as non-compact.

2
dS? = ( v ) [ch (r)dt* — a’ (d6? + sin*(0) do?) | — dy?, (1)

Furthermore, the space-like coordinates ¢) and r have length units, meanwhile
f and ¢ are angular coordinates, t is a time-like coordinate and ¢ denotes the
speed of light. We shall consider that vy is an arbitrary constant with length
units and the constant parameter ¢ has units of (mass)(length)™!.

For a massive test particle outside of a spherically symmetric compact
object in 5D with exterior metric given by (1) the 5D Lagrangian can be
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written as

We shall take § = 7/2. Since ¢t and ¢ are cyclic coordinates, hence their
associated constants of motion p; and py, are

dOL 2

bt = Ut ¢ (%) fr)ut, (3)
0L 2

Po=Jpg = (%) r2U?. (4)

Using the constants of motion given by (3) and (4), we can express the five-
velocity condition as follows:

() et () SR () -y o

After rearranging some terms and using the expression for f(r), the equation

(5) can be written as

1 1 ?
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the effective 5D potential V,;;(r) results to be
%)2 GGy (%)4 [pé Gwopé}
Vepp(r) = — | — ) |53~
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However, we are interested in the study of this potential for massive test par-
ticles on static foliations ¢ = 1y = ¢/Hy, such that the dynamics evolves on

an effective 4D manifold ¥y. From the point of view of an relativistic observer,
this implies that U¥ = 0.
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1.2 Physics on the 4D manifold

When we take a foliation {¥¢ : 1) = 1)y} on (1), we obtain the induced metric
given by the 4D line element
2 2 o dr? 2 2 .2 2
dS;,. = ¢ f(r)dt — m —r [d@ + sin”(0) do } , (9)
T

which is known as the Schwarzschild-de Sitter metric. From the relativistic
point of view, observers that are on ¥, move with U¥ = 0. We assume that
the induced matter on Yy can be globally described by a 4D energy momentum
tensor of a perfect fluid T, = (pc* + P)U,Us — Pgag, where p(t,r) and P(t,r)
are respectively the energy density and pressure of the induced matter, such
that

3¢t 1

P=—pc* = "
pe 8rG g’

(10)
which corresponds to a vacuum equation of state. We associate the energy
density of induced matter p to a mass density of a sphere of physical mass
m = (¢ and radius rg. If we do that, it follows that m and the radius
o of such a sphere are related by the expression ¢ = r3/(2Gv3), such that
G¢ = /3/9 and there is only a single Schwarzschild radius. In this case
the Schwarzschild radius is rg, = o/ V3 > ry. When it is greater than
the radius of the sphere of parameter (, the compact object has properties
very close to those of a black hole on distances 1 > r/vg > rgen /1. This
condition holds when G¢ < 1/(2v/27) ~ 0.096225. For G¢ > v/3/9 one obtains
f(r) < 0 and there is not Schwarzschild radius. When G¢ < v/3/9 there are
two Schwarzschild radius, an interior rg, and an exterior one rg_, such that
by definition f(rs,) = f(rs,) = 0. In this paper we shall focus in this last
possibility which is relevant for astrophysical scales. We shall assume that we
live on the 4D hypersurface Xy, : 1 = cH, ', Hy being Hy = 73 %Mpc‘1 the
present day Hubble constant.

When one takes U¥ = 0, the induced potential V;,4(r) on the hypersurface
Yo is given by

Gm P, Gmp, [ 2
de(r):_TjLQ—ﬂ_?r_?’_E s (11)

where m = (1 is the effective 4D physical mass. The confining force ®¥ =
€/1y is perpendicular to the penta-velocities U* on all the hypersurface ¥, so

that the system is conservative on Y. Hence ®¥ cannot be interpreted as a
fiftth force.
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The first two terms in the right hand side of (11) correspond to the classical
potential, the third term is the usual relativistic contribution and the last term
is a new contribution coming from the 5D metric solution (1). The acceleration
associated to the induced potential (11) reads

Gm P, 3Gmp; rc
P R R A

(12)

a =

The condition for circular motion of the test particle (dVj,q/dr) = 0 ac-
quires the form

Gm Povs - 3Gm
o — 71&37“2 + =T = P piqu =0. (13)
By expressing the equation (6) as a function of the angular coordinate ¢ (indeed
assuming 1/u = r = r(¢)), we obtain, after make the derivative with respect

to ¢, the orbit equation on 4D

2

d G 3G
dTJQL +u+ 0217;21&0’21[3 = (C—T) p;Q + ( 62m> u?. (14)

This equation is almost the same that the one usually obtained in the 4D gen-
eral theory of relativity for an exterior Schwarzschild metric with the exception
of the third term on the left hand side. This new term could be interpreted as
a new contribution coming in this case from the extra coordinate.

1.3 Motivation

It is well known that galaxies are finite in size. However, from the gravitational
point of view this fact cannot be explained in a satisfactory manner. From the
observational point of view it is considered that the limit of one galaxy is where
the angular velocity of matter around the center is zero: ¢ = 0. At this radius,
the squared momentum pi

2 = 2 (Gm(c/Hy)* — r3c?)
¢ (¢/Hp)?  (c2r —3Gm)

(15)
becomes zero. Hence, we shall consider some examples of galaxies to determine

their size once we know the masses of the BH which are in the center of each
one of these galaxies. This radius will be that for which ps(7si.) = 0 in eq.

(15):
e = (52) " (16)
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However, this radius should be only a lower limit for the galactic size, because
in our calculation we are neglecting the galactic mass outside the BH.

In in this letter, we shall deal with size of galaxies in the present day, so
that we shall consider that (¢/Hy) is the present day Hubble horizon. However,
for very distant galaxies one should take into account the horizon of the galaxy
at the moment of the signal emission.

2 Some examples

In this letter we are interested to study galaxies to estimate its size once we
know the compact object [or black hole (BH)] which is in its center. This kind
of galaxies has spiral arms which evolves on the plane perpendicular to the
angular moment.

2.1 Milky Way

The immediate case to be studied is our galaxy (or Milky Way), which has in its
center a BH of a mass ~ 4.1 x 10° M [5]. It is agreed that the Milky Way is a
barred spiral galaxy, with observations suggesting that it is a spiral galaxy. The
stellar disk of the Milky Way galaxy is approximately 10° Iy in diameter, and
is considered to be, on average, about 103 ly thick. It is estimated to contain
at least 200 billion stars and possibly up to 400 billion stars, the exact figure
depending on the number of very low-mass, or dwarf stars, which are hard
to detect, especially more than 300 [y from the Sun, and so current estimates
of the total number remain highly uncertain, though often speculated to be
around 250 billion. In the figure (1) we plot the evolution of pj as a function
of the galactic radius. It is obvious from the graphic that the lower limit of
the radius of our galaxy is close to 5 x 10%ly, in agreement with observations.

The Galactic Halo extends outward, but is limited in size by the orbits of
two Milky Way satellites, the Large and the Small Magellanic Clouds, whose
distance is at about 1.8 x 10° ly [6]. In our model it corresponds with a galactic
mass of 2 x 10% M, which is very close to the Milky Way mass.

2.2 Andromeda

Another case of interest is the Andromeda galaxy. It is also known as Messier
31, M31 (or NGC 224). Andromeda is the nearest spiral galaxy to the Milky
Way. M31 was the second galaxy in which stellar dynamics revealed the pres-
ence of a supermassive black hole[7]. Axisymmetric dynamical models implied
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BH masses of (1 — 10) x 10" M. The smallest masses were given by disk
models, and the largest were given by spherical models. Hubble Space Tele-
scope (HST) spectroscopy reveals a dark mass (presumed black hole) located
at the center of this cluster with an estimated mass of 1.4 £8] x10% Mo [8]. In
the figure (2) we show the evolution of p} for three different BH mass values
(3.0 x 10" M with thick line, 6.2 x 10" M with thin line and 1.0 x 10® Mg
with points), as a function of the minimum galactic radius. From the graphic
we infer that the radius of Andromeda is greater than 1.2 x 10° [y for a BH
mass greater than 6.2 x 107 M. Since the observations agree with a minimum
galactic radius close to 1.2 x 10°ly, we infer that the BH mass in the core of
Andromeda would have a mass close to 6.2 x 107 M.

2.3 DMessier 87

A very interesting example is the galaxy Messier 87 (or MI87). At the core is
a supermassive BH with mass estimated in the range (2.4 —6.5) x 10° Mg [9].
MS8T7 forms the primary component of an active galactic nucleus that is a
strong source of multiwavelength radiation, particularly radio waves. A jet of
energetic plasma originates at the core and extends out at least 5000 ly[10].
In the figure (3) it is shown that its bound radius rjss7 is really bigger than
other galaxies, g7 being in the range (4.05 x 10° < 787 < 5.65 x 105) ly.

3 Final Comments

We have calculated the lower radius for three different galaxies (the Milky Way,
Andromeda and Messier 87) using the estimation for the BH masses in their
core of these ones. Our results agree very good with observations. In view of
our calculations we conclude that the mass of the BH in the Milky Way should
be close to ~ 4.1 x 105 M for a minimum radius close to rymw ~ 4.9 x 10* ly.
Moreover, taking into account that our galaxy is limited in size by the orbits
of two Milky Way satellites (whose distance is at about 1.8 x 10%), we conclude
that our galaxy mass should take a mass of at least 2 x 10° Mq.

In the case of Andromeda, we conclude that the mass of the BH in its center
should be close to r4 ~ 6.2x107 M in order to obtain a minimum galactic size
close to r4 =~ 1.2x10° ly. Finally, for the range of masses (2.4—6.5) x 10° M,
our calculations conclude that the bound radius 7,57, of Messier 87 should be
in the range (4.05 x 10° < 787 < 5.65 x 10°) ly.

Overall, we have shown how the here adopted theory of extended General
Relativity implies the existence of the radius r,.. for a given gravitational
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source. Beyond this radius the gravitational force becomes repulsive. As dis-
cussed above for the three example cases, this radius is yet compatible with
the observed size of the source.
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Figure 1: pi as a function of the Milky Way galactic radius rpsy [in light years
(ly)] for a BH mass 4.1 x 10° M.
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Figure 2: pé as a function of the Andromeda galactic radius 74 [in light years
(ly)] for three different BH masses: 3.0 x 107 M with thick continuous line,
6.2 x 107 Mg with thin continuous line and 1.0 x 108 Mg with points.
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Figure 3: pé as a function of the M87 galactic radius rg7 [in light years (1y)]
for two different BH masses: 2.4 x 10? M with points and 6.0 x 10? Mg with

continuous line.
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