

Breeding Biology of the Southern House Wren on Chiloé Island, Southern Chile

Author(s): Silvina Ippi, Rodrigo A. Vásquez, Juan Moreno, Santiago Merino, and

Camila P. Villavicencio

Source: The Wilson Journal of Ornithology, 124(3):531-537. 2012.

Published By: The Wilson Ornithological Society

DOI: http://dx.doi.org/10.1676/11-143.1

URL: http://www.bioone.org/doi/full/10.1676/11-143.1

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne's Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.

BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

BREEDING BIOLOGY OF THE SOUTHERN HOUSE WREN ON CHILOÉ ISLAND, SOUTHERN CHILE

SILVINA IPPI, 1,3,5 RODRIGO A. VÁSQUEZ, 1 JUAN MORENO, 2 SANTIAGO MERINO, 2 AND CAMILA P. VILLAVICENCIO 1,4

ABSTRACT.—We studied the breeding biology of a Southern House Wren (*Troglodytes aedon chilensis*) population using nest boxes on Chiloé Island, southern Chile (41° S) to make latitudinal comparisons at the intraspecific level. There were no significant differences in body size between adult males and females, although wings were significantly longer in males. Clutch size averaged 4.3 eggs per nest, and brood size was 3.9 nestlings. Egg size averaged 17.3 mm in length and 13.2 mm in width. Incubation and nestling periods averaged 16 days each. The Southern House Wren on Chiloé Island has a larger clutch size than in the tropics, but a smaller clutch size than populations at the same latitude in the Northern Hemisphere. The Southern House Wren has larger eggs and a longer incubation period but a similar nestling period as House Wrens in the Northern Hemisphere. *Received 23 August 2011. Accepted 29 January 2012.*

Studies of species with a broad distributional range are valuable to gain information on the latitudinal effects on physiology and morphology as well as behavior and life history traits. Knowledge of breeding biology is useful for testing hypotheses about effects of latitude on clutch size, parental care, and breeding phenology (Geffen and Yom-Tov 2000). However, in comparison with Northern Hemisphere species, few studies have been conducted on the breeding biology of South American species, where information about natural history of numerous species is lacking (Geffen and Yom-Tov 2000, Russell et al. 2004).

The House Wren (*Troglodytes aedon*; Troglodytidae) has a distribution from southern Canada to southern Chile, encompassing one of the largest latitudinal distributions for any native passerine species (Johnson 1998). Brumfield and Caparella (1996) recommended re-elevating the three main recognized taxonomic groups to species level: *T. aedon* (Northern House Wren), *T. brunneicollis* (Brown-throated House Wren), and *T. musculus* (Southern House Wren). The House Wren is currently considered a single species (Johnson 1998, Bird Life International 2011, Gill and Donsker 2012) and we use the common name Southern

The Southern House Wren inhabits the austral extreme of Chile and Argentina. It is a small insectivorous bird and a secondary cavity nester (Johnson and Goodall 1967, Grigera 1982, Kroodsma and Brewer 2005). It typically inhabits scrublands and secondary or marginal forests on the island of Chiloé (41° S) (Rozzi et al. 1996, Díaz et al. 2005) and is also common in urban areas (Díaz and Armesto 2003); it is similar to populations of the Northern Hemisphere House Wren (Johnson 1998). The Southern House Wren is considered a year-round resident on Chiloé Island (Jaramillo et al. 2003), but detection during autumn and winter is difficult, suggesting partial migration (S. Ippi, unpub. data). The House Wren is an ideal species model, because of its extensive geographic range, for assessing the effects of latitude on intraspecific variation of breeding biology (e.g., Young 1994). Comparisons of life-history traits with the Northern House Wren, would be informative due to the large amount of information available about the ecology and breeding biology of the species in the Northern Hemisphere (e.g., Kendeigh 1941; Kendeigh et al. 1956; Drilling and Thompson 1988; Johnson and Searcy 1993, 1996; Johnson 1996; Johnson et al. 2001; Janota et al. 2002; Johnson et al. 2008, 2009). Several ecological and reproductive studies have recently been conducted in South America, mainly in Argentina (e.g., Tuero et al. 2007, Fasanella and Fernández 2009, Llambías and Fernández 2009, Labarbera et al. 2010, Serra and Fernández 2011). The objective of our study was to describe the breeding biology of the Southern House Wren in a southern Chilean population and to compare our

House Wren for the subspecies *T. a. chilensis* in our study.

¹Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

²Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, E-28006, Madrid, Spain.

³Current address: Instituto de Ecología y Biodiversidad, Departamento de Ecología, Pontificia Universidad Católica de Chile, Alameda 340, 6513677, Santiago, Chile.

⁴Current address: Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Eberhard-Gwinner-Strasse, House 6a, D-82319, Seewiesen, Germany.

⁵Corresponding author; e-mail: silvippi@yahoo.com

results with studies of House Wrens from North America, Central America, and other localities in South America. We predicted smaller reproductive investments (e.g., smaller clutch size) by the Southern House Wren compared to House Wrens in the Northern Hemisphere.

METHODS

Study Area.—The study was conducted on Chiloé Island, southern Chile (41° 52′ S, 73° 39′ W) at 50–100 m asl in the austral spring (Oct–Jan) of 2002–2005. Chiloé Island is <10 km from the mainland and supports similar forest bird communities (Johnson and Goodall 1967, Fjeldså and Krabbe 1990). The continuous distribution of temperate rainforests as experienced by Charles Darwin in 1834–1835 have been cleared in large areas of northern Chiloé Island with remaining fragments embedded in an agricultural landscape (Willson and Armesto 1996).

Field Procedures.—Three hundred nest boxes were placed in scrublands and forest edges in Senda Darwin Biological Station (described by Carmona et al. 2010) and 50 at Fundo 'Los Cisnes' at the northern tip of the island close to mainland Chile (nest boxes are described in Moreno et al. 2005, 2007). Both study sites included large fragments of regenerating evergreen forests of Drimys winteri, Nothofagus nitida, Weinmannia trichosperma, several myrtaceous species, and the conifer Podocarpus nubigena (Veblen et al. 1996, Aravena et al. 2002). Nest boxes were suspended from tree branches or fastened to tree trunks or shrub branches 150 cm above the ground in scrublands and forest edges with some up to 100 m within the forest. The mean distance ± SD between nest boxes was 34.0 ± 25.2 m as measured with a Global Positioning System (GPS) (Garmin e-TREX; Olathe, KS, USA); the mean distance among active nests (i.e., nest boxes actually used) was 117.1 ± 79.3 m.

Nest Monitoring.—Nest boxes were checked for occupation on a weekly basis beginning in October each year. Nest boxes occupied by Southern House Wrens were frequently checked to detect laying dates (date of first egg), hatching dates (first visit when eggs were observed to hatch), and fledging dates (empty nest box). Nests were checked on a daily basis 2 weeks after laying of the last egg to record the exact date of hatching. Some nests were visited daily 10 days after hatching to record fledging date. Egg length and breadth were measured for all eggs in the clutch to the nearest 0.1 mm with a digital caliper (Model

101-7015, Z&Y Tool Supply Co. Ltd., Guangxi, China). Egg volume was estimated when clutch size was also assessed using Hoyt's (1979) equation for egg volume: volume = $0.51 \times (length \times breadth^2)$. Nests that were depredated or abandoned before incubation were excluded from clutch and egg size analyses.

Adults were captured with nest-box traps when chicks were 10-13 days of age (hatching day = day 0) and marked with metal leg bands (Model 1242-3, National Band and Tag Co., Newport, KY, USA) under the authority of Servicio Agrícola y Ganadero, Chile. We measured tarsus length and beak length to the nearest 0.1 mm using digital calipers, wing length (mm) as flattened wing chord, and tail (mm) following Svensson (1984). Adult males and females were classified using morphology as only females have a brood patch (Johnson 1998). Mass was recorded to the nearest 0.1 g with a Pesola spring balance (Baar, Switzerland). We also weighed nestlings on the day of adult trapping, and measured their tarsus, beak (from tip to skull), and wing length using the same technique as for adults.

Statistical Analyses.—We checked for normality of data and homogeneity of variance with Kolmogorov-Smirnov and Levene tests, respectively. We used non-parametric statistics when these assumptions were violated. We addressed variation in clutch size within the breeding season and among years using non-parametric correlation analysis and Kruskal-Wallis tests, respectively (Siegel and Castellan 1988). Differences in body size between males and females were evaluated using a one-way MANOVA. We conducted this analysis although not all variables were normal, but all variances were homogeneous among the groups. This analysis is considered robust to violation of the assumption of normality (Sokal and Rohlf 1995). We also conducted a posteriori univariate analyses, correcting the significance value with a sequential Bonferroni correction (Quinn and Keough 2002). Nested ANOVA was used to analyze clutch size and egg volume, and to investigate differences in body size of nestlings measured at 10 to 13 days of age. All analyses were conducted with STATISTICA 6.0 (StatSoft Inc. 2001) and were considered significant at P <0.05. Values reported are means \pm SD.

RESULTS

Breeding Phenology.—Laying dates of the Southern House Wren on Chiloé Island ranged

TABLE 1. Dates for first and last laying, hatching, and fledging of the Southern House Wren during three breeding seasons (2002–2004) on Chiloé Island, Chile.

Season	Laying date	n	Hatching date	n	Fledging date	n
2002–2003	8 Nov to 2 Jan	7	27 Nov to 1 Jan	5	13 Dec to 4 Jan	3
2003-2004	28 Oct to 3 Dec	18	24 Nov to 20 Dec	15	30 Nov to 18 Dec	3
2004–2005	19 Oct to 8 Jan	16	5 Nov to 15 Jan	16	8 Jan to 26 Jan	3

from mid October to January, while hatching dates were from November to January (Table 1). Fledging occurred from the end of November to January (Table 1). Wrens were not color banded and we have no information about polygyny in our population. One female reared a second brood in a neighboring nest box, ~60 m distant, but we have no information about the success of its first clutch. Two males and one female bred in our study site for two consecutive breeding seasons, and one male for three consecutive seasons. All bred in nest boxes that were nearby in the previous year.

Clutch and Brood Size.—Clutch size in nests with at least one hatched egg was two and five eggs with an average of 4.3 ± 0.7 eggs (n = 59) (Table 2). The modal clutch size was four eggs. There was no seasonal trend in clutch size within year (Spearman correlation coefficient, $r_s = 0.18$; P = 0.24), and there were no differences in clutch size among years (Kruskal Wallis; H = 1.2; P = 0.75; n = 59). The mean brood size was 3.9 ± 1.1 chicks (range = 1 to 5, n = 27).

Egg Size.—Southern House Wren females laid eggs measuring 17.3 \pm 0.7 mm in length and 13.2 \pm 0.3 mm in width (n=66) in 15 nests monitored during the 2003 breeding season. Egg volume was 1,532.8 \pm 103.8 mm³ (n=66). Mean egg volume decreased with clutch size ($F_{1,50}=20.4,\ P<0.001$) if only four- and five-egg clutches are considered. The number of successful clutches with two and three eggs was small; they were excluded from the analysis.

TABLE 2. Mean \pm SD clutch and brood size of the Southern House Wren during four breeding seasons (2002–2005) on Chiloé Island, Chile.

Year	Clutch ± SD	n	Brood size ± SD	n
2002–2003	4.2 ± 0.6	11	No data	No data
2003–2004	4.4 ± 0.7	21	3.9 ± 1.2	14
2004–2005	4.3 ± 0.7	19	3.9 ± 1	10
2005	4.2 ± 0.7	8	4.3 ± 0.6	3

Incubation and Nestling Period.—The incubation stage, the period between the last laid egg and first hatched egg, ranged between 14 and 19 days (16.0 \pm 1.0 day; n=32 nests). There was no seasonal trend in incubation period within year ($r_s=0.14; P=0.45$). All eggs in the clutch hatched within 1 day. The nestling period was 16.0 ± 1.0 days (n=5 nests) and was 33.8 ± 1.6 days (n=5) from laying to fledging.

Chick and Adult Body Size.—Chicks were measured between days 10 and 13 (11.4 \pm 1.1) in 24 nests (Table 3). Significant morphological differences occurred between nestlings measured in different days (10 to 13; $F_{12,164}=29.2$; P<0.001; n=88). Univariate results revealed length of wing ($F_{3,61}=133.1$; P<0.001), beak ($F_{3,61}=41.9$; P<0.001), and tarsus ($F_{3,61}=23.2$; P<0.001) differed, while mass of nestlings at 10, 11, 12, and 13 days did not ($F_{3,61}=0.7$; P=0.54). Mean tarsus length did not differ between adults and nestlings measured after 10 days of age ($F_{1,126}=0.3$; P=0.61; n=128).

We measured 38 adults (21 females and 17 males) (Table 3). There were no significant differences in morphological measurements between males and females ($F_{5,30}=2.4,\ P=0.064$). No difference was detected in body mass ($F_{1,36}=0.004;\ P=0.95$), tarsus length ($F_{1,36}=0.1;\ P=0.78$), tail length ($F_{1,34}=0.01;\ P=0.92$), and beak length ($F_{1,36}=0.04;\ P=0.84$) between males and females. However, wing length was significantly longer for males than for females, after sequential Bonferroni correction ($F_{1,36}=8.7;\ P=0.006$).

DISCUSSION

Clutch Size.—The mean clutch size of the Southern House Wren in our study was comparable to that observed by Young (1994; 4.5 eggs in Nahuel Huapi National Park in Argentina vs. 4.3 at Chiloé Island) at a similar southern latitude, although the Argentina data were obtained from museum samples of natural nests. Artificial nest boxes did not appear to have a major influence on

TABLE 3.	Morphological measures	(mean ± SD)) of adult and nestling	Southern House	Wrens on Chiloé Island.	Chile.
----------	------------------------	-------------	-------------------------	----------------	-------------------------	--------

	Mass (g)	Wing (mm)	Tarsus (mm)	Tail (mm)	Beak (mm)	n
Adult females	10.0 ± 0.5	50.1 ± 1.5	17.9 ± 0.9	43.7 ± 2.6	13.9 ± 1.3	21
Adult males Nestlings	10.0 ± 0.5 9.8 ± 0.6	51.5 ± 1.5 33.7 ± 4.2	17.8 ± 0.6 17.8 ± 0.8	43.7 ± 1.8	14.0 ± 1.1 9.7 ± 1.1	24

clutch size, which agrees with Llambías and Fernández (2009). In contrast, Northern House Wrens have larger clutches, and more nestlings and fledglings in artificial nest boxes compared to natural tree cavities (Purcell et al. 1997).

The Southern House Wren on Chiloé Island has a smaller clutch size (mean = 4.3; range = 2-5eggs) compared to populations at the same latitude in the Northern Hemisphere (range of reported means = 6.0-6.5 eggs/clutch; Robinson and Rotenberry 1991, Quinn and Holroyd 1992, Elliot et al. 1994, Young 1994, Johnson 1998). This is still larger than in tropical (means between 3.3 and 3.9 eggs/clutch; Freed 1987, Young 1994) and subtropical latitudes (3.5 eggs/clutch in natural tree cavities; Auer et al. 2007), although some authors have recorded as many as five eggs for tropical populations (Skutch 1953) and 4.7-5.2 eggs/clutch at 35–36° S (Mason 1985, Tuero et al. 2007, Llambías and Fernández 2009). We did not detect any seasonal decline in clutch size (Finke et al. 1987, Robinson and Rotenberry 1991, Johnson et al. 2001), in contrast to Northern House Wrens. However, we had insufficient detailed data about possible second broods. There were positive associations between latitude and clutch size for both Northern and Southern House wrens, although clutch size and the range of latitudinal variation are smaller in the Southern Hemisphere (3.3 to 5.0 eggs vs. 3.3 to 7.1 eggs in the Northern Hemisphere; Young 1994).

Egg and Nestling Size.—Mean egg size for the same clutch size is slightly larger on Chiloé Island than in the Northern Hemisphere (Kendeigh et al. 1956; Table 4). The width and length of eggs of

Southern House Wrens from Chiloé Island (13.2 and 17.3 mm, width and length, respectively) are slightly greater than those in the Northern Hemisphere (12.7 and 16.6 mm; Johnson et al. 2001, Styrsky et al. 2002), and similar to egg dimensions from Central America (13.4 and 17.8 mm; Skutch 1953), subtropical Argentina (13.4 and 17.0 mm; Auer et al. 2007), and southern Argentina (13.1 and 17.5 mm; Tuero et al. 2007).

Southern House Wren nestlings reach an asymptotic growth after 10 days of age, similar to wrens in Canada and Colombia (Zach 1982, Kattan 1996). No differences were found between mass of nestlings at 11 and 13 days in our population and mean weights were similar to those of Northern House Wrens from Manitoba, Canada (mean weights within 9.8-10 g; Zach 1982); these weights differed in comparison to House Wrens from Valle del Cauca, Colombia (mean weight within 14.5-15.5 g; Kattan 1996). However, tarsus, beak, and wing length differed between 10 and 13 days, suggesting they were still growing at this time. The adult body mass of House Wrens from Colombia recorded by Kattan (1996) is striking as House Wrens at this location have a much larger body size compared to other low latitude populations, contradictory to general predictions about increasing body size with latitude (Blackburn et al. 1999).

Incubation and Fledging Period.—The incubation period is slightly longer for Southern House Wrens on Chiloé Island (14 to 19 days; mean = 16) compared to Northern House Wrens from North America (9 to 16 days, mean = 12.6;

TABLE 4. Mean ± SD width and length of eggs of Southern House Wrens from Chiloé Island, Chile vs. Northern House Wrens from Ohio (40° N, Kendeigh et al. 1956) in nests of four and five eggs.

	Mean wid	lth (mm)	Mean length (mm) Clutch size		
	Clutch	ı size			
	4	5	4	5	
Kendeigh et al. 1956 Present study	12.9 13.3 ± 0.3	12.8 13.1 ± 0.2	16.8 17.5 ± 0.8	16.6 17.5 ± 0.6	

Johnson 1998, Johnson et al. 2001). Skutch (1953) reported a 15-day incubation period for a resident population of House Wrens in Central America, similar to resident populations at 26° S (15.8 days; Auer et al. 2007) and 35° S latitude (14.8 days; Tuero et al. 2007). Fledging at our study site occurred at a mean of 16 days of age, within the range reported for different populations of Northern House Wrens (14 to 20 days; Kendeigh 1941, Skutch 1953, Johnson 1998, Johnson et al. 2004), and slightly longer than the 14.8 days recorded for a subtropical population (Auer et al. 2007). This period is shorter than the 18–20 days described for Central American populations of House Wren (Skutch 1953, Freed 1987).

Adult Body Size.—The Southern House Wren had little differentiation in body size between males and females. However, males had longer wings than females, similar to populations in the Northern Hemisphere, although beak and tail length are also greater in males in those populations (Johnson 1998). The Southern House Wren appears to be slightly larger, particularly considering that females (F) and males (M) have longer beak length (F: M = 13.9; 14.0 mm in Chiloé vs. 11.8; 12.7 mm in Northern Hemisphere populations), tarsus (F: M = 17.8; 17.9 mm vs. 16.8; 17.5 mm), and tails (F: M = 43.7; 43.7 mm vs. 40.8; 42.1 mm) (Johnson 1998).

The Southern House Wren population on Chiloé Island has smaller clutch size, larger eggs, and a longer incubation period than populations of the Northern House Wren at similar latitudes in the Northern Hemisphere. Some hypotheses have invoked predation pressure, winter mortality, and migration to explain smaller clutch sizes in South American species (Ricklefs 1980, Martin et al. 2000, Yom-Tov and Geffen 2002, Griebeler and Bohning-Gaese 2004). Martin (2002) proposed the low rate of adult mortality in southern compared to northern passerines can explain smaller reproductive investment, such as reduced nest care, which results in a longer incubation period and smaller clutch size (see also Ghalambor and Martin 2001, and Robinson et al. 2008). Nest attentiveness during incubation is lower, the incubation period is longer, and the total period of parental care is longer for tropical and south temperate species than for their northern counterparts (Russell et al. 2004, Chalfoun and Martin 2007). In contrast, the fledging period is similar in Northern and Southern House wrens, but it is longer in Central America. The results of our

study suggest that duration of the fledging period decreases with latitude. Short nestling periods could be adaptive in high latitudes to synchronize brood rearing with maximum food availability (Lack 1947, Siikamaki 1998), improve survival rate of fledglings (Naef-Daenzer et al. 2001, Moreno et al. 2005), and/or avoid molting during breeding (Svensson and Nilson 1997). Our study highlights the effects that latitude can have on a species' breeding biology and the large geographic variation that can occur in the breeding strategies between populations of a single species. Data on variation in reproductive traits over the entire distributional range of the species are incomplete, because the Southern House Wren inhabits regions ranging to the southern extreme of South America.

ACKNOWLEDGMENTS

The study was funded by grants FONDECYTs 1060186 and 1090794 to RAV, grant CGL2004-00787/BOS to JM, travel grant CSIC-Universidad de Chile 2003-2004-2009 to SM, JM, and RAV, the 2004 BBVA Foundation prize in research on Conservation Biology, and the Institute of Ecology and Biodiversity (ICM-P05-002, PBF-23-CON-ICYT). Fundación Senda Darwin kindly allowed us to work in Senda Darwin Biological Station, and Ines Hanning in Fundo 'Los Cisnes', Chiloé. Andrea Gallardo, Rocío Jaña, René Quispe, and Miguel Rodríguez-Gironés helped with fieldwork. Iván Díaz, Gonzalo Farfán, José Iriarte-Diaz, Natalia Márquez, Daniela Parra, Ronny Zúñiga, and Yuri Zúñiga helped in making and/or putting up the nest boxes. Alvaro Rivera-Rei helped with statistical analysis. Comments by L. S. Johnson, W. F. van Dongen, P. E. Llambías, an anonymous reviewer, and the editor greatly improved a previous version of this manuscript. The House Wren bibliography compiled by C. F. Thompson and L. S. Johnson facilitated our work. SI acknowledges support from a CONICYT scholarship. This is a contribution to the Research Program of the LTSER network at Senda Darwin Biological Station, Chiloé Island, Chile.

LITERATURE CITED

ARAVENA, J. C., M. R. CARMONA, C. A. PEREZ, AND J. J. ARMESTO. 2002. Changes in tree species richness, stand structure and soil properties in a successional chronosequence in northern Chiloé Island, Chile. Revista Chilena de Historia Natural 75:339–360.

AUER, S. K., R. D. BASSAR, J. J. FONTAINE, AND T. E. MARTIN. 2007. Breeding biology of passerines in a subtropical montane forest in northwestern Argentina. Condor 109:321–333.

BLACKBURN, T. M., K. J. GASTON, AND N. LODER. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. Diversity and Distributions 5:165–174.

BIRD LIFE INTERNATIONAL. 2011. The Bird Life checklist of the birds of the world, with conservation status and

- taxonomic sources. Version 4. Cambridge, United Kingdom, http://www.birdlife.info/im/species/checklist
- BRUMFIELD, R. T. AND A. P. CAPARELLA. 1996. Genetic differentiation and taxonomy in the House Wren species group. Condor 98:547–556.
- CARMONA, M. R., J. C. ARAVENA, M. A. BUSTAMANTE-SÁNCHEZ, J. L. CELIS-DIEZ, A. CHARRIER, I. A. DÍAZ, J. DÍAZ-FORESTIER, M. F. DÍAZ, A. GAXIOLA, A. G. GUTIÉRREZ, C. HERNÁNDEZ-PELLICER, S. IPPI, R. JAÑA-PRADO, P. JARA-ARANCIO, J. JIMÉNEZ, D. MANUSCHEVICH, P. NECOCHEA, M. NÚÑEZ-ÁVILA, C. PAPIC, C. PÉREZ, F. PÉREZ, S. REID, L. ROJAS, B. SALGADO, C. SMITH-RAMÍREZ, A. TRONCOSO, R. A. VÁSQUEZ, M. F. WILLSON, R. ROZZI, AND J. J. ARMESTO. 2010. Estación Biológica Senda Darwin: investigación ecológica de largo plazo en la interfase ciencia-sociedad. Revista Chilena de Historia Natural 83:113—142.
- CHALFOUN, A. D. AND T. E. MARTIN. 2007. Latitudinal variation in avian incubation attentiveness and a test of the food limitation hypothesis. Animal Behaviour 73:579–585.
- DÍAZ, I. A. AND J. J. ARMESTO. 2003. La conservación de las aves silvestres en ambientes urbanos de Santiago. Ambiente y Desarrollo 19:31–38.
- DÍAZ, I. A., J. J. ARMESTO, S. REID, K. E. SIEVING, AND M. F. WILLSON. 2005. Linking forest structure and composition: avian diversity in successional forests of Chiloé Island, Chile. Biological Conservation 123: 91–101.
- DRILLING, N. E. AND C. F. THOMPSON. 1988. Natal and breeding dispersal in House Wrens (*Troglodytes aedon*). Auk 105:480–491.
- ELLIOT, J. E., P. A. MARTIN, T. W. ARNOLD, AND P. H. SINCLAIR. 1994. Organochlorines and reproductive success of birds in orchard and non-orchard areas of central British Columbia, Canada, 1990–1991. Archives of Environmental Contamination and Toxicology 26:435–443.
- FASANELLA, M. AND G. J. FERNÁNDEZ. 2009. Alarm calls of the Southern House Wren *Troglodytes musculus:* variation with nesting stage and predator model. Journal of Ornithology 150:853–863.
- Finke, M. A., D. J. MILINKOVICH, AND C. F. THOMPSON. 1987. Evolution of clutch size: an experimental test in the House Wren (*Troglodytes aedon*). Journal of Animal Ecology 56:99–114.
- FJELDSÅ, J. AND N. KRABBE. 1990. Birds of the High Andes. Zoological Museum, Svendborg, Denmark.
- FREED, L. A. 1987. The long-term pair bond of tropical House Wrens: advantage or constraint? American Naturalist 130:507–525.
- GEFFEN, E. AND Y. YOM-TOV. 2000. Are incubation and fledging periods longer in the tropics? Journal of Animal Ecology 69:59–73.
- GHALAMBOR, C. K. AND T. E. MARTIN. 2001. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292:494–497.
- GILL, F. AND D. DONSKER (Editors). 2012. IOC world bird names. Version 2.11. Princeton University Press,

- Princeton, New Jersey, USA. http://www.worldbirdnames.org/
- GRIEBELER, E. M. AND K. BOHNING-GAESE. 2004. Evolution of clutch size along latitudinal gradients: revisiting Ashmole's hypothesis. Evolutionary Ecology Research 6:679–694.
- GRIGERA, D. 1982. Ecología alimentaria de algunas passeriformes insectívoras frecuentes en los alrededores de S. C. de Bariloche. Ecología 7:67–84.
- HOYT, D. F. 1979. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96:73–77.
- JANOTA, S. M., S. S. SOUKUP, AND C. F. THOMPSON. 2002.
 Male-biased offspring sex ratio in the House Wren.
 Condor 104:881–885.
- JARAMILLO, A., P. BURKE, AND D. BEADLE. 2003. Birds of Chile. Princeton University Press, Princeton, New Jersey, USA.
- JOHNSON, A. W. AND J. D. GOODALL. 1967. The birds of Chile and adjacent regions of Argentina, Bolivia and Peru. Platt Establecimientos Gráficos S.A., Buenos Aires, Argentina.
- JOHNSON, L. S. 1996. Removal of old nest material from the nesting sites of House Wrens: effects on nest site attractiveness and ectoparasite loads. Journal of Field Ornithology 67:212–221.
- JOHNSON, L. S. 1998. House Wren (*Troglodytes aedon*). The birds of North America. Number 380.
- JOHNSON, L. S. AND W. A. SEARCY. 1993. Nest-site quality, female mate choice, and polygyny in the House Wren *Troglodytes aedon*. Ethology 95:265–277.
- JOHNSON, L. S. AND W. A. SEARCY. 1996. Female attraction to male song in House Wrens (*Troglodytes aedon*). Behaviour 133:357–366.
- JOHNSON, L. S., J. E. LEYHE, AND C. WERNER. 2001. The shape of eggs in different-sized clutches of the House Wren (*Troglodytes aedon*). Canadian Journal of Zoology 79:1527–1531.
- JOHNSON, L. S., R. L. RAUCH, AND S. N. DELLONE. 2004. The process and causes of fledging in a cavity-nesting passerine bird, the House Wren (*Troglodytes aedon*). Ethology 110:693–705.
- JOHNSON, L. S., J. L. BRUBAKER, AND B. G. P. JOHNSON. 2008. How males in the House Wren, a cavity-nesting songbird, discover that eggs have hatched and transition to provisioning nestlings. Behaviour 145:1791–1796.
- JOHNSON, L. S., C. F. THOMPSON, S. K. SAKALUK, M. NEUHÄUSER, B. G. P. JOHNSON, S. S. SOUKUP, S. J. FORSYTHE, AND B. S. MASTERS. 2009. Extra-pair young in House Wren broods are more likely to be male than female. Proceedings of the Royal Society of London, Series B 276:2285–2289.
- KATTAN, G. H. 1996. Growth and provisioning of Shiny Cowbird and House Wren host nestlings. Journal of Field Ornithology 67:434–441.
- Kendeigh, S. C. 1941. Territorial and mating behavior of the House Wren. Illinois Biological Monographs 18: 1–120.
- Kendeigh, S. C., T. C. Kramer, and F. Hamerstrom. 1956. Variation in egg characteristics of the House Wren. Auk 73:42–65.

- KROODSMA, D. E. AND D. BREWER. 2005. Family Trogloditidae (Wrens). Pages 356–447 in Handbook of the birds of the world. Volume 10. Cuckoo-shrikes to thrushes. (J. del Hoyo, A. Elliott, and D. A. Christie, Editors). Lynx Editions, Barcelona, Spain.
- LABARBERA, K., P. E. LLAMBÍAS, E. R. A. CRAMER, T. D. SCHAMING, AND I. J. LOVETTE. 2010. Synchrony does not explain extrapair paternity rate variation in Northern or Southern House wrens. Behavioral Ecology 21:773–780.
- LACK, D. 1947. The significance of clutch-size. Ibis 89:302–352.
- LLAMBÍAS, P. E. AND G. J. FERNÁNDEZ. 2009. Effects of nest boxes on the breeding biology of Southern House Wrens *Troglodytes aedon bonariae* in the southern temperate zone. Ibis 151:113–121.
- MARTIN, T. E. 2002. A new view of avian life-history evolution tested on an incubation paradox. Proceedings of the Royal Society of London, Series B 269:309–316.
- MARTIN, T. E., P. R. MARTIN, C. R. OLSON, B. J. HEIDINGER, AND J. J. FONTAINE. 2000. Parental care and clutch sizes in North and South American birds. Science 287:1482–1485.
- MASON, P. 1985. The nesting biology of some passerines of Buenos Aires, Argentina. Ornithological Monographs 36:954–972.
- MORENO, J., S. MERINO, R. A. VÁSQUEZ, AND J. J. ARMESTO. 2005. Breeding biology of the Thorn-tailed Rayadito (Furnariidae) in south-temperate rainforests of Chile. Condor 107:69–77.
- MORENO, J., S. MERINO, E. LOBATO, M. A. RODRÍGUEZ-GIRONÉS, AND R. A. VÁSQUEZ. 2007. Sexual dimorphism and parental roles in the Thorn-tailed Rayadito (Furnariidae). Condor 109:312–320.
- NAEF-DAENZER, B., F. WIDMER, AND M. NUBER. 2001. Differential post-fledging survival of Great and Coal tits in relation to their condition and fledging date. Journal of Animal Ecology 70:730–738.
- PURCELL, K. L., J. VERNER, AND L. W. ORING. 1997. Comparison of the breeding ecology of birds nesting in boxes and tree cavities. Auk 114:646–656.
- QUINN, G. P. AND M. J. KEOUGH. 2002. Experimental design and data analyses for biologists. Cambridge University Press, Cambridge, United Kingdom.
- QUINN, M. S. AND G. L. HOLROYD. 1992. Asynchronous polygyny in the House Wren (*Troglodytes aedon*). Auk 109:192–195.
- RICKLEFS, R. E. 1980. Geographical variation in clutch size among passerine birds: Ashmole's hypothesis. Auk 97:38–49.
- ROBINSON, K. D. AND J. T. ROTENBERRY. 1991. Clutch size and reproductive success of House Wrens rearing natural and manipulated broods. Auk 108:277–284.
- ROBINSON, W. D., J. D. STYRSKY, B. J. PAYNE, R. G. HARPER, AND C. F. THOMPSON. 2008. Why are incubation periods longer in the tropics? A common-garden

- experiment with House Wrens reveals it is all in the egg. American Naturalist 171:532–535.
- ROZZI, R., J. J. ARMESTO, A. CORREA, J. C. TORRES-MURA, AND M. SALLABERRY. 1996. Avifauna de bosques primarios templados en islas deshabitadas del archipiélago de Chiloé, Chile. Revista Chilena de Historia Natural 69:125–139.
- Russell, E. M., Y. Yom-Tov, and E. Geffen. 2004. Extended parental care and delayed dispersal: northern, tropical, and southern passerines compared. Behavioral Ecology 15:831–838.
- SERRA, C. AND G. J. FERNÁNDEZ. 2011. Reduction of nestlings' vocalizations in response to parental alarm calls in the Southern House Wren, *Troglodytes musculus*. Journal of Ornithology 152:331–336.
- SIEGEL, S. AND N. J. CASTELLAN JR. 1988. Nonparametric statistics for the behavioral sciences. Second Edition. McGraw-Hill International Editions, New York, USA.
- SIIKAMÄKI, P. 1998. Limitation of reproductive success by food availability and breeding time in Pied Flycatchers. Ecology 79:1789–1796.
- SKUTCH, A. F. 1953. Life history of the Southern House Wren. Condor 55:121–149.
- SOKAL, R. R. AND F. J. ROHLF. 1995. Biometry. Third Edition. W. H. Freeman and Company, New York, USA.
- STATSOFT INC. 2001. STATISTICA for Windows. Version 6.0. StatSoft Inc., Tulsa, Oklahoma, USA.
- STYRSKY, J. D., R. C. DOBBS, AND C. F. THOMPSON. 2002. Sources of variation in House Wrens (*Troglodytes aedon*): ontogenetic and environmental components. Auk 119:800–807.
- SVENSSON, L. 1984. Identification guide to European passerines. Svensson, Stockholm, Sweden.
- SVENSSON, L. AND J. Å. NILSSON. 1997. The trade-off between molt and parental care: a sexual conflict in the Blue Tit? Behavioral Ecology 8:92–98.
- TUERO, D. T., V. D. FIORINI, AND J. C. REBOREDA. 2007. Effects of Shiny Cowbird Molothrus bonariensis parasitism on different components of House Wren Troglodytes aedon reproductive success. Ibis 149:521– 529.
- VEBLEN, T. T., R. S. HILL, AND J. READ. 1996. The ecology and biogeography of *Nothofagus* forests. Yale University Press, New Haven, Connecticut, USA.
- WILLSON, M. F. AND J. J. ARMESTO. 1996. The natural history of Chiloé, Chile: on Darwin's trail. Revista Chilena de Historia Natural 69:149–161.
- Yom-Tov, Y. and E. Geffen. 2002. Examining Ashmole's hypothesis: are life-history parameters of resident passerines related to the proportion of migrants? Evolutionary Ecology Research 4:673–685.
- YOUNG, B. E. 1994. Geographic and seasonal patterns of clutch-size variation in House Wrens. Auk 111:545– 555.
- ZACH, R. 1982. Nestling House Wrens: weight and feather growth. Canadian Journal of Zoology 60:1417–1425.