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This  contribution  introduces  a novel  and  comprehensive  way  of dealing  with  the  automated  wet-etch
station  (AWS)  scheduling  problem.  It  first  analyzes  the field  and  points  out some  very important  prob-
lem  aspects  that  have  not  been  properly  addressed  yet.  Then,  an  expressive  constraint  programming  (CP)
formulation  that  considers  all types  of  AWS  transfer  device  movements  is  proposed.  The  model  accounts
for  both  (i)  loaded  trips  the robot  makes  to transfer  wafer  lots  between  consecutive  baths,  and  (ii)  empty
movements  that  take  place  when  the  device  moves  itself  from  a bath,  where  it  has  dropped  a  wafer  lot,
to  another  bath  where  it is  required  to  pick  up a different  lot.  The  CP  approach  is  afterward  general-
ized  in  order  to implement  an innovative  rolling  horizon  methodology.  The  proposed  method  allows  the
continuous  operation  of  the  wet-etch  station,  minimizing  the  unproductive  intervals  that  would  other-
emiconductor manufacturing systems
ultiproduct batch plants

wise  appear  between  the  scheduling  periods  that correspond  to  different  wafer  lot  sets  that  are fed  by
the previous  manufacturing  step.  The  formulation  has  been  extensively  tested  with  problem  instances
of  various  dimensionalities  in  productivity  maximization  scenarios,  in  which  makespan  was  chosen  as
the performance  measure.  The  results  have  demonstrated  that  robot  unloaded  movements  cannot  be

y  ma
dres
neglected;  otherwise,  the
scheduling  needs  to  be  ad

. Introduction

The semiconductor industry is in constant expansion, essen-
ially due to its direct connection with a diversity of high-tech global

arkets. It is characterized for employing expensive equipment,
anufacturing products which have very short lifecycles, and for

acing varying market demands. All these features entail signifi-
ant costs in case of having idle capacity. In addition, facilities have
o supply customers with good quality products and deliver them
n time. Due to these characteristics, advanced planning methods
lay an important role in semiconductor factories (Pfund, Manson,

 Fowler, 2006).
Semiconductor manufacturing is one of the most complex high-

ech industrial processes. As it is described by Kallrath and Maindl
2006), the process that starts from raw silicon wafers comprises
our stages. They are: (1) fabrication, (2) sorting (or probing), (3)
ssembly (or packing), and (4) testing, where the first two  are
rouped into the front-end process, and the last two, in the back-
nd process. In turn, each stage is composed of several steps,

ach one consisting of a large sequence of operations performed
y different machines. For instance, a typical sorting sub-process
omprises: direct current (DC) test, wafer burn-in and probing

∗ Corresponding author. Tel.: +54 342 455 9175x2102; fax: +54 342 455 0944.
E-mail address: ghenning@intec.unl.edu.ar (G.P. Henning).
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y  lead  to  incorrect  schedules.  Furthermore,  they  have  shown  that  AWS
sed  as an  on-line  activity.

© 2012 Elsevier Ltd. All rights reserved.

(wafer test), ink marking, and back grinding steps (Bang & Kim,
2011). Some authors, as Hung and Wang (1997),  also consider the
material fabrication, involving the production of wafers from raw
silicon, as the first stage of the overall process.

Scheduling of semiconductor factories has been described by
Pfund et al. (2006) as one of the most complex and challenging
problems in the industrial arena. They identified some features that
characterize it: a large number of processing operations, re-entrant
flows, batch units, equipment failures, sequence-dependent tool
setups, etc. Most of the approaches that tackle this problem are
rule-based or rely on some heuristics, as the proposal of Dabbas,
Chen, Fowler, and Shunk (2001),  who  validated the contribution
of Dabbas and Fowler (1999),  which combines multiple dispatch-
ing criteria into a single rule with the aim of optimizing multiple
objectives simultaneously. To this end, authors used different facil-
ity models, one of which is an adaptation of a real Motorola wafer
manufacturing site.

Within the semiconductor manufacturing process, fabrication
stands as one of the most important and more complex sub-
processes, which can take over 300 operations (Lee, Kim, Yea,
& Kim, 1997). At this stage, each wafer requires essentially five
major steps: cleaning, metal deposition, photolithography, etching,

and ion implant. However, wafer lots do not necessarily go every
time through this sequence. Very often, there are some variations:
certain sub-processes are skipped, repeated, or swapped (Johri,
1993). One of the most important operations within fabrication

dx.doi.org/10.1016/j.compchemeng.2012.01.005
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:ghenning@intec.unl.edu.ar
dx.doi.org/10.1016/j.compchemeng.2012.01.005
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Nomenclature

Sets/indices
Jobs/j wafer lots to be scheduled
Baths/b AWS  baths
Stages/st processing stages
robot transfer device/robot
Bathst bath belonging to stage st
EtchSt subset of chemical/etching stages
RinseSt subset of water/deionizing stages
Stagesj

it
subset of processing stages required by wafer lot j,
not executed yet at the insertion time point it

TIP
it

set of in-progress tasks at the insertion time point it
TNE

it
set of non-executed tasks at the insertion time point
it

TNW
it

set of new wafer lots to be inserted in the on-going
agenda, at the insertion time point it

Parameters
ptjb processing time of wafer lot j in bath b
rtjb rinsing time of wafer lot j in bath b
utst,st′ duration of the robot empty movement between

stages st and st′

ltst time required to transfer a wafer lot to stage st from
the previous one

it insertion time point
tw width of the solution time window during which a

new solution needs to be found

Variables
Taskj,st processing task of a wafer lot j at the stage st. This

activity is described by means of duration, start, and
end time variables

Transfj,st transfer activity modeling the movement of the
wafer lot j to the stage st, or to the output buffer,
from the previous stage, or from the input buffer if
st = 1. This activity is described in terms of duration,

i
a
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b
i
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r
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modeling, because they only consider its forward travelling move-
start, and end time variables.

s etching. There are two  types of etching processes, wet-etch
nd plasma etching. In particular, wet-etching processes are used
o chemically remove layers from the surface of wafers during
heir manufacturing. These operations are carried out by modern
nits known as automated wet-etch stations (AWSs) or wet-etch
enches. The proper operation of the wet-etch step is critical to

mprove the performance of the whole facility (Geiger, Kempf, &
zsoy, 1997). Therefore, wet-etch scheduling is one of the most sig-
ificant problems of a semiconductor plant. Fig. 1 shows a sketch

f a semiconductor manufacturing process, highlighting the fab-
ication stage and the wet-etch process, on which the rest of this
ontribution focuses.

Fig. 1. Semiconductor ma
mical Engineering 42 (2012) 189– 205

An automated wet-etch station includes a series of successive
chemical and water/de-ionizing baths and a shared material
handling system, having one or more devices/robots, in charge of
moving wafer lots from one bath to another. In addition, AWSs
operate under a mixed intermediate storage policy, which has to
be rigorously followed in order to avoid wafer contamination due
to overexposure to chemical etchants (Karimi, Tan, & Bhushan,
2004). All these features pose a tough scheduling problem in which
processing tasks need to be properly synchronized with wafer
transfer activities between baths, while productivity is maximized.

Since wet-etching is not an isolated process, but a step of the
semiconductor fabrication, the scheduling of an AWS  has to be
addressed in coordination with the previous step of the process,
which continuously supplies the AWS  with wafer lots to be etched.
Consequently, AWS  scheduling is an on-line scheduling problem
which needs to take into account the current status of the on-going
agenda, each time a new set of wafer lots needs to be scheduled.
However, most contributions that have addressed this problem,
have neglected its dynamic nature, assuming that all the resources
are available at the beginning of the scheduling horizon, which is
not generally true in real facilities.

The AWS  scheduling problem has called the attention of several
research groups in the last two decades. Various mixed integer lin-
ear programming (MILP) formulations (Aguirre & Méndez, 2010;
Bhushan & Karimi, 2003; Karimi et al., 2004), heuristic algorithms
(Bhushan & Karimi, 2004; Geiger et al., 1997), and constraint pro-
gramming approaches (Novas & Henning, 2011; Zeballos, Castro,
& Méndez, 2011) have been proposed. To address the single robot
AWS  scheduling problem, Geiger et al. (1997) presented a two-
step approach, based on a Tabu Search algorithm, which minimizes
makespan. In the first step, the processing sequence of wafers on
baths is obtained disregarding wafer transfer times. In the second
step, these times are considered in order to coordinate robot and
bath agendas. Later, Bhushan and Karimi (2003) proposed a set of
continuous-time MILP formulations, which also adopt makespan
as the objective function. They are associated with two main MILP
models, named URM (“unlimited robot model”, assuming that a
robot is always available to perform any required transfer task)
and ORM (“one robot model”, which considers that a single robot
executes all the transfer activities). First, this work compares the
results obtained with the URM and ORM models in order to study
the extent to which robot associated constraints are important.
Then, it proposes a two-step strategy, called RCUM heuristic. In
the first step of the approach, the URM model is solved to obtain
the best job sequence, and, in the second step, this sequence is
fixed in the ORM model, which is later solved to obtain a feasi-
ble agenda. The proposed MILP models were later reformulated
by Karimi et al. (2004) to improve their computational perfor-
mance. However, both papers include partial approaches to robot
ment, when it transfers wafer lots between consecutive baths.
Hence, the approaches neglect the unloaded movements of the
device.

nufacturing process.
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More recently, the proposal of Aguirre, Méndez, and Castro
2011) also considered the URM and ORM concepts introduced by
hushan and Karimi (2003),  when developing another MILP-based
olution strategy. This MILP continuous-time formulation provides
he sequence and timings of the processing operations, as well as
he agenda corresponding to one or more robots (depending on the
WS  configuration), while minimizing the etching completion of
ll wafer lots. Optimal solutions were reported for small-size prob-
ems, while for medium-size examples, a decomposition method

as proposed. It consists of scheduling the production activities,
nd then incorporating the agenda of the transfer devices by assum-
ng that the sequence defined in the first step is fixed. By means of
his heuristic, they found good quality solutions in reasonable CPU
imes. This approach also neglects all the robot unloaded move-

ents.
In another recent contribution, Zeballos et al. (2011) presented

 constraint programming (CP) approach, which includes both a
P model and a search strategy, in order to reduce the compu-
ational effort. They solved several test examples and concluded
hat their proposal improves the computational performance when
ompared with the same model, but using the default search strate-
ies of the CP solver. This approach reported good quality solutions
or small and medium size problems. Nevertheless, it does not take
nto account the movements of the empty robot.

Although most contributions have made explicit the relevance
f the robot in the scheduling of AWSs (Aguirre et al., 2011;
hushan & Karimi, 2003; Karimi et al., 2004; Zeballos et al., 2011),
hey only considered as transport activities the transfer of wafer
ots between consecutive baths. Actually, previous works did
ot take into account the time employed by the robot when it
oves unloaded, even when it might take longer than the transfer

etween adjacent baths. Despite the fact that both makespan
alues and job sequences obtained from models that consider
nlimited and constrained robot availability might be identical
r very similar in most of the situations, the actual schedules
start/end times of processing and transfer tasks) are not the same.
his may  lead to some serious problems, as it was  pointed out
y Novas and Henning (2011).  In addition, when the number of
afer lots or baths is large, or when the transfer time values are

ig, neglecting empty robot movements may  lead to processing
equences that are not optimal and unfeasible from an industrial
oint of view. These inconveniences, which will be shown in
ection 2.1,  and will be further detailed in Section 4, allow us to
onclude that the constraints associated with every type of robot
ovement should be included in every solution proposal.
It is surprising that this empty robot movement matter has been

gnored in the wet-etch domain, while it has been always taken
nto account in very close fields, like robotic flowshops employed
n the steel and electronic industries, the scheduling of automated
uided vehicle systems (AGVs) used in flexible manufacturing sys-
ems (FMSs), warehouses, container terminals, etc., or in the hoist
cheduling problem (HSP) in the electroplating industry. In effect,
his last category of problem has been studied for a long time and
ll the contributions have considered the unloaded movement of
oists. Actually, various authors have resorted to the so-called time
ay diagram to explicitly represent all sorts of hoist movements.
anier and Bloch (2003) have identified several classes of HSPs

nd have proposed a dedicated notation to make a systematic
pecification of problem types and the identification of studied
roblem instances easier. From such notation it is straightforward
o recognize that the wet-etch scheduling problem is quite similar
o a rather simple HSP, to which additional soaking constraints

re imposed (fixed times on chemical baths and bounded times
n the rinsing ones). Analogies can also be found with the robotic
owshop scheduling problem, which has also received a lot of
ttention in literature (Che, Chabrol, Gourgand, & Wang, 2012).
mical Engineering 42 (2012) 189– 205 191

Finally, unloaded device movements have also been considered
in problems involving AGVs. For instance, Nishi, Hiranaka, and
Grossmann (2011) have developed a bilevel decomposition
algorithm for solving the simultaneous production scheduling and
conflict-free routing problems for AGVs.

Another important aspect to remark is the fact that contribu-
tions devoted to the wet-etch scheduling problem assume that
baths and robots are fully available at the beginning of the schedul-
ing horizon, which is many times an unrealistic assumption given
the fact that AWSs continuously receive wafer lots from the pre-
ceding manufacturing step (Fig. 1). As it is shown in Section 2.2,
when developing a new schedule it is necessary to take into account
the current status of the in-progress agenda in order to avoid the
overlapping of the already scheduled tasks and the new ones to be
incorporated in the schedule.

This contribution presents a novel CP formulation to tackle the
automated wet-etch station, short-term scheduling problem. In
addition to loaded movements, it addresses the empty transfers
that the transfer device/robot makes every time it is requested to
pick up a wafer lot from a bath located in a position which is differ-
ent than the current one. Furthermore, the approach relies on the
concept of scheduling as a continuous activity, in which new orders
need to be scheduled considering an existing on-going agenda; i.e.
both the current status of resources and the in-progress agenda, are
taken into account when scheduling new wafer lots. The paper is
organized as follows. In Section 2, the problem main characteristics
are described, emphasizing robot-related features and the justifica-
tion for a rolling horizon-based approach. Section 3 introduces the
basic CP formulation and then extends it to be able to implement
the rolling horizon scheduling strategy. Finally, Section 4 discusses
the computational results corresponding to several test examples,
and Section 5 highlights the conclusions of this work.

2. Problem main characteristics

An AWS  is a non-intermediate storage (NIS) flowshop consist-
ing of an input buffer, an output buffer, a sequence of alternating
bath stages, and one or more transfer devices or robots. It com-
prises chemical and water/deionizing baths (Fig. 2). Wafer lots, each
of which is composed of several wafers having the same recipe,
pass through the AWS  for etching and rising; i.e. each wafer lot
must follow a specified sequence of baths defined in the recipe of
the product. Wafers are taken from the input buffer, where they
arrive from the previous semiconductor manufacturing process,
and are transferred to the first stage. This stage always corre-
sponds to a chemical bath, followed by a rinsing one that uses a
water/deionizing solution; then, both bath types alternate sequen-
tially. When a given wafer lot is finished, it is transferred to the
output buffer. While chemical baths are in charge of dissolving
the material deposited on the wafer in previous fabrication stages,
water or deionizing baths rinse the remaining etchants before the
wafer lot is placed in the subsequent chemical bath. Depending on
the recipe being followed, some baths could be skipped; however,
backtracking is not possible.

If a wafer lot stays in a chemical bath longer than its etching
time, it is damaged. Consequently, chemical stages must stick on a
zero wait (ZW) storage policy. This means that wafers have to be
removed from chemical baths immediately after their prescribed
processing times, and transferred to the succeeding rinsing bath
in the sequence. Conversely, rinsing stages can hold wafers longer
without damaging them; hence, they follow an unlimited wait
(UW) storage policy; i.e. wafers can stay in water/deionizing baths

longer than the given processing time. Thus, the entire process is a
NIS flowshop with a mix  of ZW and UW operating policies.

AWSs operate in such a way that baths can hold only one wafer
lot at a time. In addition, processing times are derived from the
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Fig. 2. Automated w

afer lot recipe and production route, i.e. they depend on both the
afer lot and the bath where it is immersed. In addition, neither

he processing nor the transfer activities are pre-emptive.
In this environment, at least one robot is responsible for moving

afer lots between baths, as well as transferring them from the
nput buffer to the first bath, and from the last bath to the output
uffer. AWS  robots move one wafer lot at a time and cannot be used
s storage devices.

.1. Robot related features

In most AWSs the time employed by the transfer device to travel
etween any two baths does not depend on whether it makes a

oaded or unloaded trip, but it is determined by the travel distance.
obot duties can be classified under two main types, which are
escribed as follows:

(a) Loaded robot movements: They take place when the robot trans-
fers a wafer lot between baths pertaining to two  consecutive
processing stages, st′ and st′′, which belong to the wafer lot
recipe. This type of movement also occurs (i) when the robot
feeds the first stage by picking-up a wafer lot from the input
buffer, and (ii) when it releases a wafer lot from the last rins-
ing bath, moving it to the output bath. The duration of a loaded
transportation is represented by the ltst′′ parameter, in which
st′′ is the destination stage/buffer.

b) Unloaded robot movements: These are empty trips executed by
the transfer device, and they also take place between two baths,
each one corresponding to different stages, st and st′. These
unloaded movements also occur between the output buffer
and a processing stage, or between a given stage and the input
buffer. The duration of an empty trip, named utst,st′ , depends on
the departure and destination baths, which belong to stages st
and st′, respectively. This type of movement is aimed at placing
the robot at stage st′, where it is required to pick up a wafer lot
that then needs to be transferred to the next processing stage,
st′′. For simplicity reasons the input and output buffers have
been conceptualized as stages.

From the previous description it can be inferred that every
nloaded robot trip is followed by a loaded one. Fig. 3 depicts

 clarifying example, which by means of three snapshots, distin-
uishes different types of robot movements and their sequence. It
an be observed that in order to transfer a wafer lot between two

onsecutive baths it is always necessary to make a prior unloaded
ovement, which has a duration that depends on the initial posi-

ion of the robot. Due to the previous characteristics, and to the fact
hat most AWSs only have one robot to perform all the required
ch station scheme.

movements, the transfer device becomes a critical component of
the station.

As it was  previously mentioned, many contributions have
pointed out that the transfer device plays a critical role in the AWS
scheduling; however, they have only considered the loaded robot
movements between consecutive baths. Due to this fact, they may
lead to sub-optimal schedules and/or to schedules that may be
unfeasible to implement in practice since the robot cannot do two
different things at the same time. In addition, some of the solutions
reported in literature could render damaged wafers due to their
overexposure to chemical etchants.

Fig. 4(a) depicts a portion of a Gantt chart that has been extracted
from the literature, which shows a typical situation of an unfea-
sible agenda. In this figure, processing tasks are labeled with the
number of the wafer lot being processed, while transfer tasks are
named with the number of the lot being moved and its destination
bath. The robot agenda is enlarged in Fig. 4(b) to show the detailed
sequence of movements carried out by the transfer device. Accord-
ing to this partial agenda, at the tn′ time point, the robot leaves the
wafer lot j9 in bath b8 and picks up wafer lot j3 from bath b6. But
these two  things cannot occur at the same time point; i.e. the robot
cannot pick up and drop different wafer lots, on distinct baths, at
the same time. Indeed, the robot needs time to move itself unloaded
from bath b8, after leaving j9, to bath b6, in order to pick up j3. A sim-
ilar state of affairs occurs immediately after finishing the transfer of
wafer lot j3 to bath b7. The solution shows that at time point tn′′ , the
transfer of j3 ends at b7, and when this wafer lot is being dropped
there, another transfer task starts at bath b4, where the robot picks
up wafer lot j1. As seen, this situation is not feasible either.

Another portion of the same schedule is depicted in Fig. 5(a) in
order to show another limitation of previous contributions, con-
cerning damaged wafers as the result of overexposure to etchants.
The robot agenda corresponding to this schedule is enlarged at the
right hand side of the drawing. According to this schedule, almost
immediately after the movement of wafer lot j9 between baths b11
and b12, the transport of lot j4 between baths b1 and b2 takes place.
Fig. 5(b)–(d) schematically represents the associated robot trips.
It can be observed that after transferring j9 from b11 to b12 (see
Fig. 5(b)), the robot has to move unloaded between baths b12 and
b1 (Fig. 5(c)), in order to pick up j4. Finally, the device takes wafer
lot j4 to bath b2 (see Fig. 5(d)).

Since the durations of the robot movements depend on the dis-
tance between baths, the time employed by the robot to move
itself between baths b12 and b1 (last and first baths of the AWS)
is much greater than the transfer time between any consecutive

baths. Thus, this empty robot movement lasts more than the time
depicted in Fig. 5 and, therefore, wafer lot j4 will not be picked
up on time, being damaged due to the overexposure to chemical
etchants.
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ig. 3. Different types of robot movements. (a) Location of the robot (st = b1) when 

c)  Loaded robot movement from st′ = b7 to st′′ = b8.

.2. On-line scheduling issues

At the fabrication stage of semiconductor manufacturing pro-
esses, the etching step follows the photolithography one (see
ig. 1). Therefore, photolithography intermittently feeds the etch-
ng station with in-process wafer lots that need to be incorporated
nto the AWS  agenda. Previous contributions have assumed that
he AWS  is fully available and ready to be used at the time point
here a new set of wafer lots is included in the schedule, referred

s insertion time point, or simply it. In other words, these works
uppose that the whole set of wafer lots, belonging to the previous
genda, has been completely etched and is already located in the
WS output buffer. Additionally, they assume that all the resources

baths and robot/s) are available at the beginning of the scheduling
orizon. However, these circumstances do not occur in industrial
ettings because they produce long idle times on baths, leading to

 reduction in the overall station performance.
Fig. 6 shows a partial Gantt chart that schematizes the situation

escribed above. In this diagram the insertion time point corre-
ponds to the end of the transportation of wafer lot j3 (last lot to

e etched according to the on-going agenda) to the output buffer
b. As seen, this operational policy would render long unproduc-
ive intervals on baths and cannot be implemented in practice. As a
esult, the diagram indicates that the insertion time point should be
 up request from bath b7 is triggered. (b) Unloaded robot trip from st = b1 to st′ = b7.

placed much earlier, e.g. when the processing of wafer lot j3 in bath
b1 finishes. In fact, baths belonging to the first stages of the process
can start executing tasks associated with the new set of wafer lots,
while baths pertaining to the last stages are still carrying out activ-
ities that belong to the previous agenda. However, if scheduling is
addressed in this way, it turns into an on-line type of problem in
which both the in-progress agenda and the AWS  status must be
taken into account in order to properly handle resource availabil-
ity. Indeed, to prevent the overlapping of the already scheduled
activities with the new tasks to be inserted, knowledge of the AWS
status at time point it is necessary. This status refers to the cur-
rent assignments of the processing and transport activities, as well
as their scheduled start and end times. In summary, the problem
needs to be tackled under a rolling horizon type of approach.

Fig. 7 illustrates how disregarding the on-going robot schedule,
when scheduling a new set of tasks, could lead to the overlapping
of transport tasks. This diagram also shows that in order to prevent
the overlapping of the processing tasks demanded by the new wafer
lots (for instance j4), with the ones of the on-going agenda, it is
necessary to take into account (i) the scheduled tasks that are not

executed at it yet (e.g. activities demanded by wafer lot j3, which
take place on baths b2, b3, b4, or by wafer lot j2 on bath b4), as
well as (ii) activities that are still under execution at it (e.g. the one
carried out in bath b3 on wafer lot j2).
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Fig. 4. (a) AWS  partial schedule view. (b) Detailed seq

As a result, when addressing the AWS  scheduling activity as an
n-line type of problem it is important to consider that tasks that
ere programmed in the previous scheduling period are still being

ontinued at and after the insertion time point, thus competing for
esources. Therefore, it is necessary to distinguish the status of all
he activities at it; thus, tasks belonging to the on-going agenda
eed to be classified into the following groups: (i) the set of already
xecuted tasks, TAE

it
, which corresponds to activities belonging to

he on-going agenda that have finished at or before the it time point,
nd are going to be neglected, (ii) the non-executed task set, TNE

it
,

hich gathers tasks that have not started at it yet, and (iii) the
et of in-progress tasks, TIP

it
, which corresponds to the ones under

xecution at time point it. Additionally, activities demanded by the
ew set of wafer lots to be scheduled at insertion time point it are
rouped into the TNW

it
set. This classification is based on the reactive

cheduling framework proposed by Novas and Henning (2010).

. Constraint programming formulation
Constraint programming approaches have been successfully
pplied to a variety of scheduling problems. Formulations based
n CP provide several advantages, as the capability to detect
e of robot movements showing unfeasible situations.

infeasibilities immediately, as well as to obtain initial feasible
solutions quite fast. Moreover, optimal and suboptimal solutions
can be instantiated in low CPU times. It is also important to
remark that CP languages are highly declarative in nature and
facilitate model development. All these features render benefits
when addressing industrial problems, and due to these reasons
constraint programming has been selected as the technology to
address AWS  scheduling.

The CP approach presented in this paper has been implemented
in the OPL language, which is the underlying language of the ILOG
OPL Studio environment (ILOG, 2002). It employs some specific
scheduling constructs available in the ILOG Scheduler package
(ILOG, 2000a).  The main constructs used in this proposal are: (i)
requires, that enforces the assignment of the renewable resources
demanded by the activities, (ii) precedes, which imposes a proper
sequence of non-overlapping tasks, and (iii) the predicate Activity-
HasSelectedResource, which evaluates to true when a task has been
assigned to a particular resource belonging to a set of alternative

resources.

In this contribution, the AWS  scheduling problem is tackled
by means of two complementary models. First, a CP basic formu-
lation that considers loaded and unloaded robot movements is
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ig. 5. (a) AWS  partial schedule that highlights transfer tasks. (b) AWS  scheme rep
12  to b1. (d) Transfer of wafer lot j4 from bath b1 to b2.

ntroduced. It addresses the AWS  scheduling problem in isolation
f its context, disregarding its intrinsic continuous characteristic;
.e. it is assumed that all the resources are available at the beginning

f the scheduling horizon. Afterwards, the CP model is generalized
o tackle the AWS  scheduling problem as an on-line activity,
nder a rolling horizon-based approach; i.e. the AWS  schedule
tatus at the insertion time point will be considered. Under these

Fig. 6. Partial view of a Gantt chart showing the bath idle times that result 
ing the transfer of j9 from b11 to b12. (c) Empty movement of the robot from bath

conditions, the objective of the constraint programming model
presented in this work is: (i) to determine the sequence of wafer
lots to be processed at each bath, as well as the start and end

times of all the processing activities, (ii) to define a detailed robot
schedule, addressing both loaded and unloaded movements of
the transfer device, and (iii) to specify pick up and delivery times
associated with all the robot activities.

when complete AWS  availability is required to start a new schedule.
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Fig. 7. Example showing the pos

Regarding hypotheses, in this approach as well as in others
eported in the literature, the following assumptions are made:
i) all the wafer lots j undergo the same sequence of processing
tages, (ii) no breakdowns occur during the processing of a wafer
ot, (iii) each stage st is composed of a single bath b, belonging to
he set of Baths of the AWS, (iv) processing times of wafer lots in
hemical baths, represented by ptjb, as well as their dipping times
n rinsing baths, rtjb, are deterministic and known beforehand, (v)
here is a single robot in charge of moving wafer lots between baths.
his transport device is capable of connecting any pair of baths
elonging to the AWS. Given that each stage has a single bath,
he duration of the robot movements can be expressed in terms
f either stages or baths, since they are equivalent. Thus, unloaded
obot trips have a known duration, named utst,st′ , which depends on
oth the departure and destination stages, st and st′. On the other
and, the duration of loaded robot transfers are represented by ltst′′
nd are expressed in terms of the destination stage st′′.

The explicit modeling of stages and baths may  allow, in the
uture, applying this approach into other domains in which more
han one bath per stage might exist.

.1. AWS  basic scheduling model

.1.1. Assignment and precedence constraints associated with
tching and rinsing activities

Constraint (1) is an assignment relation prescribing that each
rocessing or rinsing operation required by wafer lot j must be
ssigned to a bath belonging to the Baths set. This constraint works
s described if, in addition, this resource has been declared as a
nary one in the ILOG environment. Constraint (1) is accompanied
ith expression (2) that negates the ActivityHasSelectedResource
redicate to forbid the assignment of activity Taskj,st to any bath
hat does not belong to stage st. Constraint (3) enforces the proper
equencing of all the operations belonging to the recipe of wafer
ot j. In this expression, st and st′ are consecutive processing stages
ssociated with the manufacturing of wafer lot j.

askj,st requires Baths; ∀j ∈ Jobs, ∀st ∈ Stages (1)

ot ActivityHasSelectedResource(Taskj,st, Baths, b);

∀j ∈ Jobs, ∀st ∈ Stages, ∀b /∈ Bathst (2)
askj,st precedes Taskj,st′ ; ∀j ∈ Jobs, ∀st, st′ ∈ Stages,

st /= last(Stages), ord(st′) = ord(st) + 1 (3)
verlapping of transfer activities.

3.1.2. Wafer lot transfer activities: assignment and precedence
constraints

Expression (4) is an assignment constraint prescribing that each
transfer activity Transfj,st required by wafer lot j needs the trans-
fer device. Constraint (5) guarantees an appropriate sequencing of
all the transfer operations demanded by wafer lot j. Transfj,st rep-
resents the movement of wafer lot j to stage st from its previous
processing stage, while Transfj,st′ models the transfer between st
and st′.

Transfj,st requires robot; ∀j ∈ Jobs, ∀st ∈ Stages (4)

Transfj,st precedes Transfj,st′ ; ∀j ∈ Jobs, ∀st, st′ ∈ Stages,

st /= last(Stages), Ord(st′) = Ord(st) + 1 (5)

3.1.3. Precedence constraints relating manufacturing and
transfer activities

Constraint (6) prescribes that the transfer of a wafer lot j to a
stage st precedes the manufacturing operation (either etching or
rinsing) that is carried out in such stage.

Transfj,stprecedes Taskj,st; ∀j ∈ Jobs, ∀st ∈ Stages (6)

3.1.4. Timing constraints for etching and rinsing activities
The residence time of wafer lot j in bath b, belonging to an etch-

ing stage, should be exactly equal to the processing time ptjb to
avoid wafer damage. As already mentioned, a NIS-ZW policy has to
be followed on chemical baths to avoid the overexposure of wafers
to chemicals. On the other hand, the residence time of wafer lot j at
bath b, belonging to a rinsing stage, can be greater than the rinsing
time rtjb, without any risk of j being damaged. On these baths, a
NIS-UW policy is followed. These two conditions are captured by
constraints (7) and (8),  respectively.

ActivityHasSelectedResource(Taskj,st, Baths, b) ⇒
Taskj,st .duration = ptjb;

∀j ∈ Jobs, ∀st ∈ EtchSt, ∀b ∈ Bathst

(7)

ActivityHasSelectedResource(Taskj,st, Baths, b) ⇒

Taskj,st .duration ≥ rtjb;

∀j ∈ Jobs, ∀st ∈ RinseSt, ∀b ∈ Bathst

(8)
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.1.5. Timing of transfer activities and coordination with the
anufacturing ones

The processing of a wafer lot j at the bath belonging to the first
tage (st = 1) starts as soon as its transportation ends. This occurs ltst

ime units after the movement from the input buffer (ib) has already
tarted. The transfer activity is allowed to have a duration greater
han the transportation time ltst just in case the robot remains
dle after leaving the wafer lot. These conditions are captured by
onstraint (9).

ActivityHasSelectedResource(Taskj,st, Bath, b) ⇒
Taskj,st .start = Transfj,st .start + ltst ∧
Transfj,st .duration ≥ ltst;

∀j ∈ Jobs, st = first(Stage), ∀b ∈ Bathst

(9)

When a wafer lot is transferred between two consecutive stages
t and st′, its movement starts as soon as the processing in the
redecessor bath finishes. In addition, the processing in the succes-
or bath begins ltst′ time units after the transportation has already
tarted. Once again the transfer activity is allowed to have a dura-
ion greater than ltst′ just in case the robot remains idle after
ropping the wafer lot. These conditions are captured by constraint
10).

ActivityHasSelectedResource(Taskj,st, Baths, b) ∧
ActivityHasSelectedResource(Taskj,st′ , Bath, bb)  ⇒
Transfj,st′ .start = Taskj,st .end ∧
Taskj,st′ .start = Transfj,st′ .start + ltst′ ∧
Transfj,st′ .duration ≥ ltst′ ;

∀j ∈ Jobs, ∀st, st′ ∈ Stages, st′ /= last(Stages),

Ord(st′) = Ord(st) + 1, ∀b ∈ Bathst, ∀bb ∈ Bathst′

(10)

Similarly, when the processing in the last water/de-ionizing
tage ends, the wafer lot can start its movement towards the out-
ut buffer (ob), which for simplicity reasons has been modeled as

 final stage. This transportation activity is also allowed to have a
uration greater than ltst′ just in case the robot remains idle after

eaving the wafer lot into the output buffer. These conditions are
epresented through constraint (11).

ActivityHasSelectedResource(Taskj,st, Bath, b) ⇒
Taskj,st .end ≤ Transfj,st′ .start ∧
Transfj,st′ .duration ≥ ltst′ ;

∀j ∈ Jobs, ∀st, st′ ∈ Stages, st′ = last(Stages),

∀b ∈ Bathst, Ord(st′) = Ord(st) + 1

(11)

Finally, constraint (12) captures the synchronization condition

rescribing that the transfer of a wafer lot j from bath b, belong-

ng to stage st, to the following stage st′, has to take place before
nother wafer lot j′ arrives to such bath. This condition is enforced
ecause baths can process only one wafer lot at a time. Therefore, a
mical Engineering 42 (2012) 189– 205 197

submerged wafer lot must be taken out of the bath before another
wafer lot is dropped into the bath.

ActivityHasSelectedResource(Taskj,st, Bath, b) ∧
ActivityHasSelectedResource(Taskj′,st, Bath, b) ⇒
Taskj′,st .start ≥ Taskj,st .end + ltst′ + ltst∨
Taskj,st .start ≥ Taskj′,st .end + ltst + ltst′ ;

∀j, j′ ∈ Jobs, j /= j′, ∀st, st′ ∈ Stages,

Ord(st′) = Ord(st) + 1, st /= last(Stages), ∀b ∈ Bathst

(12)

3.1.6. Movement of the unloaded transfer device/robot between
baths

Unloaded movements of the transfer device occur between any
two baths, b and b′, each one corresponding to a different stage,
st and st′. Since it is assumed that each stage has a single bath,
robot movements can be expressed either in terms of stages or
baths. Empty robot trips are intended to locate the robot at stage
st′, each time it is required to go there to pick up a wafer lot to be
taken to the next processing stage st′′. The time employed by the
robot to make an empty move depends on both the departure and
destination stages, st and st′, respectively. Stage st stands for the
current position of the robot, and st′ for the destination, which is
also the departure spot for the next loaded trip to be made by the
robot. Thus, empty trips can be seen as preparation activities carried
out by the robot before conveying wafer lots. Consequently, they
are represented as stage-dependent changeovers associated with
the transfer device.

To associate transition times with the unloaded movements of
the robot, every stage st, is linked to a statest, as indicated in (13).
In addition, transfer tasks and devices need to be declared in a spe-
cial way  by using the state and the TransitionType ILOG Scheduler
constructs. The declaration shown in (14) associates any transfer
activity required by wafer lot j with the state of stage st, which is
its destination. Furthermore, transition times need to be declared.
Expression (15) defines them as a matrix having as many rows and
columns as the number of stages of the process plus one. Addition-
ally, the robot is declared to include transition times, as shown in
expression (16).

Stages state[Stages] (13)

Transfj,stTransitionType statest; ∀j ∈ Jobs, ∀st ∈ Stages (14)

TransitionTime[Stages, Stages]  (15)

UnaryResource robot(TransitionTime) (16)

3.1.7. Objective function
In this contribution, makespan is the performance measure

chosen to be minimized. The aim is to find a schedule with the mini-
mum total time demanded to complete all the wafer lots included in
the problem been solved. Since the minimization of makespan (Mk)
is pursued, expression (17) has to be incorporated into the model.
In addition, constraint (18) has to be included in the formulation.
It enforces all transfer activities concerning the transport of wafer
lots to the output buffer to end at most at the Mk value.

minimize Mk  (17)

Tranfj,st . end precedes Mk; ∀j ∈ Jobs, st = last(Stages)  (18)

3.2. Rolling horizon-based scheduling approach
The approach presented in this section extends the basic CP
model introduced in the previous one. Therefore, when solving the
AWS  scheduling problem under a rolling horizon-based policy, the
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onstraints to be considered are those described in the basic formu-
ation, as well as the ones to be described in the remaining of this
ection. The proposed methodology ensures the proper matching of
he on-going AWS  agenda and the new set of wafer lots to be sched-
led, while preventing (i) the generation of unproductive intervals,

ike the ones shown in Fig. 6 and (ii) the overlapping of different pro-
essing and/or transfer tasks that compete for the same resources.
oreover, the approach attempts to avoid major changes in the

urrent agenda. To handle this last issue, two alternative scenarios
re proposed: (i) freezing up all the tasks that are already scheduled,
ut not executed yet, (ii) giving these activities some flexibility.

Before elaborating on these two scenarios and their associated
onstraints, some problem elements need to be specified. Given an
n-progress AWS  agenda, referred in this section as the old agenda,
nd a new set of wafer lots to be scheduled, it is necessary to iden-
ify:

a) The insertion time point, it. This is the earliest time point at
which the set of new wafer lots can be inserted in the in-
progress agenda, while avoiding any change in the current lot
sequence. The value of it is generally adopted as the completion
time of the last wafer lot in sequence of the first bath. However,
an earlier value can be adopted under certain circumstances.
This parameter can be interpreted as the beginning of the time
horizon corresponding to the new agenda.

b) The time-window during which the new scheduling problem is
to be solved. With respect to this problem element, it will be
assumed that during the time interval in which the new sched-
ule is being generated, the AWS  status will not vary. Otherwise,
if changes occur before the new schedule is implemented, the
agenda will no longer be feasible. To avoid this situation, it is
defined a time window of width tw,  during which the solution
of the new scheduling problem needs to be found, in order to be
implemented at time it + tw.  A conservative value of tw could be
established as the difference between the earliest finishing time
among the completion times of the etching tasks that are actu-
ally being executed at the insertion time point (i.e. in-progress
etching tasks) and the it value itself. In case this tw value were
too large, a smaller one can be adopted to avoid a loss of time.
However, the lower the value of tw,  the smaller the available
time to reach a good quality solution.

c) The set of tasks that is actually involved in the new scheduling
problem. Regarding this issue, activities belonging to the old
agenda are first classified into the TAE

it
, TIP

it
and TNE

it
sets. Then,

the new schedule is built by taking into account the elements
of TIP

it
and TNE

it
, plus the activities associated with the new set of

wafer lots, which are included in TNW
it

.

Given these problem elements, the rolling horizon approach
roposed in this contribution can be described as follows:

. Specify the value of it, the insertion time point.

. Estimate tw,  the width of the solution time window.

. Classify tasks belonging to the current agenda in sets TAE
it

, TIP
it

and
TNE

it
, according to their status at the it time point.

. Build set TNW
it

. It includes all the etching and rinsing tasks
demanded by the new set of wafer lots.

. Develop the CP model by taking into account tasks in TIP
it

, TNE
it

, and
TNW

it
. If tasks belonging to the old schedule that are not already
executed at it (i.e. activities in TIP
it

, TNE
it

) are considered to be
frozen, constraints (19) and (24) need to be added to the basic CP
model; otherwise, if some flexibility is given to them, constraints
(20)–(24) are added to the CP model.
mical Engineering 42 (2012) 189– 205

6. Solve the CP model by imposing a limit of tw time units to the
allowed CPU time. The best solution achieved within this time
bound can be implemented on the shop-floor at time point it + tw.

3.2.1. No flexibility scenario
In order to avoid disrupting the on-going agenda when inserting

tasks belonging to the TNW
it

set, activities in sets TIP
it

and TNE
it

are
enforced to maintain their current start times at the assigned baths.
This condition is captured by expression (19).

ActivityHasSelectedResource(Taskj,st, Baths, b) ∧
notActivityHasSelectedResource(Taskj,st, Baths, b′) ⇒
Taskj,st .start = Taskj,st .plannedStart ∧
Taskj,st .duration = Taskj,st .plannedDuration;

∀Taskj,st ∈ {TIP
it

∪ TNE
it

}, ∀st ∈ Stages, ∀b, b′ ∈ Bathst,

b = Taskj,st .assignedBath, b /= b′

(19)

Expression (19) indicates that the start times and durations of
the activities that belong to the TIP

it
and TNE

it
sets, which are also

part of the new schedule, are going to be exactly the same to the
ones they originally had in the previous agenda, represented by the
Taskj,st.plannedStart and Taskj,st.plannedDuration parameters.

3.2.2. Limited flexibility scenario
By allowing tasks in sets TIP

it
and TNE

it
to make minor modifica-

tions on their current agenda, it might be possible to obtain better
quality solutions, at the expense of a slightly higher computational
effort. Tasks in set TIP

it
, which are actually being executed, are not

allowed to change their current start time. However, in-progress
tasks associated with rinsing operations can stay longer than the
prescribed time in their water baths. This will take place in those
cases the extra time renders some flexibility that can be employed
to make a proper coupling of both, the old and new schedules. This
situation is captured by constraint (20), which allows in-progress
rinsing tasks to modify their planned duration. As seen, they can
increase their duration by a  ̌ factor, but without exceeding the
limit imposed by the solution time window. By definition  ̌ has to
be equal to or greater than 1. In the examples solved to test the
idea,  ̌ was  assigned a maximum value of 2 (1 ≤  ̌ ≤ 2), i.e. rising
operations were allowed to have durations that at most duplicate
the nominal rinsing times.

ActivityHasSelectedResource(Taskj,st, Baths, b) ∧
not ActivityHasSelectedResource(Taskj,st, Baths, b′) ⇒
Taskj,st .start = Taskj,st .plannedStart ∧
Taskj,st .duration ≥ rtj,b ∧ Taskj,st .end ≥ it + tw ∧
Taskj,st .duration ≤  ̌ × rtj,b;

∀Taskj,st ∈ TIP
it

, ∀st ∈ RinseSt, ∀b, b′ ∈ Bathst,

b = Taskj,st .assignedBath, b /= b′

(20)
On the other hand, the duration of those etching tasks that
belong to the TIP

it
set has to be exactly equal to the prescribed pro-

cessing time, ptjb, in order to avoid overexposure to chemicals. This
condition is captured by expression (21), where Taskj,st.plannedStart
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nd Taskj,st.plannedDuration are the start times and durations that
hese activities had in the old schedule.

ActivityHasSelectedResource(Taskj,st, Baths, b) ∧
not ActivityHasSelectedResource(Taskj,st, Baths, b′) ⇒
Taskj,st .start = Taskj,st .plannedStart ∧
Taskj,st .duration = Taskj,st .plannedDuration;

∀Taskj,st ∈ TIP
it

, ∀st ∈ EtchSt, ∀b, b′ ∈ Bathst,

b = Taskj,st .assignedBath, b /= b′

(21)

Regarding tasks belonging to the old agenda that are not so far
xecuted at the insertion time point, i.e. activities in the TNE

it
set,

hey are allowed to slightly change their start times. In certain cases
his is absolutely necessary because their preceding rinsing tasks

ight have a longer duration, as prescribed by (20). In addition,
insing tasks in TNE

it
are also permitted to increase their associated

urations. These conditions are represented by constraints (22) and
23). The value of ı is chosen in such a way that the wafer lot
equence of the old schedule is not modified when developing the
ne of the new agenda.

ActivityHasSelectedResource(Taskj,st, Baths, b) ∧
not ActivityHasSelectedResource(Taskj,st, Baths, b′) ⇒
Taskj,st .start ≥ Taskj,st .plannedStart ∧
Taskj,st .start ≤ Taskj,st .plannedStart + ı ∧
Taskj,st .duration = Taskj,st .plannedDuration;

∀Taskj,st ∈ TNE
it

, ∀st ∈ EtchSt, ∀b, b′ ∈ Bathst,

b = Taskj,st .assignedBath, b /= b′

(22)

ActivityHasSelectedResource(Taskj,st, Baths, b) ∧
not ActivityHasSelectedResource(Taskj,st, Baths, b′) ⇒
Taskj,st .start ≥ Taskj,st .plannedStart ∧
Taskj,st .start ≤ Taskj,st .plannedStart + ı ∧
Taskj,st .duration ≥ rtj,b ∧ Taskj,st .duration ≤  ̌ × rtj,b;
∀Taskj,st ∈ TNE

it
, ∀st ∈ RinseSt, ∀b, b′ ∈ Bathst,

b = Taskj,st .assignedBath, b /= b′

(23)
.2.3. Scheduling of activities in the TNW
it

set
The scheduling of the activities required by the new wafer lots,

hich are included in the TNW
it

set, is modeled by the constraints
hat comprise the CP basic model. In addition, it is necessary to

able 1
mpty transfer times associated with unloaded robot movements between any two stage

Origin stage st Destination stage st′

ib st1 st2 st3 st4 st5 

st1 0.10 0.00 0.20 0.35 0.53 0.78 

st2  0.30 0.20 0.00 0.15 0.33 0.58 

st3  0.45 0.35 0.15 0.00 0.18 0.43 

st4  0.63 0.53 0.33 0.18 0.00 0.25 

st5  0.88 0.78 0.58 0.43 0.25 0.00 

st6  1.03 0.93 0.73 0.58 0.40 0.15 

st7  1.15 1.05 0.85 0.70 0.52 0.27 

st8 1.28 1.18 0.98 0.83 0.65 0.40 

st9 1.42 1.32 1.12 0.97 0.79 0.54 

st10  1.63 1.53 1.33 1.18 1.00 0.75 

st11 1.81 1.71 1.51 1.36 1.18 0.93 

st12 1.98 1.88 1.68 1.53 1.35 1.10 

ob  2.14 2.04 1.84 1.69 1.51 1.26 
mical Engineering 42 (2012) 189– 205 199

ensure that tasks in the TNW
it

set are going to be scheduled after the
insertion time point plus the solution time limit, which is enforced
by the expression (24).

Taskj,st .start ≥ it + tw;  ∀Taskj,st ∈ TNW
it (24)

4. Computational results and discussion

The proposed CP model has been tested with several case studies
of various sizes. Examples with the following dimensionalities have
been solved: Baths × Jobs = 4 × 5; 4 × 7; 4 × 9; 4 × 11; 4 × 13; 6 × 5;
6 × 7; 6 × 9; 6 × 11; 6 × 13; 8 × 5; 8 × 7; 8 × 9; 10 × 5; 10 × 7; 10 × 9;
12 × 5; 12 × 7. Processing times have been taken from Bhushan and
Karimi (2004),  who generated the test data following the methodol-
ogy earlier presented by Geiger et al. (1997).  It consists on obtaining
the processing times with a uniform distribution having a mean
of 6.67 units, using 0.549 as the coefficient of variation for the
residence times in chemical baths, and 0.042 as the coefficient of
variation for residence times at the rinsing baths.

4.1. AWS  scheduling. Robot related issues

In order to allow a proper comparison of the proposed approach
with previous contributions, the examples discussed in this section
will neglect the fact that AWSs operate in industrial environments
under a rolling horizon policy. In other words, it will be assumed
that all the resources are available and the tasks pertaining to the
previous agenda are already finished.

All the case studies consider a single robot as the available trans-
fer device. In addition, two  scenarios have been defined in order to
evaluate the CP approach:

(a) The ERMN (“empty robot movements neglected”) scenario,
which ignores the movements of the unloaded transfer device,
as previous contributions did. This scenario is based on the
same assumptions that have been made by Bhushan and Karimi
(2003),  Aguirre et al. (2011) and Zeballos et al. (2011).  These
proposals made the simplifications that were already discussed
in Section 2.

(b) The ERMC (“empty robot movements considered”) scenario,
which takes into account the unloaded movements of the robot
that have been presented in Section 2.1.

Table 1 shows the distance dependent travel times associated
with robot void movements between any two  stages st and st′, rep-

resented by the utst,st′ parameter. These empty transfer times have
been calculated from the data already available for loaded move-
ments between consecutive stages, which are presented in Table 2.
For instance, the time to move from stage st1  to stage st3, utst1,st3,

s st and st′ .

st6 st7 st8 st9 st10 st11 st12

0.93 1.05 1.18 1.32 1.53 1.71 1.88
0.73 0.85 0.98 1.12 1.33 1.51 1.68
0.58 0.70 0.83 0.97 1.18 1.36 1.53
0.40 0.52 0.65 0.79 1.00 1.18 1.35
0.15 0.27 0.40 0.54 0.75 0.93 1.10
0.00 0.12 0.25 0.39 0.60 0.78 0.95
0.12 0.00 0.13 0.27 0.48 0.66 0.83
0.25 0.13 0.00 0.14 0.35 0.53 0.70
0.39 0.27 0.14 0.00 0.21 0.39 0.56
0.60 0.48 0.35 0.21 0.00 0.18 0.35
0.78 0.66 0.54 0.39 0.18 0.00 0.17
0.95 0.83 0.70 0.56 0.35 0.17 0.00
1.11 0.99 0.86 0.72 0.51 0.33 0.16
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Table  2
Loaded robot transfer times between st′ and st′′ , where ord(st′′) = ord(st′) + 1, including the output buffer, and from ib to st1.

st1 st2 st3 st4 st5 st6 st7 st8 st9 st10 st11 st12 ob

0.10 0.20 0.15 0.175 0.25 0.15 0.12 0.13 0.14 0.21 0.18 0.17 0.16

Table 3
Computational results for various problem instances, considering both the ERMN and ERMC scenarios.

Baths × Jobs Constraints Variables ERMN scenario ERMC scenario
Optimal/best solution in 1000 s Optimal/best solution in 1000 s

Makespan CPU timea Makespan CPU timea

4 × 5 345 151 61.75 <1 63.17 <1
4  × 7 539 211 75.93 2.5 78.13 5.2
4  × 9 765 271 90.43 203.7 93.29 985.5

4  × 11 1023 331 110.06b 431.2 114.05b 240.7
4  × 13 1313 391 137.44b 619.4 143.41b 118.3

6  × 5 565 211 72.29 <1 73.57 <1
6  × 7 875 295 90.71 7.3 93.35 27.9
6  × 9 1233 379 104.53 987.3 115.35b 9.9

6  × 11 1639 463 128.38b 9.4 131.93b 382.7
6  × 13 2093 547 149.83b 15.2 154.73b 82.7

8  × 5 825 271 89.92 <1 92.20 <1
8  × 7 1267 379 106.41 46.3 109.24 123.1

10  × 7 1715 463 119.46 40.3 123.19 610.2
10  × 9 2385 595 139.93b 366.5 148.55b 790.3
12  × 5 1465 391 127.04 <1 128.30 30.5
12  × 7 2219 574 140.57 672.2 144.08b 731.2
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is heavily affected when these trips are included in the model.
Indeed, empty robot trips impose new constraints that may  lead, in
many cases, to a new schedule structure. This situation is illustrated
in Table 5, which shows the dissimilar wafer lot sequences that

Table 4
First solutions found for some medium and big size examples under the ERMC
scenario.

Baths × Jobs ERMC scenario
First solution

Makespan CPU time

4 × 9 97.73 <1
4  × 11 116.99 <1
4  × 13 146.57 <1

6  × 9 118.63 <1
6  × 11 139.29 2.0

8  × 7 114.88 1.5
a Time required to reach optimal solutions or to instantiate suboptimal ones.
b Best suboptimal solution instantiated within 1000 s.

s equal to ltst2 + ltst3, the loaded transfer times to reach stages st2
nd st3, respectively.

Table 2 depicts the transfer times of the loaded robot move-
ents, ltst

′′, which always correspond to the elapsed time to reach
he bath belonging to stage st′′, from its previous stage st′. These
oaded transfer times have been taken from Bhushan and Karimi
2004).

The ILOG OPL Studio environment (ILOG, 2002), with the ILOG
cheduler package (ILOG, 2000a)  and the ILOG Solver (ILOG,
000b), was used to solve all the problem instances. Regardless the
ddressed scenario, in all the case studies, the default search strat-
gy embedded in ILOG OPL Studio (Depth First Search, DFS), has
een adopted. Examples have been solved with a computer hav-

ng an Intel Pentium Dual Core 3.40 GHz processor with 2.00 GB of
AM.

Computational results for the different problem instances are
hown in Table 3. The proposed CP approach has rendered opti-
al  solutions for almost all the small and medium size problems

eing tackled. For both scenarios the solutions have been reached
n low or reasonable CPU times. When the transfer times of the
mpty robot are included in the model (ERMC scenario), the
pproach yields solutions exhibiting greater values of makespan,
hus demonstrating the importance of this problem element.
lthough the differences in makespan nominal values between the
RMN and ERMC solutions are not so important, the agendas of
aths and robot are quite different, depending on the scenario.

Table 3 shows that optimal solutions were reached in very low
PU times for small and most medium size examples, as for the

 × 5, 4 × 7, 4 × 9, 6 × 5, 6 × 7, 8 × 5, 8 × 7, 10 × 7, 12 × 5 case stud-
es, either under the ERMN or the ERMC scenario. On the other
and, for bigger size examples, such as the 6 × 9 and 12 × 7 problem

nstances, optimal solutions have been obtained with the ERMN
cenario, but suboptimal solutions under the ERMC one. In order to

ssess the quality of these suboptimal solutions, the 1000 s upper
ound on the CPU time was removed for the 6 × 9 and 12 × 7 prob-

em instances and these problems were solved to optimality. In the
rst case, a makespan value of 108.03 (108 min, 1.8 s) was  obtained
in 4734 s, whereas for the 12 × 7 example, a makespan of 142.72
(142 min, 43 s) was  reached in 2720 s. These results indicate that,
in the worst case, a value of makespan that is 6.7% above the optimal
one is attained.

As it was  expected, the consideration of transition times (see
expressions (13)–(16)) in the ERMC model, increases the com-
putational effort with respect to the ERMN scenario. In addition,
the differences in CPU times are more significant as the problem
size increases. On the other hand, the first feasible solutions cor-
responding to the ERMC scenario (see Table 4) were attained in
very low CPU times in most cases. These results show an important
characteristic of this approach: the capability of reaching feasible
solutions almost immediately for most problem instances.

Another aspect that is very important to remark is the fact that
by taking into account the unloaded robot trips, the structure of
the AWS  schedule changes in many problem instances, i.e. the
main scheduling decision, which is the wafer lot processing order,
10  × 7 135.61 3.0
10  × 9 149.09 1.5
12  × 5 133.94 <1
12  × 7 149.82 4.0
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Table  5
Different job sequences reached under the ERMN and ERMC scenarios.

Baths × Jobs Optimal job sequence

ERMN scenario ERMC scenario

4 × 9 9–5–4–2–8–1–7–3–6 9–5–2–4–1–8–7–3–6
6 × 7 4–2–7–6–5–1–3 6–7–5–2–4–1–3
6 × 9 9–6–8–4–2–7–5–1–3 9–6–8–7–2–5–4–1–3
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Table 6
Enlarged loaded robot transfer times for the 6 × 5 example.

the optimal solutions of the 6 × 5 example, with enlarged transfer
10 × 7 6–3–4–2–7–1–5 6–3–2–1–4–7–5
12 × 7 6–3–2–5–1–4–7 4–2–5–3–1–7–6

ere obtained for the 4 × 9, 6 × 7, 6 × 9, 10 × 7 and 12 × 7 problem
nstances. In fact, in 42% of the examples in which optimal solutions

ere found for both the ERMN and ERMC scenarios, the corre-
ponding schedule structures were different. It can be noticed that
he cases which exhibit this behavior are the ones having a large
umber of baths and/or a big number of wafer lots to be processed.

Another feature that may  lead to a change in the wafer lot
equence is the fact of having big transfer times, as it is shown in the
ollowing paragraphs. Let us consider the 6 × 5 problem instance,
hich is a small size example that was first solved under both sce-
arios using the robot movement data given in Tables 1 and 2.
he solution structure, for both scenarios, corresponds to the
–5–2–1–3 job sequence. The ERMN scenario rendered a makespan
alue of 72.29 time units (72 min, 17.4 s), and the ERMC one a

erformance measure of 73.57 (73 min, 34 s). This increase in the
ompletion time is caused by the time the robot employs to make
he empty trips.

Fig. 8. Optimal schedules corresponding to the 6 × 5 case study with enl
st1 st2 st3 st4 st5 st6 ob

1.2 0.6 0.8 1.0 0.4 0.6 1.0

To analyze the effect of an increase in the transfer times, the
same 6 × 5 problem instance was solved with the loaded trans-
fer time data presented in Table 6. Unloaded transfer times were
calculated with the same rationale used before to build Table 1.
This problem instance was  again solved with both the ERMN and
ERMC scenarios. The first scenario rendered a solution having a
makespan value of 81.60 time units (81 min, 36 s). The wafer lot
optimal sequence was  4–5–2–1–3 – the same obtained with lower
values of the transfer times – and it was instantiated in less than 1 s.
On the contrary, under the ERMC scenario, the 2–5–4–1–3 optimal
sequence was  obtained in 1866 s. Nevertheless, it is worth men-
tioning that despite the greater time needed to find the optimal
solution, the first feasible schedule of the ERMC scenario, having a
makespan of 128.70 time units (128 min, 42 s), was  reached in only
4.8 s. This first solution is only 10.4% above the optimal one that has
a makespan of 116.50 time units (116 min, 30 s).

The impact of the empty transfer times can be seen by compar-
ing the Gantt charts shown in Fig. 8a and b, which correspond to
times, under the ERMN and ERMC scenarios, respectively. For clar-
ity purposes, in Fig. 8b, robot activities have been decoupled into
loaded and unloaded transfer ones. As seen, empty movements are

arged robot transfer times. (a) ERMN scenario. (b) ERMC scenario.
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Fig. 9. Detailed view of the robot 

ignificant and they are responsible for introducing idle times on
he processing stages. A more detailed view of these movements is
resented in Fig. 9. This figure enlarges a small portion of the Gantt
hart shown in Fig. 8b with the aim of illustrating the impact of the
nloaded robot movements on the ERMC solution. Loaded robot
ovements are represented by solid arrows, while the unloaded

nes correspond to dashed arrows. In addition, the time intervals
he robot employs to make empty trips are identified with capital
etters. The A interval represents the time required by the robot to
o from bath b4, where it has already dropped wafer lot j2, to b2 in
rder to pick up wafer lot j5, which is then going to be transferred
o bath b3. Similarly, interval B represents the time required by the
obot to move without any load, from bath b3 to the ib input buffer
o pick up wafer lot j4, which then needs to be transported to the
rst bath b1. After this, the device stays idle over this bath, waiting

or the end of j4 processing. Then, it transports this wafer lot from
1 to b2. From this drawing and from Fig. 8b, it can be noticed that
he times associated with the unloaded robot movements cannot
e neglected if the chemical bath zero-wait policy is in fact to be
nforced. In addition, it can be observed that these time intervals
re of equal or bigger size than the ones corresponding to loaded
rips.

.2. Rolling horizon-based AWS  operation. Insertion of new wafer
ots
As it was described in Section 3.2,  the AWS  scheduling activ-
ty should not be addressed as an isolated problem. Automated

et-etch stations are part of the wafer fabrication stage, and are
elated with other preceding and succeeding manufacturing steps.

Fig. 10. Gantt diagram showing s
ents, both loaded and unloaded.

Therefore, groups of new wafer lots continuously arrive at the AWS,
turning its scheduling into an on-line activity, as it is shown in the
example presented in the following paragraphs.

The AWS  tackled in this case study consists of 6 stages with
one bath per stage, an input and an output buffer, and one transfer
device/robot. The example addresses a situation in which the AWS
already has 5 scheduled jobs (j1–j5), and these wafer lots are cur-
rently in-progress in the unit. The makespan value of the on-going
agenda is 73 min  41 s. Then, another set of 5 new jobs (j6–j10) is
fed from photolithography and needs to be scheduled.

To illustrate the impact of a rolling horizon strategy, this case
study has been solved under three different scenarios. (i) Scenario
1: The insertion time point is placed at the completion time of the
last task belonging to the old agenda; thus, the new set of wafer lots
is scheduled after all the AWS  resources are available. This scenario
is analyzed in order to show how the throughput of the station
decreases if this policy were adopted. (ii) Scenario 2: The value
of it is located as early as possible, and the in-progress and non-
executed tasks belonging to the on-going schedule maintain their
start times. (iii) Scenario 3: The value of it is located as early as
possible, but some flexibility is associated with the in-progress and
non-executed tasks. In fact, in-progress and non-executed rinsing
tasks are allowed to increase their durations up to 20% (  ̌ = 1.2)
and, consequently, non-executed etching tasks may  modify their
start and end times. Scenarios 2 and 3 illustrate the two alternative
operating schemes that have been described in Section 3.2.
4.2.1. Scenario 1
Fig. 10 depicts the Gantt chart corresponding to the optimal

solution obtained for this case study, showing the insertion time

cenario 1 optimal solution.
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Fig. 11. Gantt diagram depicting scenario 2 optimal solution.
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Fig. 12. Gantt diagram depi

oint associated with the end of the last processing task of the final
afer lot belonging to the first set to be scheduled. To solve this

xample the basic CP model was implemented and no limit on the
olution time was imposed. The total makespan obtained after the
nsertion of wafer lots j6–j10 is 148 min  52 s. The diagram illus-
rates the important non-working gap that appears between the
wo scheduling time horizons, i.e. the ones associated with the first
nd second sets of wafer lots. In this particular situation, bath idle
imes correspond to the void intervals that appear between the end
f the tasks demanded by wafer lot j3 and the start of the activities
equired by j9. As seen, this type of operation would lead to a very
ow system throughput, since the average load of the various baths
s very low.

Due to the situation described in previous paragraphs, this type
f operation is by no means employed in practice. Nevertheless, it
s the one that is implicitly assumed by other authors, which have
lways considered wet-etch scheduling in isolation and not as part
f the wafer fabrication stage.
.2.2. Scenario 2
Under this scenario the following values of the insertion time

oint and solution time window have been adopted: it = 40 min
cenario 3 optimal solution.

49 s and tw = 145 s, respectively. The constraints that define the
model of this problem instance are the ones of the basic CP model,
plus constraints (19) and (24). Fig. 11 shows the schedule that
was obtained within the solution time window tw.  This solution
was found in less than 1 s of CPU and proved to be optimal at
40 s. As prescribed, in-progress and non-executed tasks maintain
their agenda. The total makespan corresponding to this solution is
129 min  4 s, which is almost 20 min  lower than the corresponding
one of scenario 1. The reasons for such large decrease are the
big reduction on bath unproductive times and the good coupling
between the old and the new agendas.

However, if the problem of scheduling wafer lots j6–j10 is ana-
lyzed in isolation, and the partial solutions of scenarios 1 and 2
are compared, it can be seen that whereas the first one employs
75 min  11 s to manufacture the new set of wafer lots, scenario
2 demands 88 min  15 s for the same duty. The 75 min  11 s par-
tial makespan value is obtained by subtracting the makespan of
the previous scheduling period to the total makespan. In turn, the
88 min  15 s partial makespan value corresponding to the second

set of wafers in scenario 2 is attained by subtracting it to the new
total makespan value. The reason for having this bigger value of the
partial makespan is the fact that scenario 2 considers that the AWS
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esources are not fully available when a new set of wafer lots needs
o be scheduled. This analysis shows that seeking the best schedule
or the new set of jobs without considering the current status of the
WS, as previous contributions in the field did, might be mislead-

ng. Nevertheless, it is important to notice that whereas the partial
akespan of the second set of wafers in scenario 2 is worse than

he corresponding one of scenario 1, its total makespan is much
etter, leading to a superior AWS  performance in the long run.

.2.3. Scenario 3
The constraints that define the model of this problem instance

re the ones of the basic CP model, plus constraints (20)–(24).
alues of  ̌ = 1.2 have been adopted; thus, tasks associated with

n-progress and non-executed rinsing operations are permitted to
ave durations of up to 20% longer.

The Gantt diagram depicted in Fig. 12 shows the optimal solu-
ion reached for this scenario, under the same it and tw (145 s)
alues adopted for scenario 2. This solution has a total makespan
alue of 125 min  44 s and it was found in 20 s. In order to assess
ts quality, the CPU time limit was disregarded. It was  found that
his is indeed the optimal solution; the optimality condition was
roved at 210 s.

A comparison of Figs. 11 and 12 reveals that the total makespan
s in this case around 4 min  better than the one of the scenario 2
olution. This occurs because a better matching between the tasks
hat belong to the old and new agendas is now attained. The assess-

ent of these solutions also discloses that the job sequences of the
econd set of wafers are different. The makespan reduction, as well
s the change in the job order, takes place because of the additional
exibility given by means of the  ̌ parameter (see expressions (20)
nd (22)). By allowing certain wafer lots to stay longer in their
ising baths, the sequence of transfer operations can change to
mprove the station efficiency. Hence, scenario 3 shows the benefits
f implementing a rolling horizon-based methodology that enables
he AWS  to operate in an almost continuous fashion. As seen, the
ew wafer lot set can be inserted in an efficient way that avoids
aving unproductive times between the two consecutive schedules
nd, thus, optimizes the total makespan as the global performance
easure.

. Conclusions

This contribution presents an innovative and general way  of
ealing with the automated wet-etch station scheduling problem,

ooking at some specific features that were not considered up to
ow. In this work the different types of robot movements have
een studied in a comprehensive way, demonstrating the draw-
acks that arise when unloaded robot trips are ignored and pointing
ut the limitations of previous approaches regarding this issue. It
as been concluded that some of the optimal sequences reported
y previous authors that ignored empty robot trips were unfea-
ible, leading in many cases to wafer damage. In addition, the
peration of wet-etch stations within the context of semiconduc-
or manufacturing process has been analyzed, and the importance
f considering a rolling horizon-based operating policy has been
ighlighted.

Then, a CP formulation has been presented. This new model
akes into account the loaded robot movements between consecu-
ive baths, as well as the unloaded ones, by explicitly considering
he time employed by the robot to travel empty from a bath, where
t has already dropped a wafer lot, to another bath, where it needs

o go in order to pick up a different lot. Afterward, the CP model has
een generalized in order to implement a rolling horizon method-
logy that considers the current status of the AWS  at the moment

 new set of wafer lots is inserted in the on-going agenda.
mical Engineering 42 (2012) 189– 205

Several case studies have been solved to illustrate the benefits
of this proposal and to test it. Firstly, various examples of vari-
ous dimensionalities have been solved under two circumstances:
(i) without considering the empty movements of the robot, like
previous contributions did, and (ii) taking them into account. The
solutions found in the second situation, which obviously demanded
more computational effort, have shown that the unloaded move-
ments of the transfer device cannot be neglected; otherwise, the
solutions that are obtained cannot be implemented in practice.
Moreover, the wafer lot sequences that were reached when the
unloaded robot trips were taken into account were, in many cases,
different than the ones obtained when the empty robot movements
were neglected. This occurs for big size problems (many wafer lots
to be scheduled and/or a big number of baths), or when transfer
times are important. The reported results have proved that the
void robot trip simplifying assumption is incorrect. Thus, the prob-
lem cannot be tackled in a two-step solution approach in which
the schedule sequence is sought first with a simplified model that
ignores unloaded trips and, then, the AWS  agenda is readjusted to
include these trips.

Furthermore, the CP model extensions that implement the
rolling horizon policy have been applied to another example. This
case study demonstrates that AWS  scheduling problems should not
be addressed in isolation, as previous authors have done. On the
contrary, they need to be tackled under a rolling horizon-based
type of approach in order to obtain schedules that can be imple-
mented in practice and that can improve the productivity of the
manufacturing environment.
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