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Abstract: Wet rainfall pulses control vegetation growth through evapotranspiration in
most dryland areas. This topic has not been extensively analyzed with respect to the vast
semi-arid ecosystems of Central Australia. In this study, we investigated vegetation water
responses to in situ root zone soil moisture (SM) variations in savanna woodlands (Mulga)
in Central Australia using satellite-based optical and thermal data. Specifically, we used
the Land Surface Water Index (LSWI) derived from the Advanced Himawari Imager on
board the Himawari 8 (AHI) satellite, alongside Land Surface Temperature (LST) from
MODIS Terra and Aqua (MOD/MYD11A1), as indicators of vegetation water status and
surface energy balance, respectively. The analysis covered the period from 2016 to 2021.
The LSWI increased with the magnitude of wet pulses and showed significant lags in the
temporal response to SM, with behavior similar to that of the Enhanced Vegetation Index
(EVI). By contrast, LST temporal responses were quicker and correlated with daily in situ
SM at different depths. These results were consistent with in situ relationships between
LST and SM, with the decreases in LST being coherent with wet pulse magnitude. Daily
LSWI and EVI scores were best related to subsurface SM through quadratic relationships
that accounted for the lag in vegetation response. Tower flux measures of gross primary
production (GPP) were also related to the magnitude of wet pulses, being more correlated
with the LSWI and EVI than LST. The results indicated that the vegetation response varied
with SM depths. We propose a conceptual model for the relationship between LST and
SM in the soil profile, which is useful for the monitoring/forecasting of wet pulse impacts
on vegetation. Understanding the temporal changes in rainfall-driven vegetation in the
thermal/optical spectra associated with increases in SM can allow us to predict the spatial
impact of wet pulses on vegetation dynamics in extensive drylands.

Keywords: land surface temperature; land surface water index; short-wave infrared;
vegetation status; wet pulse

1. Introduction

Dryland ecosystems cover about 40% of the global land area and have an important
impact on the inter-annual variability of carbon cycles at a global scale. Extreme events
produce fluctuations in vegetation productivity according to water availability for plant
use (i.e., evapotranspiration or ET). Different authors have reported that the amount of
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precipitation during wet pulses is important for vegetation growth and productivity, with
this having a key role in carbon uptake [1-4]. Australia is one of the major dryland
areas worldwide. Refs. [5,6] reported the high sensitivity of extensive Central Australian
drylands to hydroclimatic variability and thus the vulnerability to predicted future changes
in climate.

Semi-arid ecosystems are exposed to sporadic events of intense rainfall. Although
rainfall is the main trigger of vegetation response during these events, the water balance in
the soil can vary spatio-temporally depending on several factors, such as rainfall intensity,
topography, and soil type, among others. Thus, soil moisture (SM) is considered a critical
factor in rainfall-driven dryland ecosystems, as a hydrological variable resulting from
the water balance in the soil [7-10]. It is a more comprehensive variable than rainfall;
thus, it is related to different processes of the soil-plant-atmosphere interface and can
subsequently be considered a variable with fewer errors than different factors separately.
For example, [11] showed that the Enhanced Vegetation Index (EVI) and solar-induced
chlorophyll fluorescence (SIF) were better correlated with surface SM (0-10 cm depth)
than precipitation in semi-arid areas of Central Australia. Given that this is a key surface
variable of the evapotranspiration process (ETa), the understanding of soil water effect
on vegetation dynamics through satellite data can contribute to spatially predicting the
response of vegetation to wet pulses in large drylands with limited field measurements [11].
Although surface SM can be retrieved from well-known methods like microwave retrieval
algorithms, it may not be enough to determine water vegetation conditions, given the
frequent decoupling with deeper depths and given that plants can extract water from
subsurface horizons depending on the development of deep roots [11,12]. Moreover,
the response of vegetation to root-zone soil water availability has not been extensively
analyzed, probably due to the lack of estimates of vertical SM distribution and accessibility
of vegetation to it [13].

Australia is one of the largest land masses covered by arid and semi-arid ecosystems,
with about 70% of the area represented by woodlands, savannas, and grasslands [14].
The importance of Australian semi-arid ecosystems on global land carbon sink related
to changes produced by wet rainfall pulses (typically more than 50 mm /week) has been
reported [15]. In 20102011, almost 60% of the large global carbon sink anomaly occurred
in Australia as a consequence of extraordinary rainfall events [1,3]. In this sense, Mulga
(Acacia spp.) covers 20-25% of the Australian land area [16] and was one of the most
important semi-arid ecosystems contributing to the 2011 carbon sink anomaly [17]. Al-
though it is clear that vegetation growth is strongly associated with wet rainfall events
in these semi-arid systems [5,18], the study of the temporal response of vegetation is still
important for predicting the impact of those events and to evaluate the performance of
different indicators.

Given that SM has spatial and temporal variability, satellite remote sensing offers an
opportunity to monitor its impact on vegetation at different spatio-temporal scales. In this
sense, geostationary (GEO) satellites have certain advantages over low-Earth-orbiting (LEO)
satellites, given the consistency in viewing geometry (which can produce variability in
reflectance data), better temporal coverage, and more chances to conduct cloud-free obser-
vations [19]. For example, [20] reported that seasonal changes in viewing and illumination
geometry could produce significant variations in vegetation indices over Australian wood-
land and open forest areas. In these drylands, where vegetation can show sub-fortnightly
changes as a consequence of rainfall events [21], GEO satellites, such as the recent Japanese
Himawari-8, have the potential to monitor those short-time changes.

In Australia, several remote sensing studies have used vegetation indices to monitor
productivity and phenology changes, reporting differences in the timing, magnitude, and
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duration of vegetation response according to hydrological variability [11,19,22,23]. In
general, these studies, at coarse temporal scales, reported certain lags between rainfall
events and an increase in the indices, suggesting limitations for the early monitoring of
the impact of those events. Other spectral bands, such as short-wave infrared (SWIR) and
thermal infrared (TIR), have been less explored in semi-arid Australian areas. Spectral
indices such as the Land Surface Water Index (LSWI), which take into account near-infrared
(NIR) and SWIR bands, have been widely associated with vegetation water content and
vegetation water stress, given the absorption of liquid water in SWIR [24-26]. They can
be an alternative to traditional vegetation indices. However, the temporal response in
semi-arid, natural regions to rainfall wet pulses has scarcely been explored. It should be
noted that, for a certain rainfall pulse, spectral indices can show different values during a
season with different general hydrological conditions (e.g., normal or dry seasons).

On the other hand, thermal data have been considered to study the vegetation status
based on the partitioning of incoming solar radiation into latent (ET) and sensible heat
fluxes under different levels of soil water available for ET [27]. The estimation of vegetation
water status is based on the following simplified surface energy balance equation:

Rn=LE+H+G (1)

where Rn is the net radiation, LE is the latent heat flux, H is the sensible heat flux, and G is
the soil heat flux (G is almost equal to 0 over maximum vegetation cover). All these terms are
expressed in w m~2. Different variables are associated with LST. First, incoming solar radiation
is one of the main drivers [27]. Atmospheric water demand and surface roughness control the
flux of heat from the surface to the atmosphere [28]. Thus, potential ET is mainly related to
radiative and atmospheric factors. ETa is a key variable determining LST through the surface
energy balance depending on changes in SM. LST has been widely used as a simple indicator
of vegetation water status, given that, over vegetated areas, the distribution of incoming solar
radiation into H and LE mainly depends on stomatal resistance to respiration. For a region
under homogeneous atmospheric forcing and surface roughness, LST is strongly related to SM
in the root zone available for the ET process [27,29-31]. In this context, changes in LST should
be associated not only with surface SM but also with deep SM, depending on vertical root
distribution and the sensitivity of the vegetation to that variable [12,30]. These concepts have
scarcely been applied to monitor dryland natural areas of Central Australia.

This study aimed to analyze the vegetation response to in situ root zone SM during
wet rainfall events in an area of Mulga savanna woodland in Central Australia through
LSWI and LST data from AHI Himawari 8 and the Moderate Resolution Imaging Spectro-
radiometer (MODIS), respectively. The novelty of this study lies in its identification of a
satellite-derived indicator of vegetation status, which is related to root zone SM increases
during wet rainfall events. Given the scarcely explored potential of this variable to monitor
and predict its impact on vegetation [12], an early proxy associated with increases in water
in the soil profile can provide a source for monitoring and predicting vegetation condition
and productivity. This will contribute to the understanding and spatial monitoring of wet
pulse impact on vegetation in the complex semi-arid systems of that region with limited
spatial data coverage. The sections are organized as follows: Section 2 includes a descrip-
tion of the study area, field data considered from the Ozflux network, and optical/thermal
satellite data; Section 3 includes an analysis of the relationships between SM, GPP, and
LSWI/LST data, including a conceptual model of those relationships for the study area.
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2. Materials and Methods
2.1. Study Area

This study was carried out at Alice Springs Mulga (ASM) and Ti Tree Ozflux stations,
which are located in the Northern Territory, over a homogeneous Mulga woodland (ASM:
—22.2828, 133.2493; Ti Tree: —22.2870, 133.6400) [11,32] (Figure 1). Both sites are part of
the Terrestrial Ecosystem Research Network’s (TERN) OzFlux and Australian SuperSite
networks that allow for the monitoring of land surface processes in Australia (https://
www.ozflux.org.au/monitoringsites/alicesprings /index.html#intro; https:/ /www.ozflux.
org.au/monitoringsites/titreeeast/index.html#intro, accessed on 18 December 2024). These
stations were selected since they are the only two existing in the Mulga woodland area.
ASM was considered as the primary reference site, given that there is a lack of field data
between 1 January 2020 and 19 November 2020 in the Ti Tree station. This last site was
considered mainly to corroborate the relationship between variables. The mean annual
rainfall is 312 mm (1987-2015) (http:/ /www.bom.gov.au/, accessed on 18 December 2024),
ranging from 25 to 955 mm [33]. In total, 86% of rainfall occurs between November and
April [14]. Mean minimal and maximal air temperatures are between 5 °C and 22.6 °C

(July) and between 22 °C and 37.5 °C (January), respectively, with absolute values between
—4 °C (August) and 46 °C (January) [14].
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Figure 1. Map of major vegetation groups showing the location of Alice Springs Mulga (ASM) and Ti
Tree Ozflux sites (data source: Dynamic Land Cover Dataset Version 2.1).

The sites are located in a flat terrain (slope = 0.2%); the vegetation is similar in both
sites, with high-density perennial Mulga savanna woodland (76% cover) consisting of
Acacia aneura and Acacia aptaneura [33]. Ti Tree is characterized by a Mulga (Acacia aneura)
canopy with the presence of Corymbia. The highest canopy layer has an average height
of around 4.8-6.5 m. The grassland and shrub layer is mainly composed of annual and
perennial C4 species; the growth and photosynthesis of this layer strongly depend on
rainfall amount and are more active in the summer [14]. During dry periods, the bare soil
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surface is more widespread than during wet periods [34,35]. Under wet conditions, the
soil-plant system has the capability of a quick response, not only because of evaporation
from the surface soil layer but also because of the transpiration of both vegetation layers
that together explore surface and subsurface horizons [36].

The regional dominant soil type is red kandosol, with a sandy loam texture (74/11/15%
sand/silt/clay) and organic matter content of 1.1% at the surface. An extensive siliceous
hardpan is more common in this soil type in ASM, showing spatial variability, and its depth
can fluctuate from the surface to more than 1 m. Above the hardpan, there is unconsolidated
soil. Changes in hardpan depth produce differences in the subsurface storage of soil water
and root development, mainly for Acacia, which has a dimorphic root system with deep
roots. In these cases, a high concentration of roots can be expected above the hardpan [33].
In ASM, this mainly constitutes a limitation for infiltration during strong rainfall events,
favoring soil saturation in deep horizons [14]. Access to groundwater by vegetation is
hampered by the hardpan or the deep water table (usually around 49 m in depth) [33]. The
soil type in the Ti Tree site is also kandosol, with the main difference being the absence of
a hardpan.

2.2. Field Data

Table 1 shows the variables from the Ozflux sites considered in our analysis. In situ
daily average SM, LST (K), and GPP were used in the present study and can be accessed
from [37]. Quality control was carried out as part of the data delivery process, and details
on methods of measurements, corrections, and gap filling can be found in previous studies,
such as [37]. SM was measured with TDR probes arranged horizontally in two arrays
within different habitats: under Mulga, in bare soil between trees, and beneath Mulga and
understory (grass, Mulga, and spinifex in the case of Ti Tree) [33]. The sensors measured
volumetric soil moisture content (m?®/m3) at four depths: 0-10 cm (named SSM), 10-30 cm
(named 10 cm), 60-80 cm (named 60 cm), and 100-130 cm (named 100 cm). We considered
data from the array under Mulga (the most representative cover type) for both stations,
which included the unconsolidated soil (at a 100 cm depth) above the hardpan in ASM. The
sensors’ calibration for the specific soil type was previously carried out by [14], comparing
probe measurements with laboratory analysis of soil texture and bulk density.

Table 1. Sensors and variables from the ASM and Ti Tree OzFlux sites considered in this study.

Instrument Type Brand Model/Make Location (Named)
0-10 cm (SSM)
L . . CS616 and CS605 10-30 cm (10 cm)
Volumetric soil moisture Campbell Scientific (Campbell Scientific Inc) 60-80 cm (60 cm)
100-130 cm (100 cm)
Net radiometer Kipp and Zonen CNR1 (Kipp and Zonen) 12.2 m from ground level

LST from the station was calculated to test the relationship with SM and to check the
correlations obtained from MODIS LST data. For the calculation of LST, upwelling long-
wave broad band hemispherical radiances measured by the pyrgeometer CNR1, averaging
records from 10:30 a.m. to 2:30 p.m, were considered [38] (Equation (2)). This sensor was
located at a 11.6 m height in ASM (9.8 m in the Ti Tree station) and included different

cover types.
1
LST — <Lup_ (1_S)Ldown)4 (2)
o
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where L, and Ly, are the upwelling and downwelling longwave radiances (w/ m?),
respectively; ¢ is the Stefan-Boltzmann constant (5.67 x 1078 W/m?K*); and ¢ is the
surface emissivity. € was calculated as [39] follows:

szech+€S(1_Fc) (3)

where ¢, and &5 are emissivity values for vegetation (0.985) and bare soil (0.960) [40,41],
respectively, and Fc is the fractional vegetation cover.

(4)

¢ _ (NDVI; — NDVI;\?
¢ \NDVI, — NDVI,

where NDVI;, NDVI;, and NDVI, are NDVI values for each day, for bare soil (0.11),
and for vegetation (0.45), respectively, obtained from the MCD43A4 MODIS product (see
Section 2.3). NDVI; values were obtained from a 3 x 3 pixel window centered in the
station. NDV I; and NDV I, were calculated as the minimum and maximum NDVI values
for the analyzed data series.

Finally, estimates of daily mean GPP (gC/m?d) from eddy covariance and meteoro-
logical data were considered to test the relationship between field and satellite variables
during the wet pulses. These data had previously been processed by different authors for
the OzFlux sites (more details are included in [14,34]), including quality control assessment,
the removal of outliers, and gap-filling and have been used in several studies [5,11,42].

2.3. Satellite Data

We tested the relationship between remotely sensed LST and the LSWI and tested daily
field measurements of SM and GPP to analyze the response of vegetation to SM during
wet rainfall pulses. Remotely sensed day LST from MODIS Aqua and Terra products
(MYD11A1 and MOD11AL1 version 6.1, respectively) at 1 km resolution was considered.
These products include atmospherically corrected per-pixel temperature and emissivity
values. Surface temperature was also corrected from the emissivity effect.

Given the long series and low data gap of MODIS MCD43A4, this nadir Bidirectional
Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) version 6 dataset
was considered to obtain NDVI and then emissivity values for thermal field data correction
(Equation (2)). This dataset was produced daily using 16 days of Terra and Aqua MODIS
data at 500 m resolution. The product is created daily and represents consistent BRDF
retrieval for nadir view and solar noon zenith angle over a 16-day series, with the day of
interest weighted as a function of quality, observation coverage, and temporal distance
from the day of interest (https://lpdaac.usgs.gov/products/mcd43a4v061/, accessed on
18 December 2024).

On the other hand, for the calculation of the LSWI (Equation (5)), we used reflectance
data from the recent Japanese Himawari-8 GEO satellite, which carries the AHI, giving
a temporal resolution of 10 min. As mentioned, GEO satellites have the advantage of
consistency in geometry observation. However, Ref. [5] demonstrated the incidence of sun
angle variations on the NDVI and EVI from the AHI, reporting that this effect caused more
than one week of uncertainty in retrieving most phenological metrics in South-eastern
Australia. In our study, seasonal and spatial variations in sun angles were considered
through a BRDF model [43,44]. Daily reflectance (averaging records from 10:30 a.m. to
2:30 p.m.) data were obtained at 10 km resolution adjusted to a solar zenith angle = 45°and
view zenith angle = 0°. In spite of the spatial resolution, this dataset was considered
because of the comprehensive temporal coverage spanning from 1 August 2017 to 28 May
2022. This extended time period offers potential to test wet pulses of different magnitudes
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Satellite data <

Field data (Alice Springs Mulga and Ti

Tree stations)

in comparison with previous AHI non-BRDF corrected datasets. In addition, Ref. [11]
reported that the correlation between the GPP and EVI in ASM was almost constant with
footprints of satellite observations from 0.25 km to 35 km, showing the small improvement
of using a better spatial resolution. In addition, the tower site was located in an extensive
homogeneous cover of Mulga woodland [34].

The LSWI, as a spectral index of vegetation water status [24,45,46], was calculated

as follows:
LSWI — PONIR — PSWIR (5)

PNIR + PSWIR
where p is the surface reflectance in NIR (band 4 of AHI Himawari 8, 0.85-0.87 pum) and
SWIR (band 5 of AHI Himawari 8, 1.60-1.62 pm). The index has a generalized equation
based on the normalized difference between NIR and SWIR, with this last band being the
main indicator of vegetation water status [24]. This index takes values between —1 and
1. Typically, negative values are observed on bare soils or sparse vegetation cover, being
almost equal to 0 in humid soil; values increase in the function of vegetation cover and
vegetation water content [24].
The EVI was calculated [5,47] as follows:

PNIR — PRED
EVI =25 6
ONIR + 60RED — 7.50p g + 1 ©)

where p is the reflectance in NIR (band 4 of AHI Himawari 8, 0.85-0.87 pm), RED (band 3
of AHI Himawari 8, 0.60-0.68 um), and BLUE (band 1 of AHI Himawari 8, 0.49-0.53 um)
bands, respectively.

As in the case of emissivity calculation, satellite data averaged within a 3 x 3 kernel
size centered in the stations were extracted for the study period in order to compare them
with station measurements. It should be noted that the EVI has been more frequently used in
semi-arid Australia, and previous studies have reported a close correlation between that index
and GPP [18,42]. Thus, the EVI was calculated as a secondary index just for comparison with the
results obtained from the LSWI, and it was considered as an established indicator of vegetation
growth and vegetation productivity. Cloud cover was masked out for all of the considered data.
Figure 2 shows a flowchart of the analysis carried out.

:'|AI:|Z;1W3” __ » BRDFcorrecion —» Daily LSWIand EVI
» Daily LST

Aqua-Terra (MODIS)

products

Comparison during rainfall
wet pulses (2016-2021)

Water content (SM) in the soil profile

GPP

Upwelling longwave LST

radiances

Figure 2. Workflow diagram of satellite data (AHI and MODIS) and field data. Both data sources
were considered to obtain LST and spectral indices and analyze vegetation response to SM during
rainfall wet pulses.
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3. Results
3.1. GPP, Spectral Indices, and SM During the Study Period

Figure 3a shows tower-based GPP and SM at different depths for the study period
in ASM. Wet pulses during late spring and summer periods were considered, given that
rainfall generally occurs in these seasons (Figure 3b). Different hydrological conditions
were covered, similar to those expected for the study area according to the last 20 years
series—extremely wet (20162017, 2020-2021), normal (2017-2018, 2019-2020), moderately
dry (2018-2019) periods. The summer of 2018-2019, when no wet pulses were observed,
was included as a dry season to evaluate contrasting hydrological conditions. During both
of the wettest periods, significant increases in SM at 60 and 100 cm depths were observed;
values around 0.5 m®/m? in deep horizons are mainly due to the existence of a hardpan
that favors a high degree of saturation in the soil during extreme events [33]. In the Ti
Tree site, data were more limited, but a lower increase in SM in the soil profile is evident
(Figure Ala) with similar rainfall amounts (Figure Alb), which can be mainly explained by
the absence of a hardpan.
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Figure 3. Study periods, data from the ASM OzFlux station. (a) Daily SM at different depths and GPP;
(b) rainfall; (c) in situ SM, EVI, and LSWI values from the AHI; (d) maximum GPP and LSWI values
in function of magnitude of wet pulses expressed as m3/m?3. Vertical lines show the 5 analyzed wet
pulses during late spring and summer: 2016-2017 and 2020-2021, the wettest seasons, and 2018-2019,
the driest season.

In general, increases in GPP are strongly related to the magnitude of wet pulses.
Rainfall events (around 100-150 mm /week, according to [33]) that recharge SM in deep
horizons produce significant increases in vegetation productivity (with maximum GPP
values around 5 gC/m? /day). Lags between 18 and 49 days in maximum GPP in relation
to peaks in subsurface SM (Figure 3a,d) were observed in ASM. Lags in the Ti Tree station
were between 11 and 34 days (Figure Ala).

Figure 3c shows the general behavior of spectral indices for the study period in ASM.
It should be noted that the first wet pulse (2016-2017) was not considered because AHI
Himawari 8 series was available from mid-2017. The LSWI obtained negative values,
consistent with spectral signatures for semi-arid areas that frequently present non-full
cover and higher values in SWIR than in NIR bands [24,48]. The general rise in spectral
indices is associated with increases in deep SM, with maximum LSWI values associated
with the magnitude of wet pulses (Figure 3d). These results are consistent with previous
studies carried out in other regions considering the NDVI, the LSWI, rainfall, and drought
events [49,50], although studies analyzing SM frequently focus only on SSM (e.g., [51,52]).
Low or intermediate pulses (about 0.1-0.2 m®/m?), only observed in SSM, did not produce
significant increases in spectral indices (e.g., January-March 2018, September-October 2020)
(Figure 3c). A comparable pattern was observed in GPP (Figure 3a), given that GPP in the
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(a)

Mulga woodland is highly correlated with the EVI [53,54]. Similar results were observed
in the Ti Tree site, with the seasons with maximum values of the indices and GPP being
associated with significant wet pulses (Figure Alc,d).

3.2. Temporal Response of Satellite Information to Wet Pulses
3.2.1. Spectral Indices

A similar pattern in the EVI and LSWI during wet pulses was observed (Figure 4).
Certain delays between the maximum in both indices in relation to peaks in SM are evident.
Lags between 12 and 40 days between maximum values of SM and LSWI were observed
in ASM. In the Ti Tree station, 7 and 31 days for the 2017-2018 and 2020-2021 seasons,
respectively, were observed (Figure Al). This daily analysis complements previous studies
that considered coarser temporal information. At a monthly scale, Ref. [11] reported delay
times from 0 to 1 month in the relationship between SSM and EVI values. Ref. [55] showed
a typical delay of 1 month between SM and NDVI values.
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Figure 4. Detailed temporal series of the EVI and LSW from the AHI and SM in ASM for each
analyzed season: (a) 2017-2018 (normal), (b) 2018-2019 (moderately dry), (c¢) 2019-2020 (normal),
(d) 20202021 (extremely wet). Lags between peaks in SM and spectral indices are included.

3.2.2. Land Surface Temperature

Figures 5 and A2 show LST from MODIS, in situ LST and ETa in ASM and Ti Tree,
respectively. ETa was estimated by the eddy covariance method (full description in [56]).
A typical seasonal pattern in LST with minimum and maximum values in winter and
summer, respectively, was observed. For the study periods, a relatively short temporal
window between late November to March was considered. Thus, the effect of seasonal
changes in LST on the correlations with SM is significantly low. However, this effect should
be considered if the entire year is included in the analysis. The results show noticeable
decreases during significant wet pulses (end of December 2016—-mid-February 2017, De-
cember 2020-March 2021) due to evaporative cooling. Using an UAV thermal camera, [33]
also reported low sensible heat flux during the summer of wet seasons. Maximum values
(336-338 K) were evident in dry summer (February and December 2019). Terra and Aqua
showed similar temporal shapes, with lower values from Terra (morning overpass). The
general pattern of satellite LST was consistent with field measurements, indicating that
satellite information is a good complement to monitor spatial changes in surface energy
balance associated with significant wet pulses in this ecosystem. The difference between
remotely sensed and in situ LST is explained by the design of the tower and the radiome-
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ter (https:/ /www.ozflux.org.au/monitoringsites/alicesprings/alicesprings_pictures.html,
accessed on 18 December 2024).

IS
s
——

ETa (r‘r‘\)m/d)

N}

0

-

m by il If" | W‘ hio me lﬁl."w“‘m‘l
i i MYM Mfr”? h(Mw Ui

270

LST (K)

250

2016-08

2016-12

2017-04

2017-

ETa

) e

08 2017-12 2018-04 2018-08 2018-12 2019-04 2019-08 2019-12 2020-04 2020-08 2020-12 2021-04

230

MYD11A1 —MOD11A1 — —In-situ LST

Figure 5. MYD/MOD11Al, in situ daily LST and actual evapotranspiration during the study
period in ASM. In situ LST was calculated from upwelling longwave radiances measured by the
pyrgeometer CNR1.

Figure 6 shows the detailed temporal series of LST for the studied events in ASM.
A quicker response of LST to wet pulses compared to spectral indices can be observed,
decreasing the days after the event occurs and maintaining low values during variable
temporal windows. That temporal effect of the evaporative cooling process is more no-
ticeable during the wettest pulses (Figure 6a,e), which is associated with increases in ET,
as reported by [35] for northern Australia. Those authors showed that vegetation can use
available moisture resources rapidly, which can explain the quick fluctuations of LST after
significant precipitation events. In general, minimum values (around 305 K) during wet
pulses that occur in late spring and summer were observed when deep horizons showed
high SM values (10 cm depth: 0.25-0.35 m3/m3; 60 cm depth: 0.25-0.5 m3/m3; 100 cm:
0.25-0.55 m®/m3).
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Figure 6. Detailed temporal series of MODIS LST, daily in situ LST and SM in ASM during the
5 analyzed seasons: (a) 20162017 (extremely wet), (b) 2017-2018 (normal), (c) 2018-2019 (moderately
dry), (d) 2019-2020 (normal), and (e) 2020-2021 (extremely wet).

3.3. Correlations Between In Situ SM, GPP, and Satellite Information

Figure 7 shows scatter plots between daily SM and spectral indices from the AHI
for ASM. The general pattern is similar for both indices, showing a stronger correlation
with SM in the deepest considered horizons. Here, the quadratic adjustment is mostly
explained by the temporal dynamic of the analyzed variables rather than a causative
relationship. That is, SM reaches maximum values quickly in these sandy soils due to
low water retention capacity. Those maximums correspond to medium-high values of the
indices during the greening stage. Later, maximum values of the indices (a consequence
of high ET and antecedent SM) correspond to the decreasing curve of SM (left part of
the quadratic regression; see also Figure 3). SSM has a less clear pattern, given the more
pronounced fluctuations in that variable (mainly due to strong soil-atmosphere connection
and low water retention in the surface horizon) and the vegetation response, mainly to
significant wet events. Similar results were observed in the Ti Tree station for both indices
(Figure A3), indicating no correlation with surface and 10 cm depth SM and quadratic
adjustments for SM at 60 and 100 cm depths (p < 0.005).
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Figure 7. Relationship between daily in situ SM at different depths, LSWI (left) and EVI (right) from
AHI in ASM (n = 356).

Regarding thermal data, in situ LST and SM were considered to evaluate the thermal
response of vegetation to soil water content during wet rainfall pulses. The correlation was
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tested for the same day and with LST averaged up to 4 days after SM data. Data for rainy
dates were removed to avoid noise because of rainfall. Figure 8 shows the scatter plots for
ASM with the highest coefficient of determination for that temporal window (p < 0.005).
The correlation over time suggests the temporal influence of profile soil moisture. A less
clear pattern is observed at a 100 cm depth because SM at that depth would have an effect
on vegetation mostly during specific periods when the wetting point reaches that depth
and/or the hardpan favors soil saturation. Similar results were obtained in the Ti Tree
station (Figure A4), showing an asymptotic line for high SM with low correlation at 60 cm
and 100 cm depths (p < 0.005). These lower correlations can be explained by the less intense
increase in SM in deep horizons in the Ti Tree station, with maximum values at 60 and
100 cm depths around 0.16 m3/m3 during the analyzed seasons. Contrary to what was
observed in ASM, in Ti Tree the absence of the hardpan did not favor the accumulation and
permanence of high values of SM (see also Figure 3).
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Figure 8. Relationship between average in situ LST and SM at different depths (the best correlation
up to 4 days is included) in ASM (n = 475). Although correlation at 100 cm depth is included, most of
the time LST fluctuates according to shallower SM.

Figure 9 shows the scatter plots between Terra and Aqua LST and daily in situ SM
in ASM; rainy days were removed from the analysis. The adjustments and correlations
(p < 0.005) are consistent with field results (see Figure 8), showing that remotely sensed
LST has the potential to reflect the thermal effect of SM on vegetation water conditions
during wet pulses. A similar pattern is observed in the Ti Tree station, with a cooling
effect of high SM being more evident in the shallow horizons (Figure A5). Given the high
ecohydrological sensitivity of these drylands [5,6], a higher correlation might be expected;
however, in wet seasons, solar radiation can also be important for vegetation dynamics and
atmospheric water demand [57].
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Figure 9. Relationship between daily in situ SM at different depths, MOD11A1 (n = 287) and
MYD11A1 (n = 274).
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Table 2 shows the correlation between in situ SM and MODIS LST for the same day
and the average up to 4 days after from SM data for both stations. The results suggest that
increases in SM have an impact on LST for the days following the pulses (also shown in
Section 3.2.2). R? values were similar at different depths, with no correlation in the Ti Tree
station at a 60 cm depth. Regarding the in situ SM/LST relationship, the low correlation in
the deepest horizons can be explained by the absence of a hardpan in this station, which
does not favor the increase in SM and the extraction of water by plants at those depths.

Table 2. Highest R? values (p < 0.005) for the relationship between in situ SM and MODIS LST for the
same day and the average up to 4 days after, from SM data in the ASM and Ti Tree stations.

SM Depth R? (MOD11A1) ASM R? (MYD11A1) ASM R? (MOD11A1) Ti Tree R? (MYD11A1) Ti Tree
SSM 0.50 (LST 3-day average) 0.46 (LST 2-day average) 0.53 (LST 4-day average) 0.46 (LST 3-day average)
10 cm 0.55 (LST 4-day average) 0.48 (LST 4-day average) 0.49 (LST 4-day average) 0.45 (LST 4-day average)
60 cm 0.49 (LST 4-day average) 0.50 (LST 4-day average) 0.12 (LST 4-day average) 0.00 (LST 4-day average)
With the reflectance data, the association between daily GPP and spectral indices in
ASM is shown in Figure 10. The strong correlation present is consistent with previous
studies analyzing the EVI at coarser temporal scales in the study region (e.g., [11,58]).
Ref. [59] reported relationships between the LSWI from MODIS and the GPP derived from
eddy covariance over grassland of Northern China. Ref. [60] found correlations between
the EVI and LSWI from MODIS in semi-arid areas of South Africa. We observed a slightly
stronger correlation (p < 0.005) with the EVI than LSWI (see also Figure A6).
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Figure 10. Relationship between daily in situ GPP (gC/ m?), LSWI (left), and EVI (right) values
from the AHI in ASM (n = 145). Note that 2018-2019 was not included, as there was no evident
growing season.

Finally, Figure 11 shows the relationship between MODIS LST and in situ daily GPP
in ASM. Unlike spectral indices, lower correlations (p < 0.005) were observed. This can
be explained by the delayed response of GPP in relation to changes in LST related to wet
pulses; i.e., GPP is a result of the previous use of water by vegetation. In the Ti Tree station,
a low negative relationship was also observed with Terra LST with no correlation with
Aqua LST (Figure A7).
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Figure 11. Relationship between daily in situ GPP (gC/m?), MOD LST (left), and MYD LST (right) in
ASM (n = 232).

4. Discussion
4.1. GPP, Spectral Indices, and SM During the Study Period

The results show that during dry seasons and years, there are no detectable increases
in SM and growing seasons, with photosynthetic production being the most minimal
during winter (Figure 3) [15]. In general, a quick response of SM at different depths is
evident, even more during extremely wet periods, although the decay curve is less steep
in deep horizons—typical behavior at depths where the influence of atmospheric water
demand decreases (Figure 3a). It should be noted that less important wet pulses produce
little changes in SM at 60 or 100 cm depths (e.g., February-March 2020). Ref. [33] reported
that precipitations between 0 and 50 mm/week are associated with SM values around
0.10 m3/m? in deep horizons.

The lags between GPP and SM observed in Figures 3 and Al can be associated with
antecedent SM. Refs. [14,33] suggested that subsurface SM acts as a buffer of the dry
condition effect between rainfall events. Ref. [33] described how the reserve of water
supported root function and small rates of photosynthesis without decreasing phenological
and physiological responses to subsequent wet rainfall events. They suggested the existence
of a hydraulic lift to shallow roots during dry periods; thus, these roots are maintained, and
trees and grasses are synchronized. Then, vegetation has the capability to respond quickly
to unpredictable rainfall events. Our results suggest that shorter delays in the response
of vegetation to SM pulses can be associated with higher antecedent SM in the deepest
horizons that support root systems and the capacity for faster vegetation response, as is the
case of the 2017-2018 season.

During dry periods such as in 2018-2019 (Figure 3), there is no clear vegetation growth
associated with slight changes in SSM; this is related to the minimum water amount
necessary to trigger a response [14]. Ref. [5], analyzing the EVI from MODIS, showed that
acacia open woodlands and shrublands have high sensitivity to dry and wet periods. These
authors and [35] showed that grass layers strongly respond to rainfall and significantly
contribute to GPP during February-March in wet periods; thus, the rapid response of
vegetation in late spring and summer should be due to the contribution of both vegetation
layers. Some studies have analyzed the partitioning of three-grass functions and structure
(e.g., [48,49]), with a detailed discussion of tree and grass contribution to GPP in [5].

The weak response of vegetation to small increases in SSM is consistent with previous
studies, like [12], who showed that vegetation in dry climatic zones generally shows great
dependence on subsurface SM, especially in the grasslands and shrublands of interior
Northern Australia. Some studies have analyzed SM estimates from microwave missions
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in the study area [11]. These results suggest that those estimates of SSM could be useful to
monitor vegetation response mostly in cases of vertical integration of surface and subsurface
SM during significant wet pulses.

4.2. Temporal Response of Satellite Information to Wet Pulses

In general, our results about the temporal response of the LSWI and LST to SM
show that the LSWI is an integrative indicator of the cumulative SM effect on vegetation
status, but it is not an early proxy of that condition, being temporally associated with
the EVI. Changes in vegetation water content have frequently been associated with short-
term fluctuations in SM over different vegetation types, given its association with leaf
water potential and subsequent extraction of water by the roots. Our results suggest that
detectable increases in the satellite-derived LSWI in the study area seem to be strongly
associated with the vegetation greenness that can be observed through typical vegetation
indices like the EVI. Some studies [25,61] suggest using scatter plots of SWIR/VIs instead
of LST/VIs as an indicator of vegetation water condition and SM, given their advantage of
better spatial resolution in spectral solar bands. However, considering the observed lags in
the response of this spectral index, the use of SWIR over this system should be examined.
Although spectral indices associated with changes in vegetation water conditions in the
study area should show weekly or daily fluctuations during rainfall wet pulses, sub-
daily data can be considered to further test their complementarity with the analyzed
temporal scale.

LST has been widely used as an indicator of SM and subsequent ETa through its
relationship with evaporative fraction (the ratio between latent heat flux and available
energy at the land surface) [29,62]. Several works have explained in detail the behavior
of LST indicator of sensible heat flux in relation to physiological processes like stomatal
regulation according to soil water content in the root zone and atmospheric water demand
(e.g., [63]). Results show decreases in LST in the days after the event occurs, maintaining
low values during variable temporal windows (Figure 6). The quick response of LST to wet
pulses compared to spectral indices suggests that the temporal effect of the evaporative
cooling process is more noticeable during the wettest pulses. Although the sensitivity
of this savanna ecosystem is not as large as can be expected in agricultural lands [64,65],
where several thermal studies have been conducted, our results suggest that significant
decreases in LST during late spring and summer are related to increases in subsurface SM.

4.3. Correlations Between In Situ SM, GPP, and Satellite Information

The correlations between SM, EVI, and LSWI values (Figures 7 and A3) suggest that,
although the LSWI has physically been shown to be related to vegetation water content
and surface water, both indices showed similar behavior. Field data showed that SM is
important for vegetation conditions and productivity. The stronger correlation between
GPP and EVI values than LSWI values (Figures 10 and A6) can be explained by the
fact that this vegetation index is related to biophysical conditions of vegetation that are
more associated with GPP, like photosynthetic pigments and leaf area. In addition, some
authors have reported that changes in leaf internal structure, cuticle thickness, and surface
characteristics can produce variations in the LSWI unrelated to water content [66,67]. This
can be more thoroughly analyzed in future studies.

Regarding thermal data, during wet pulses that increase soil water in deep horizons,
vertical integration is expected; thus, soil evaporation can contribute to the cooling pro-
cess. Likewise, the two vegetation layers can respond quickly to subsurface SM through
transpiration [35]. The similar correlations at different depths (Figures 9 and A5) suggest
the evaporative cooling effect on the soil-plant system due to increases in SM. In these
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savanna woodlands, there can be a combination of a layer of bare soil and two layers of
vegetation, and the considered pixel size includes those three ground covers. Thus, the
changes in surface energy balance associated with ET should explain the general pattern in
the adjustments, where an asymptotic line for high SM and minimum LST values can be
deduced. It should be noted that both sites contain a high-density Mulga woodland (76%
cover). Thus, the consistent decrease in LST associated with increases in subsurface SM is
mainly related to the effect on vegetation. It was not possible to analyze the differentiated
effect of soil evaporation on LST from in situ data, given that SSM was not measured on
bare soil in both stations.

In general, a clearer pattern can be seen in SSM up to 60 cm in depth (Figure 9). This
is consistent with [33,36], who showed that between 65 and 70% of biomass root is found
in the upper 30 cm of soil and high concentration of roots in the first 10 cm of the soil.
Reference [68] reported that the remaining roots (Acacia aneura has a dimorphic root system)
can extract deeper SM, which would explain the influence of SM in deeper horizons. More
noticeable thermal inertia can be deduced in case of high values of water content (>0.15
and 0.2 m3/m? at the surface and 10 cm in depth, respectively; >0.25 m®/m? at 60100 cm
depth in ASM) and, hence, ET. On the other hand, higher thermal amplitude is observed in
dry periods, showing that LST depends on other factors. MOD11 LST showed a slightly
higher correlation than afternoon overpass, suggesting that ET is better coupled during the
morning, and, during the afternoon, the ET may be decoupled because of a mulching effect
over SSM.

4.4. General Conceptual Model of LST, SM, and Vegetation Productivity

Under homogeneous atmospheric conditions that determine similar water demand
and under comparable incoming solar radiation, LST has been widely associated with SSM
(e.g., [29,69]). Not many studies have shown the effect of root zone SM on stomatal resistance
to transpiration and evaporative cooling, i.e., ET and then thermal inertia [27,30,63]. Based on
our results from in situ SM, GPP, and satellite LST, a general model of the relationship among
those variables can be proposed (Figure 12), which has some differences from those previous
works that reported linear relationships between SM and LST/optical indices. Given the
homogeneous woodland cover in the study area [11], this model can be considered in order to
spatially understand the effect of root zone SM on the vegetation status for this ecosystem.
SM in the soil profile after significant wet pulses shows the incidence on ET and a cumulative
effect on surface energy balance and the subsequent low LST associated with thermal inertia
(B in Figure 12, left). That inertia can be considered the resistance of the land surface to thermal
variations, being higher in wet surfaces than in dry soil/vegetation and displaying lower
temporal temperature fluctuations associated with soil evaporation and transpiration under
not limiting conditions. With a certain lag, the LSWI increases and GPP reaches its maximum
values, suggesting a plateau for the highest SM in subsurface soil horizons (Figure 12, right).
Differences in SM in Figure 12 (right) are mainly explained by the existence of a hardpan in
ASM. The impact of rainfall on GPP in Mulga woodlands has been previously reported in
different studies [11,33,34]; SM can be a valuable complement to rainfall data, given that it
is a more integrative variable of the soil water balance. Figure 12 (right) also suggests the
high sensitivity of Mulga woodland productivity to soil water availability, which is consistent
with the high reliance of vegetation on subsurface soil water reported for semiarid lands of
Central Australia [12,70]; increases in this variable during the wettest periods can produce
GPP values up to 5 times higher than those during dry seasons, which is consistent with
rainfall amounts and the impact on productivity previously reported [5,33,71]. In Mulga
woodlands, asymptotic adjustment suggests a minimum LST for late-spring and summer for
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Figure 12. Conceptual model of satellite-derived LST from MODIS (left) and daily in situ GPP
(right) as a function of daily SM for the Mulga woodland area. For the GPP plot, the maximum GPP
values and average of the maximum values of SM in the soil profile for each analyzed pulse were
considered. GPP versus maximum LSWI from the AHI is included. Note that on the left plot, SM
values correspond to ASM data (a similar pattern was observed in Ti Tree).

Furthermore, low—intermediate SM is associated with low thermal inertia (A and
C, Figure 12, left); wet pulses that produce a slight increase in shallow SM have a low
impact on vegetation productivity (Figure 12 right). Short-term fluctuations in LST, and not
directly related to SM, were observed under this condition. Sub-daily analysis can improve
the understanding of these fluctuations, whose contributions are probably more associated
with heatwaves through land-atmosphere feedback processes or flash drought monitoring
than the impact on vegetation productivity, given that during dry periods, such as the
2018-2019 season, vegetation did not show significant growth.

Root zone soil moisture available for plant use has a key role in vegetation conditions
in drylands, given that it strongly determines ETa and produces changes with a certain
memory depending on the magnitude of rainfall pulses, vegetation access to water, and soil
type, among others. In this sense, it is a scarcely explored variable for the early monitoring
of vegetation water condition, given the uncertainties in its estimates. Direct estimations
of SM from satellite data are frequently limited to the surface water content (typically
5-10 ¢cm for microwave missions) or total water column (Gravity Recovery and Climate
Experiment (GRACE) mission). Thus, the spatial evaluation of root zone soil moisture is
difficult. Although optical/thermal sensors can have low data coverage during rainfall
events due to cloud cover, our study shows that they are related to volumetric soil water
content in depths explored by roots, being associated with the ET process. In this sense, they
can be a complement to other existing remote sensing methods for the early monitoring
of the SM effect on vegetation conditions. To the best of our knowledge, the integration
of LST and LSWI values to develop a conceptual model of their relationship with root
zone soil moisture and subsequent GPP in Central Australia has not been carried out. The
conceptual model proposed in Figure 12 is consistent with previous studies reporting the
high dependence of vegetation on accessible water storage in the drylands of Australia
(e.g., [12,55,70,72]). It is useful for monitoring vegetation water status and productivity
in the study area, given the high dependence of GPP on root zone soil moisture during
rainfall wet pulses. This usefulness is especially important in cases of large areas with
low coverage from field measurements such as Central Australia, requiring few input
data. An important result is the lag in the response of the LSWI (lags between 12 and
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40 days in ASM and 7-31 days in Ti Tree between peaks in SM and the maximum index; see
Figures 4 and A1) and the early response of LST. This suggests a different potential in cases
of use for predicting the impact of SM on vegetation growth and the monitoring of changes
in carbon sink associated with the increase in evapotranspiration during significant wet
rainfall events.

Certain limitations of this study should be taken into account. The considered region
has a slow slope, about 0.2%, and a deep groundwater level, but in areas where water
uptake from groundwater is significant, the strong effect of rainfall wet pulses on vegetation
can be partially masked.

It should be highlighted that different vegetation responses to SM can be expected
according to vegetation sensitivity and root system depth. Thus, correlation parameters
can differ from these presented in the analysis, and uncertainties are probably larger for
heterogeneous land cover types, taking into account the medium resolution of satellite
missions considered in this analysis. It would be of interest to evaluate this distinct
response on a regional scale. Although some studies such as [5] reported the differentiated
sensitivity of grass and trees to rainfall along the North Australian Tropical Transect,
Ref. [33] specifically studied the Mulga woodland around Alice Springs and reported that
there are few differences in vegetation growth responses to rainfall between trees and
understory grasses. They observed a temporal synchronization between tussock grass
understory and Mulga foliage after rainfall pulses. Our study focused on Mulga woodland,
the most representative vegetation cover type in the study area. It should be noted that
in situ LST measurements covered a mix of different covers (tree, grass, and soil), given
the observation angle and the sensor height. Moreover, in situ SM was not measured at
different vegetation covers in both considered stations. Considering the spatial resolution of
satellite data, it is difficult to differentiate the signal of different vegetation types. However,
the relevance of each component can be considered through more detailed in situ studies
on LST, soil heat flux, and SM in different vegetation types and in bare soil. Our study
was mainly focused on the contribution of satellite data for the integrated monitoring of
the system.

Different types of soil can affect the SM available for plants, water balance in the soil,
and subsequent vegetation conditions. Thus, although different soils can affect the rela-
tionships between optical /thermal data and direct measurements of SM [30], these remote
sensing data have the potential to reflect the effect of soil water available for evapotran-
spiration on vegetation. The study area is an extensive and relatively homogeneous sand
plain, being the main type of soil covered by the stations considered in this analysis [33].
Future comparison covering other semi-arid ecosystems can be useful for an intensive
study of the interaction between these variables.

Our study aimed to understand the impact of root zone SM during wet rainfall pulses
on vegetation in semi-arid Mulga woodland through an integration of in situ measurements
and optical/thermal satellite data. Future studies can explore the integration of multi
sensors onboard satellites to evaluate scale effects on results. Lastly, the results suggest that
the vegetation in Mulga woodland has a weak response to soil water availability during
normal rainfall events (i.e., there is LST variability regardless of the few changes in SM).
Most of the time, systems such as the Australian drylands are exposed to warm-to-hot
annual temperatures and pronounced dry seasons. Mulga woodland has a tolerance to
low water potential and efficiently uses SM [14]. The response of semi-arid vegetation to
rainfall events generally occurs when the rainfall amount is larger than a threshold that
would produce increases in evapotranspiration [14,15]. Under this threshold, variations
in LST are mainly associated with factors other than SM. More analyses are needed in the
future to explore factors affecting surface energy balance in normal-to-dry periods.
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5. Conclusions

In this study, the response of vegetation to in situ root zone soil moisture during wet
rainfall pulses in Mulga woodland of semi-arid Central Australia was analyzed through
remotely sensed Land Surface Water Index (LSWI) and Land Surface Temperature (LST)
values as indicators of vegetation status. Data from geostationary (AHI Himawari-8) and
low-Earth-orbiting (MODIS) satellites were considered. The results show that water content
in the soil profile explains most vegetation growth seasonally and interannually. Thus,
exploring the satellite-based variables strongly related to water availability in the soil to
roots can contribute to assessing the impact of wet conditions on vegetation. Daily data of
the LSWI displayed a good correlation with soil moisture in deep horizons with quadratic
adjustments, explained through the lag in vegetation response. GPP was correlated to the
LSWI on a daily scale. This index showed results very similar to those obtained with the
EV], although with a greater range of variation. The temporal response showed that the
LSWl increased several days after wet rainfall pulses. The results suggest that it seems to
be an integrative indicator of the cumulative effect of soil moisture on vegetation status
and productivity, but it is not an early indicator of that condition.

LST showed sensitivity to shorter-term changes in soil profile water content available
for evapotranspiration process. In general, the good correlations between soil moisture
and LST suggest that LST can be useful for the early monitoring of the vegetation status
in the semi-arid ecosystems of the study area during extreme wet events. A general
model of LST, according to subsurface water availability, was proposed for the Mulga
woodland area. Given the strong association between GPP and soil water in Central semi-
arid Australia reported in previous studies, this conceptual framework can be valuable
in studies analyzing droughts, vegetation resilience, and productivity. This may become
even more relevant in the context of projected increases in the occurrence of extreme events
under climate change.

Future studies can analyze the incidence of soil moisture during wet pulses on the
growth of different vegetation layers (grassland and shrubland) and the different time
responses. In this sense, increases in surface soil moisture seem to be associated with short-
term changes in LST, and strong wet pulses can produce a greater impact on productivity
and the spectral response.
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Figure A1l. Study periods: data from the Ti Tree OzFlux station. (a) Daily SM at different depths
and GPP; (b) rainfall; (¢) in situ SM, EVI, and LSWI values from the AHI; (d) maximum GPP and
LSWI values in function of magnitude of wet pulses expressed as m3/m?>. Vertical lines show the

analyzed wet pulses during late spring and summer. SM at a 60 cm depth was considered under
spinifex, given the lack of data under Mulga.
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Figure A3. Relationship between daily in situ SM at different depths: the LSWI (left) and EVI
(right) from the AHI in the Ti Tree station (n = 236).
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MYD11A1 (right, n = 239) in the Ti Tree station.
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