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Bacterial signaling systems as platforms for rational design of
new generations of biosensors
Susana K Checa1, Matias D Zurbriggen2 and Fernando C Soncini1

Bacterial signal-responsive regulatory circuits have been

employed as platform to design and construct whole-cell

bacterial biosensors for reporting toxicity. A new generation of

biosensors with improved performance and a wide application

range has emerged after the application of synthetic biology

concepts to biosensor design. Site-directed mutagenesis,

directed evolution and domain swapping were applied to

upgrade signal detection or to create novel sensor modules.

Rewiring of the genetic circuits allows improving the

determinations and reduces the heterogeneity of the response

between individual reporter cells. Moreover, the assembly of

natural or engineered modules to biosensor platforms provides

innovative outputs, expanding the range of application of these

devises, from monitoring toxics and bioremediation to killing

targeted cells.
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Introduction
Bacteria are constantly monitoring their surroundings to

rapidly detect an environmental perturbation. Survival in

any given condition depends on the coordinated action of a

number of transcriptional, post-transcriptional and post-

translational regulatory circuits that sense diverse, some-

times transient, environmental cues and mount the appro-

priate response by modulating the expression or activity of

specific effectors. In sensing circuits that modulate the

output at the transcriptional level, the external pertur-

bation affects gene-promoters activities by causing a con-

formational change in a regulatory factor. This allosteric

modification activates or inhibits its binding to the operator

sequence or distorts the promoter structure [1,2] resulting

in induction or repression of gene expression. The struc-

tural and functional characterization of different bacterial

sensory/response circuits facilitates their engineering to

carry out specific tasks. In the simplest case, bacteria are

equipped with a sensory device to couple the detection of a

physical or chemical perturbation (the signal) to the pro-

duction of a quantifiable output reporter, usually an

enzyme like b-galactosidase or luciferase, or a fluorescent

protein [3,4]. From the pioneer work of King et al. in the

early 1990s reporting the first bacterial biosensor for

naphthalene [5], an increasing number of bioreporters have

been designed to monitor a wide range of environmental

toxicants, for example, heavy metals, benzene derivates,

polycyclic aromatic hydrocarbons, among others. These

devices are emerging as easy, rapid and cheap alternatives

to analytical techniques owing to their capability to detect

only the bioavailable fraction of a given signal, providing a

more realistic estimation of its actual impact on the eco-

system. Besides, bacterial reporter platforms offer the

possibility of performing online determinations in a

dose-responsive manner, and in virtue of their nature,

are ideal candidates for developing miniaturized assays

as well as for designing portable instruments [4,6].

In the last decade, the application of synthetic biology

concepts to biosensor design highly improved the per-

formance and broadened the range of application of these

devices [7–10]. Synthetic biology is a new area of bio-

logical research and technology applying basic engineer-

ing principles like modularization, rational design and

modeling to the construction of complex biological net-

works with desired properties and functionalities. The

approach involves the design and generation of new

biological parts from natural existing components, that

is, the building blocks necessary for the construction of

such higher order systems, including genetic circuits,

synthetic metabolic pathways and signaling systems

[11–13]. This conceptual and experimental approach is

applicable to the re-wiring of existing systems to perform

functions novel in nature or even to generate fully syn-

thetic networks [14]. Bacterial bioreporter platforms con-

sist basically of three modules (Figure 1): the sensitive

module that recognizes the input signal, the transducer

that transmits the detected signal to the reporter module,

which in turn provides the output. This modularity allows

for a successful application of a synthetic biology strategy

towards the development of novel gene networks able to

respond to different signals, and with customised read-

outs and output functionalities [15]. Briefly, each of these

modules can be manipulated at the molecular level to
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conduct quicker, more sensitive and selective assays. In

addition, signal detection can be artificially coupled to a

variety of naturally available or engineered gene networks

to generate novel outputs for a wider range of biotech-

nological applications. The main difficulty in assembling

different genetic parts can arise from unintended inter-

ference among native and synthetic modules, that is, a

key to the generation of robust systems is the design of

orthogonal parts [16]. Therefore, it is useful to include in

the modular strategy preliminary experimental layouts

that would allow verifying the correct design and func-

tioning of the different modules separately previous to

their assembly into the final arrangement.

In this review, we describe recent advances in biosensor

technology improvement by applying synthetic biology

approaches. Post-transcriptional (involving modification

of the availability, structure or the stability of mRNA

molecules) and post-translational (chemical modification

of proteins) biosensor platforms were covered in recent

reviews [7,8]. Here, we focus on how the different genetic

parts or modules in biosensors based on transcriptional

circuits can be tailored to improve signal-recognition and

detection thresholds, as well as to include novel outputs

that could broaden the range of application of biosensing

technologies in different fields.

The signal-detection module
The sensor module is the main responsible for determin-

ing selectivity (the ability of detecting a specific cue) and

sensitivity (the minimal level of a specific cue that gen-

erates a significant signal) in the bioreporter device [4,8].

In biosensors tailored to monitor environmental stimuli,

this module usually derives from bacterial sensory

proteins that induce or repress natural stress responses

or degradation pathways (for toxic compounds such as

naphthalene, toluene or phenol) [3,4]. The main disad-

vantage of these devices is that they usually lack the

required selectivity. Thus, for some applications a major

challenge has been the development of selective sensory

modules for more selective determinations. The increas-

ing number of characterized signal transduction pathways

in the bacterial and archaeal kingdoms is providing an

amazingly growing repertoire of components for the

generation of new biological parts amenable to the mod-

ular design and construction of novel and improved

biosensors.

Regulators that respond to heavy metal ions and metal-

loids are widely used in the development of biosensing

tools. Most of them are based on two families of metal-

loregulators, MerR and SmtB/ArsR. These transcription

factors integrate the sensing and DNA-binding domains

in a single protein, which upon recognition of the signal in

the cytoplasm modulates the transcription of its target

genes [3]. Most characterized metal-responsive MerR

proteins respond to different metal ions with the same

charge and similar coordination chemistry [2,17]. For

example, the monovalent metal sensor CueR recognizes

copper (Cu(I)), silver (Ag(I)) or gold (Au(I)) ions with
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Whole-cell bacterial biosensor platforms. (a) Bacteria have been engineered to couple the detection of a physical or chemical perturbation to the

production of a quantifiable output reporter. Examples of input signals and outputs discussed in the review are shown. (b) Representation of the two

bacterial signal-transduction pathways commonly used to design regulatory-based biosensor platforms. One-component signal-transduction

pathways (left) integrate the sensing and DNA-binding function in a single protein, the transcription factor. This protein detects the signal at the

cytoplasm and allosterically modifies the DNA-binding domain to activate or represses the expression of the target genes that generate the response

(output). Two-component signal-transduction systems (right) frequently involve a membrane-bound sensor histidine kinase that detects the signal at

the bacterial envelope and transduces the information by phosphorylation to the cognate transcriptional regulator. This in turn, regulates the

expression of the target genes. The signal-binding protein/domain is indicated in blue and the DNA-binding domain or the cognate transcription factor

that acts as transducer is shown in red. The target operator/genes are depicted in orange and purple, respectively.
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similar affinity; and the same occurs with ZntR that

responds to zinc (Zn(II)), cadmium (Cd(II)) or lead

(Pb(II)) [18,19]. On the contrary, the mercury (Hg(II))

sensor MerR from the Tn21 transposon, the archetype of

this family, shows a high selectivity for Hg(II) and in fact

has been used in the design of efficient Hg-biosensors

[20–23]. The Salmonella enterica GolS sensor, another

member of this family, is highly selective for Au(I) ions.

In spite of its similarities with CueR, GolS is not respon-

sive to Cu(I) or Ag(I) [24]. Based on this property, we used

the Salmonella gold-sensor to generate fluorescent bior-

eporters in both the native host as well as in Escherichia coli
(Figure 2 and Table 1). These devices exhibit minimal

interference by chemically related metals such as Cu(I)

or Ag(I) and detect the precious metal in a nanomolar

range [25�], values that are well below the concentrations

typically found nearby gold-ores [26]. The presence of a

GolS-homolog CupR and its Au-inducible cluster in

Cupriavidus metallidurans, a multiresistant b-proteobac-

terium found to form biofilms on Au grains [27,28], is

promising for the design of inexpensive, yet effective

biosensors for the evaluation of gold placers, alternative to

the currently used analytical tests.

Both site-directed mutagenesis and motif swapping were

employed to change metal preference on a number of

transcriptional regulators, including MerR metal sensors,

allowing for the generation of biosensors sharing some

structural/functional modules but with diverse specifici-

ties. For instance, modification of the very C-terminus of

the E. coli CueR sensor led to a mutant protein that do not

respond to Ag(I), shows an increased sensitivity to Au(I),
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Figure 2
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The Au-biosensor. This regulatory circuit is based on the Salmonella Au-sensor GolS and its target genes [24,25�]. The gene encoding the

transcriptional regulator (golS) under the control of its native GolS-regulated promoter (PgolTS) was introduced into the E. coli chromosome. The

reporter gene (gfp) under the control of the GolS-controlled promoter (PgolB) is plasmid encoded. (a) In the absence of metal, bacterial cells express

minimal amounts of GolS. No fluorescence is detected either by fluorometry or by fluorescence microscopy (right). (b) In the presence of Au ions, GolS

activates its own expression and induces transcription of the reporter gene. The cellular accumulated GFP can be detected by fluorescence

microscopy (right) and quantified by fluorometry. PhC, phase contrast microscopy; GF, green fluorescence.
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but still wild-type responsiveness to Cu(I) [19]. Switched

metal responsiveness was achieved with chimaeric CueR

and GolS proteins by surgical exchange of their metal

binding loops ([24] and MM Ibañez et al., unpublished).

In addition, the metal selectivity of the Hg(II) sensor

MerR was modified by introducing random mutations

into key metal-binding regions [29��]. The evolved

Cd(II) selective sensors generated using this approach

were successfully employed in the construction of effi-

cient whole-cell biosensors (Table 1).

Domain swapping has also been used to improve the

design and construction of environmental biosensors

based on two component regulatory systems [15,30].

These sensor/response systems are composed by a histi-

dine kinase that detect the signal (light, pH, temperature,

etc.) and phosphorylates a cognate response regulator,

which activates or represses transcription of its target

genes [31].

The transducer module
The interaction of the signal with the sensor module

affects the ability of the DNA-binding module (or the

cognate transcriptional regulator) to promote or repress

transcription of the reporter module (Figure 1). The

efficiency of the regulator/promoter interaction, the

intrinsic promoter strength and the presence of com-

peting regulators will influence biosensor performance

[4,8]. For example, the cellular concentration of the Au-

sensor GolS must be precisely controlled to avoid

undesirable interference with Cu homeostasis that

depends on the paralog CueR regulator, as GolS can

also interact with CueR target operators [25�,32].

Re-engineering the existing promoter by introducing,

removing or modifying activator or repressor sites, can

also contribute to tune the promoter’s sensitivity to a

signal. Promoter rewiring was applied to arsenic-

responsive bioreporters controlled by the transcrip-

tional repressor ArsR, an archetype of the SmtB/ArsR

family, which is autoregulated [33]. Expression of ArsR

from an inducible promoter, introduction of additional

copies of the ArsR-regulated promoter upstream of the

reporter gene or modification of the ribosome-binding

site proved to be very effective in improving sensitivity

of As-biosensors [33–35].

The performance of a Cd(II) whole-cell biosensor was

tailored to display a faster response to increasing Cd

concentrations and lower background comparing to pre-

viously designed biosensors by applying the basic toggle

switch concept to gene circuit design [36�]. In this circuit

(Table 1), the expression of the reporter protein was

double controlled by imposing an artificial transcriptional

control to the Cd-responsive MerR-type regulator gene

(CadR) [37]. The cadR gene was transcribed from a tac
promoter induced by isopropyl-b-D-thiogalactopyrano-

side and negatively regulated by the LacIq repressor

expressed from a divergent CadR-dependent cadR pro-

moter, which also controls GFP production [36�]. Thus, in

the presence of Cd(II), CadR induced the expression of

LacI and GFP. LacI represses further expression of the

sensor protein while GFP reports the presence of metal.

Recently, synchronized oscillating biosensors were

constructed in order to reduce the heterogeneity of

the response between individual reporter cells within a
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Table 1

Selected engineered biosensors

Input Sensor module Transducer module Output Design strategy Ref.

Au(I) GolS GolS/PgolB<gfp GFP Sensor/transducer modules from S. enterica

coupled to reporter

[25�]

Cd(II) MerR MerR/Pmer<lucFF Firefly luciferase Directed evolution on the sensor module [29��]

Cd(II) CadR CadR/PcadR<lacIq-gfp

LacIq/Ptac<cadR

GFP Toggle switch design of the gene circuit [36�]

As(III)-AHLa-H2O2 ArsR-LuxR-ArcAB ArsR/ParsR<luxI or

ParsR<luxR

LuxR/PluxI<luxI

LuxR/PluxI<aiiA

LuxR/PluxI<sfgfp

ArcAB/PluxI<luxI

ArcAB/PluxI<aiiA

ArcAB/PluxI<sfGFP

sfGFPb Oscillatory switch design of the gene circuit [38��]

BTEXc

DNTd/salycilate

XylR

DntR

XylR/Pu<phzMS

DntR/PDNT<phzMS

pyocyanin Novel output-redox active compound [42��]

AHL LasR LasR/PluxR<S5

LasR/PluxR<E7

pyocin Novel output-bacteriocin [50��]

a AHL, acyl-homoserine lactone.
b sfGFP, super folder variant of GFP.
c BTEX, benzene, toluene, ethylbenzene and xylene.
d DNT, dinitrotoluene.
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population after sensing the input signal [7]. These

frequency-modulated bacteria express a reporter fluor-

escent protein in unison in response to the signal yielding

synchronized pulses of light that were detected in a liquid

crystal display (LCD)-like macroscopic clock [38��]. In

this design, a two-level regulatory gene expression control

was employed to synchronize the reporter expression

among cells over long distances (Table 1). The first level

uses a quorum-sensing system, which upon detection of

acyl-homoserine lactone (AHL) activates and synchro-

nizes GFP expression within an individual colony [39].

The second level involves a gas-phase diffusible signal,

that is, H2O2, generated upon exposure of GFP-contain-

ing cells to bursts of high-intensity blue light [40]. This

reactive oxygen species inactivates ArcAB, the native

aerobic response control system [41], which relieves

repression from an engineered target site at the AHL-

responsive promoter region, generating a positive feed-

back that rapidly synchronizes the bacterial population.

The basic platform was set-up to sense arsenic, rewiring

the regulatory network to produce LuxR, the AHL-sensor

(or the AHL-synthase, LuxI) from an arsenite-responsive

ArsR-controlled promoter [38��]. The response to the

presence of arsenic is visualized as an alteration in the

rate at which they produce synchronized pulses of fluor-

escence.

The output module
Besides the used of classical reporter proteins (i.e. GFP or

luciferase), bacterial sensing/response pathways were

engineering in E. coli to couple the detection of a harmful

pollutant with an electrochemical output [42��]. Regulat-

ory circuits that respond to BTEX chemicals (benzene,

toluene, ethylbenzene and xylene), or to the industrial

pollutant dinitrotoluene or salycilate, were engineered to

induce the production of pyocyanin, a redox-active sub-

strate [43–45] (Table 1). The authors proposed that this

product could be converted directly into electricity in an

associated microbial fuel cell (a device in which micro-

organisms oxidize compounds and transfer the electrons

to an electrode) [42��]. This technology that allows per-

forming continuous monitoring of these pollutants could

be the first step in the development of a new generation of

self-powered biosensors.

Native as well as engineered gene networks comprising

innovative outputs have been embedded into environ-

ment-responsive regulatory circuits to broaden the appli-

cation range of biosensor devices [4,9,10,46]. For

example, cells can be programmed to integrate multiple

environmental signals into a single genetic circuit, com-

municating the state of a specific microenvironment to

activate a natural behavior, like biofilm formation, or to

commit cell suicide after detecting a deleterious input

signal [47–49]. These devices can also be programmed to

synthesize a toxic protein to control cell population or to

kill other cells [8,9,47]. For instance, Saeidi et al. [50��]

developed a synthetic genetic system that enables E. coli
to sense and eradicate pathogenic Pseudomonas aeruginosa.

In this design, the narrow-spectrum bacteriocin pyocin

[51] and the pyocin-releasing system [52] were cloned

under the control of an AHL-responding promoter (Table

1). Therefore, when the quorum sensing signal produced

by P. aeruginosa is detected by the AHL-sensor in the E.
coli cells, the accumulated pyocin is released, diffusing

towards the target pathogen to kill it [50��]. Given the

stalled development of new antibiotics and the increasing

emergence of multidrug resistant pathogens, this novel

design may constitute a twist in the future development

of strategies against infectious diseases. Moreover,

diverse genetic circuits could be designed to perform a

temporal control of gene expression by timing the supply

of an extracellular signal or to balance metabolism,

thereby increasing product biosynthesis [10,30]. These

sensor bacteria can be particularly useful in metabolic

engineering, for example to coordinate the metabolic

activities of different strains when more than one

microbial strain is needed to produce a desired com-

pound.

Bacterial signal transduction pathways were also used in

the development of synthetic reporters for the detection

of environmental contaminants by plants. Taking

advantage of the conservation of two-component signal/

transduction pathways between bacteria and plants,

Antunes et al. [53��] used re-designed periplasmic binding

proteins normally involved in bacterial chemotaxis, to

produce specific pollutant sensors coupled to the E. coli
PhoR/PhoB system to function in Arabidopsis thaliana and

Nicotiana tabacum plants. Transgenic plants expressing

the fully synthetic signal transduction pathway are able to

link the detection of contaminants to a phenotype that

can be conveniently monitored. This basic modular plat-

form can be further re-designed to include different

sensing capabilities and outputs that contribute to extend

the range of applications of these biodetectors.

Conclusions
Advances in understanding and manipulating bacterial

signal transduction pathways, combining transcriptional,

post-transcriptional and post-translational modulation of

gene expression, offer new opportunities for the appli-

cation of synthetic biology approaches and tools to the

design of new whole-cell biosensors. The improvement of

existing sensors by fine-tuning signal recognition or the

generation of new sensors with specificity for natural or

synthetic chemicals by performing domain-swapping or

directed evolution will upgrade determinations. Also, the

possibility of introducing innovative outputs and to apply

microengineering to biosensor design, in addition to

rewiring bacterial signaling systems to function in other

organisms may also widen the use of bacterial reporter

assays in online and in situ environmental monitoring and

remediation as well as in controlling the state of a specific

770 Tissue, cell and pathway engineering
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microenvironment during an industrial process. New

applications, such as in chemotherapy and biopharmacy

are expected to expand by the use of new generations of

biosensory devises.
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