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Planta Piloto de Ingeniería Química, Universidad Nacional del Sur - CONICET, Camino La Carrindanga km 7, 8000, Bahía Blanca,
Argentina

ABSTRACT: Multivariate statistical control techniques have
been successfully applied to the detection and isolation of
process faults. Because those strategies evaluate the current
process state using the measurement values and the normal
operation model, their performance is strongly influenced by
the sensor network installed in the plant. Nevertheless, very
few sensor location approaches have been presented to
enhance faults isolation, and they do not guarantee that a
fault can be distinguished from the other ones before its
magnitude reaches a certain critical value. In this work a
strategy for updating process instrumentation is presented that
aims at detecting and isolating a given set of process failures
using statistical monitoring procedures before the fault
magnitudes exceed predefined threshold values. In this sense, fault isolation constraints are formulated and incorporated to
the instrumentation update optimization problem. The proposed restrictions are expressed in terms of the variable contributions
to the inflated statistics. These are used on line to determine the set of observations by which a fault is revealed, but they have not
been incorporated into the sensor location problem for fault diagnosis until now. That problem is solved using an enhanced level
traversal tree search, which takes advantage of the fact that the structural determinability of a fault is a necessary condition for its
isolability. Application results of the methodology to the Tennessee Eastman Process are presented.

1. INTRODUCTION

Multivariate statistical approaches such as principal component
analysis (PCA) have been successfully applied to the detection
and isolation of process faults.1−3 Those methodologies compare
the current process state with the predictions given by the normal
operation model to decide if a fault has occurred. The result of
this statistical inference depends on the measurement values, in
consequence, fault detection and isolation (FDI) strategies
provide better conclusions if the process sensor network (SN)
has been properly selected. This is achieved by solving an opti-
mization problem, which is commonly known as the SN design
or upgrade problem.4

Comprehensive reviews about the variety of methods pro-
posed to locate instruments with fault diagnosis purposes have
been presented.5−7 The instrumentation selection strategies
for processes to be monitored using PCA satisfy at least the
observability and resolution of a predetermined set of faults.
In this way, the detection and isolation of those failures are
partially ensured.5,8 It has been suggested to select sensors at the
design stage by applying directed-graph-based procedures9 or a
technique that assumes the fault probability values for the
instruments and the process.10 It is well-known that the infor-
mation provided by that SN may not be sufficient to distinguish
which fault has occurred.5 Therefore, it has proposed to obtain a
residual matrix for each fault by simulation and to consider its
first eigenvector as the direction of the failure. During plant
operation, if the statistical technique has been able to detect the
occurrence of a fault, then the residual vector of the PCAmodel is

projected on the matrix of fault directions, and the maximum
projection value is associated with the current fault. One draw-
back of this technique is that the first eigenvector of the residual
matrix may not correctly retain the fault direction.5

Other strategies select instruments to satisfy the detection of
certain process faults before their magnitudes exceed critical
limits. Those methodologies assume that a simulation procedure
which sensibly represents the process dynamic response is
available.11,12 Some researchers have formulated an optimization
problem whose objective function is a global penalty index.11 It is
made up of the total instrumentation cost and a penalization
term, which is calculated as a function of the minimum fault
magnitude13 that PCA’s statistics can detect. Its calculus is con-
servative; therefore, the strategy may neglect lower-cost feasible
solutions. This inconvenience is avoided using fault detection
constraints straightaway defined in terms of the PCA’s statistics,
which have been used to solve instrumentation upgrade prob-
lems by applying an enhanced traversal tree search.12 Further-
more, the robustness of the SN in the presence of sensor failures
or outliers has been ensured by introducing the Key Fault
Detection Degree concept as constraint of the optimization
problem.12
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The isolation of process failures before their magnitudes
exceed critical limits provides valuable information for imple-
menting corrective actions while the plant is still operating in a
controllable region. Nevertheless, the sensor location strategies
for fault diagnosis have not addressed that issue until now. This
work aims at presenting a methodology to optimally locate new
sensors in an existing process to guarantee the detection and
isolation of a predetermined set of faults while the process is still
operating in a safe mode. With this purpose, fault isolation con-
straints are formulated as a function of the variable contributions
(VCs) to the inflated statistics. These are used when statistical
monitoring techniques are applied on line to determine the set of
observations by which a fault is revealed, but they have not been
previously incorporated into the sensor location problem for
fault diagnosis. Furthermore, an exact solution procedure of the
instrumentation update problems is presented.
The rest of the paper is organized as follows. In section 2, the

classic PCA procedure is briefly revised. A sensor network
upgrade problem (SNUP) which guarantees FDI is presented in
section 3, which also describes a methodology to solve the
optimization problem. Next, the application results of the pro-
posed strategy to a benchmark are analyzed. The last section
contains the conclusions of this research work.

2. FAULT DIAGNOSIS USING PCA

PCA is a statistical method used to reduce the dimensions of a
data set. It applies an orthogonal transformation to convert a set
of measurements of correlated variables into a set of values of
linearly uncorrelated variables known as principal components
(PCs). The transformation is stated in such a way that the first
PC has the largest possible variance, and each subsequent
component in turn has the highest variance possible under the
restriction that it is orthogonal to the preceding ones. Different
techniques are applied to determine the number of retained PCs.
The nonretained ones are discarded to reduce the system
dimensions.
When PCA-based techniques are used for process monitoring,

the calculation of the hotelling statistic (D) and the squared
prediction error (SPE) are performed at each time interval to find
out if a fault has occurred. The statistic values are evaluated using
the following expressions

Λ= || ||−D P x1 2 T/ 2
(1)

= || − ||SPE PP x(I )T 2
(2)

where P andΛ are matrices obtained by the eigendecomposition
of the correlation matrix R and comprise the retained PCs and
their eigenvalues, respectively. The matrix R is calculated using
the normal operating data included in the matrix X(M,N), where
M is the number of samples and N stands for the number of
measured variables. Furthermore, x represents the standardized
measurement vector.
Both statistics are compared with their respective critical

values, and if one of them at least exceeds its limit for three
consecutive measurements,14 then it is assumed that the process
is out of control. It is a common industrial practice to calculate
the VCs to the statistics at this point and to determine which ones
exceed their control limits. This information is useful to diagnose
the fault cause and to implement appropriate corrective actions.
Several methodologies have been proposed to evaluate the

contribution of the nth variable toD’s value (cn
D) when the fault is

detected. The most used technique15 evaluates this contribution
as follows

Λ= −c xt Pn
D

n n
T 1

(:, ) (3)

where t is the score vector obtained by projecting x onto the
space defined by P. The control limit of cn

D is calculated by means
of the following expression:

κσ| = +c cn
D

C n
D

cn
D (4)

where cn
D|C is the control limit for the nth VC toD and cn

D and σcnD

are the mean value and standard deviation of cn
D, respectively.

These are calculated using the data contained in matrix X. A
suggested value for the parameter κ is 3.15

The definition of the nth VC to SPE (cn
SPE) directly arises from

the reformulation of eq 2:
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where (PPTX) is the vector of measurement values predicted by
the model. The control limit for cn

SPE, cn
SPE|C, is set in terms of the

χ2 distribution16
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where cn
SPE and σcnSPE

2 are the mean value and standard deviation of
cn
SPE, respectively, for the samples included in X and α is the level
of significance of the hypothesis test.
Another technique makes use of the combined index17 for the

detection of faults when PCA is applied. The index is based on
the values of D, SPE, and their critical limits. That methodology
applies the reconstruction-based contributions and their control
limits to identify the variables by which the fault is revealed. In
this work, it is assumed that the process is monitored using the
classic PCA procedure, but the instrumentation update problems
proposed in the next section can be directly extended to
processes monitored using the combined index.

3. SENSOR NETWORK UPGRADE FOR FAULT
DETECTION AND ISOLATION

In this section a new methodology for the optimal upgrade of a
plant SN is presented. The location of new instruments intends
to satisfy the isolation of J process faults. This set of failures has
been previously defined by process engineers taken into account
process operation and safety objectives. At first, the formulation
of new fault isolation restrictions for the minimum cost update
problem is addressed. Then, this problem is defined and a
solution procedure is briefly described.

3.1. Fault Isolation Constraints. Let us assume that
engineers have set process deviation limits (PDLs)11 for some
process variables taking into account operation and safety issues
and that a simulation procedure which sensibly represents the
process dynamic response is available.5,11,12 If the simulation of
the jth fault (j = 1, ..., J) is performed until the time for which
one or more variables reach their PDLs, then the vector of
standardized variable values for that time, xj, is obtained. A set of
simulated data that represents the normal process variability can
be employed for the standardization. It has been proposed to use
the information contained in xj (j = 1, ..., J) with two purposes.
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The first aim is to define the cause-effect matrix A. It is
considered that the elements of xj greater than 3 signal the
variables affected by the occurrence of the jth failure.11

Therefore, if the whole set of analyzed faults have influence on
a total number of process variables equal to I, then A(I, J) is
composed by aij elements such that aij = 1 if the ith variable value
is significantly modified when the jth failure occurs and otherwise
aij = 0 (i = 1, ..., I). The jth column of A, aj, is a binary vector that
contains the same information for that particular fault.12 The
second purpose is to determine a vector xj

PDL(j = 1, ..., J) such that
it only includes the elements of xj corresponding to the I variables
involved in A.
For an operating plant, some of the variables affected by the

occurrence of the J faults may be already measured, but if the
existing SN does not satisfy the isolation of all the failures when
PCA is applied for process monitoring, then an instrumentation
upgrade problem should be formulated and solved.
A current solution of the aforementioned problem can be

represented by a binary vector q, of dimension I, such that qi = 1 if
the ith variable is considered as a measured one. The sum of the
nonzero elements of q, i.e., the total number of observations,
is represented by N. Therefore, (I − N) stands for the number
of unmeasured variables. The N measurements are related to
the existing sensors and the new instruments involved in the
current solution. For this vector q, the jth fault subspace vector sfj
(j = 1, ..., J) of dimension N is defined such that sf n,j = 1 if the nth
variable value is modified when the jth fault occurs, and in
contrast, sf n,j = 1. That is, the information contained in q and aj is
used to build sfj. If the same fault subspace vector arises for two
failures, then they cannot be isolated by the current solution of
the upgrade problem.
In general, the nth observation of an instrumentation system is

identified as a suspicious variable if its contribution to the value of
a certain statistic, S, is greater than its control limit, i.e., cn

S(q) >
cn
S|C(q). This means that the occurrence of a certain fault has
produced a change in the nth measurement value with respect to
the normal one. Therefore, to distinguish the jth fault from the
other ones, a prerequisite is that at least one of the measurements
related to sfj is signaled as suspicious. This points out the possible
occurrence of the fault.
Let us suppose that the jth fault has occurred and that the

faulty state has been declared at the time when one or more
variables reach their PDLs. At this moment, the VCs to the PCA’s
statistics are the following

Λ= =− *c x n Nt P 1, ...,n j
D s

n n j
T

,
, 1

(:, ) ,
PDL

(7)

= − =* *c x n NPP x( ( ) ) 1, ...,n j
SPE s

n j j n
T PDL

,
,

,
PDL 2

(8)

where cn,j
D,s and cn,j

SPE,s are the nth VCs to D and SPE, respectively,
t = PTxj

PDL* and xn,j
PDL* is the nth element of xj

PDL*. This vector
contains the N elements of xj

PDL corresponding to the nonzero
elements of q. If VCs control limits are greater than VCs values,
i.e., cn

S|C(q) > cn,j
D,s(q) and cn

SPE|C(q) > cn,j
SPE,s(q), then any variable is

identified as suspicious; nevertheless, some of them have reached
their PDLs at that time.
The situation described previously is an undesirable event.

When the jth fault occurs, the SN should be able to point out the
suspicious variables while the process is still operating in a safe
mode, i.e., before the PDL of at least one measured variable
contained in sfj is exceeded. To achieve this objective, VCs values
at that time should be greater than VCs control limits. Because
the classic PCA monitoring technique uses two statistics, the nth

observation is declared as a suspicious variable if one of the
following logic statements is satisfied

≥ | ∨ ≥ |c c c cq q q q( ) ( ) ( ) ( )n j
SPE s

n
SPE

C n j
D s

n
D

C,
,

,
,

(9)

≥ | ∧ ≥ |c c c cq q q q( ) ( ) ( ) ( )n j
SPE s

n
SPE

C n j
D s

n
D

C,
,

,
,

(10)

The first one is verified if either cn,j
D,s(q) or cn,j

SPE,s(q) is greater than
its control limit. The second statement is confirmed if both
contributions exceed their control thresholds. The result of the
identification task is represented by the binary vector ivj of
dimension N. If ivn,j = 1, then the nth measurement has been
declared as a suspicious variable (i.e., inequalities 9 or 10 are
satisfied), and ivn,j = 0 otherwise.
If ivj is a non-null vector, then the prerequisite for the isolation

of the jth fault is fulfilled, but to distinguish this fault from the
other ones, the following two conditions should be satisfied.
Condition 1:The nth element of ivj is equal to the nth element

of sfj:

= = =iv sf n N j Jq q( ) ( ) 1, ..., 1, ...,n j n j, , (11)

This ensures that all the measured variables related to the occur-
rence of the jth failure are pointed out as suspicious variables.
Condition 2:The set of variables identified as suspicious when

the jth fault occurs is different from the set pointed out if the kth
fault happens, ∀ k ≠ j.

≠ ∀ ≠j kiv q iv q( ) ( )j k (12)

This guarantees the jth fault is distinguished from the kth one.
To test condition 2, three vectors are defined in terms of ivj

and ivk as follows

= ∧ ¬ ∀ ≠j kv iv iv1 j k (13)

= ¬ ∧ ∀ ≠j kv iv iv2 j k (14)

= ∧ ∀ ≠j kv iv iv3 j k (15)

where v1 contains all the measured variables of ivj not included in
ivk, in contrast v2 involves the set of observations of ivk not
contained in ivj, and v3 has the common elements. It has been
demonstrated6 that faults j and k are isolatable if at least two of
the three vectors (v1, v2, and v3) are non-null, that is, if the
number of non-null vectors that arise from the conjunction
between ivj and ivk, denoted as NNVjk(q), is greater than 2.

≥ ∀ ≠NNV j kq( ) 2jk (16)

It has been demonstrated that the previous inequality can be
replaced by the following set of constraints6

∑

∑ ∑

≥ =

∧ ¬ + ∧ ¬ ≥

= = ≠

=

= =

j J

j J k J j k

iv

iv iv iv iv

( ) 1 1, ...,

( ) ( ) 1

1, ..., , 1, ..., ,

n

N

j n

n

N

j k n
n

N

k j n

1

1 1

(17)

3.2. Optimization Problem Formulation and Resolu-
tion.At first, the formulation of the upgrade problem of SNs that
satisfy FDI constraints is addressed. It is assumed that there is
only one potential measuring device for each variable and that no
instruments’ localization restrictions are imposed. Next, the
problem resolution procedure is described.
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To ensure that the updated SN is able to detect the pre-
determined set of J faults before one or more process variables
reach their PDLs, fault detection restrictions straightaway
formulated as a function of the PCA’s statistics are incorporated
to the SNUP. These constraints are represented as follows12

δ δ≥ ∨ ≥

=

α αD SPE

j J

q q q q[( ( ) ( )) ( ( ) ( ))]

1, ...,

j
s

D j
s

SPE,
2

,
2

(18)

where Dj
s and SPEj

s are the values of both statistics calculated
using xj

PDL* and δD,α
2 and δSPE,α

2 represent the statistics’ critical
limits for a significance level equal to α. Regarding the fault
isolation constraints, conditions 1 and 2 are incorporated to the
SNUP by means of eqs 11 and 17, respectively.
The minimum cost SN that verifies the FDI restrictions is

obtained by solving the following optimization problem:

∑

∑ ∑

δ δ≥ ∨ ≥ =

= = =

≥ =

∧ ¬ + ∧ ¬ ≥

= = ≠

α α

=

= =

D SPE j J

iv sf n Nj J

j J

j J k J j k

c q

iv

iv iv iv iv

min

s.t.

[( ) ( )] 1, ...,

1, ..., 1, ...,

( ) 1 1, ...,

( ) ( ) 1

1, ..., , 1, ..., ,

j
s

D j
s

SPE

n j n j

n

N

j n

n

N

j k n
n

N

k j n

T

q

,
2

,
2

, ,

1

1 1

(19)

where c is the vector of sensor costs and ci = 0 if the instrument is
already installed in the plant. A mixed integer nonlinear
optimization problem results, which comprises J constraints
related to the detection of the predetermined set of faults and
[2J + J(J − 1)/2] restrictions used to verify the isolation of the
failures.
For solving that problem, an improved Level Traversal

Tree Search algorithm (LTTS)12,18 is developed. Because faults
observability and resolution (FOR) are necessary conditions to
achieve their detection and isolation applying monitoring
approaches,8 eq 19 is extended by incorporating those structural
restrictions to reduce the computational time. First, let us recall
FOR definitions: (a) A failure is observable if at least one sensor
points out the existence of the anomalous event. (b) A fault is
resolvable if its cause can be distinguished from the source of
another fault.
It has proved that FOR are satisfied if the subsequent

conditions are fulfilled6

∑

∑ ∑
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= =
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I

k j i

1

1 1

(20)

where rvj = (aj ∧ q) is the resolution vector (rv) of the jth failure,
and rvi,j = 1 means that the ith variable is measured and its value
changes when this fault takes place. It should be remarked that
FOR conditions can be easily checked using a set of [J + J(J− 1)/2]
linear inequalities.

If the aforementioned structural constraints are added to
eq 19, then the following SNUP results

∑
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(21)

For solving the previous problem, a two-step algorithm is
applied. In step 1, mixed integer linear programming is used to
obtain a SN, denoted as q1, which satisfies the FOR restrictions at
minimum cost. The initial level of the LTTS for solving the
expanded problem and a cost-instrumentation lower limit are
fixed using q1. In step 2, the search starts at the previously set
initial level. If the cost of a node is greater than the cost lower
limit, then FOR restrictions are evaluated because they are
necessary conditions for FDI. If those requirements are verified,
then fault detection constraints are tested. If these are satisfied,
then the capability of the SN to isolate the J faults is analyzed.
This computation sequence allows reducing the total computa-
tion time because testing linear constraints is faster than vali-
dating the nonlinear ones.

4. APPLICATION RESULTS
Application results of the SNU methodology to the Tennessee
Eastman Process (TEP) are discussed in this section. It has been
considered that the normal operation and certain faulty states of
the process can be sensibly described by the available steady state
and dynamic simulation procedures.19

In a previous work the TEP flowsheet, the cause effect matrix
for a predetermined set of eight faults, the list of variables
involved in A and the sensor costs have been presented. Matrix A
and xj

PDL vectors have been defined by applying the procedure
outlined in the previous section. The PDL of each variable has
been set at twice its maximum deviation in the normal operating
data set.12 Only the first seven failures are involved in this
example because the third and eight ones are not structurally
resolvable, i.e., a1 and a8 are equal.
The first six failures are step changes in composition ratio of

the reactants A and C in the stripper feed stream (stream 4),
composition of the inert compound B in stream 4, inlet tem-
perature of the reactor cooling water, inlet temperature of
the condenser cooling water, loss in the reactor feed stream,
and header pressure loss in stream 4 (reduced availability of
reactant C) .The next fault is a slow drift in the reaction kinetics.
Because of space reasons, the nomenclature of the variables that
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take part in the updated SNs is presented in the Nomenclature
section. It is assumed that the set of sensors already installed in
the process is the following: VF1, VF2, VF3, VF4, VF9, VFR,C, and
VFCW,R; consequently, the costs of these instruments are set
equal to zero.
An enhanced LTTS programmed inMatlab is employed to solve

different SNUPs. The number of retained PCs is calculated by
setting the percentage of the total variance that the PCA model
explains at 80%. Also two values ofα are used (0.05; 0.03). Problem
solutions are displayed in Table 1. The first one satisfies faults
observability and detection constraints, denoted as O+D.12 The
second one guarantees faults observability, resolution, detection,
suspicious variable identification, and isolation restrictions, indi-
cated as O+R+D+SVI+I, i.e., all those involved in eq 21.
The optimization problem with O+D requirements includes

14 constraints, such that half of them are nonlinear ones. With
respect to the upgrade problem that satisfies O+R+D+SVI+I
requisites, it comprises 28 linear restrictions used to verify FOR
conditions and 63 nonlinear constraints related to D+SVI+I
requirements. Both problems involve 34 binary variables.
The analysis of the results presented in Table 1 points out that

the solutions are not sensitive to the value of α. Furthermore, it
can be seen that the SN which satisfies O+D requisites does not
guarantee the isolation of the seven faults. In consequence, the
solution of the second problem comprises more instruments, and
it is more expensive than the corresponding one to the first
location problem.
The results are validated to prove that the obtained SN is able

to detect and isolate the proposed failures while the process is still
operating in a safe mode. For illustrative purposes, the time series
of D values, which arise if fault 1 takes place and the measured

variables are VFCW,RPSF1F9TCW,R, is displayed on the left-hand
part of Figure 1. In this caseD detects the failure before SPE does;
consequently, only the D graph is shown. The previous diagram
is amplified around the fault-detection time (right-hand part of
Figure 1), and it is observed that the solution of the SNUP
subject toO+R+D+SVI+I requirements satisfies fault 1 detection
before one or more variables reach their PDLs.
In Figure 2, the VCs toD (left-hand side) and SPE (right-hand

side), which are obtained if fault 1 has been detected, are shown.
The sequence of variables is the same used for the solution
presented in Table 1.
It can be seen that the contributions of variables PSF1TCW,R to

the statistics exceed their control limits. Therefore, they are
identified as suspicious variables, and vector iv1 = [PSF1TCW,R].
Also it should be noticed that those contributions are lower than
the VCs values corresponding to x1

PDL*.
Table 2 includes the subspace and identification vectors for all the

faults when the variables VFCW,RPSF1F9TCW,R are measured. It can
be seen that iv1 is equal to sf1, that is, condition 1 is satisfied for fault
1. Furthermore, all the faults are distinguishable because all the iv’s
are different, that is, the solution of the SNUP verifies condition 2.

Table 1. Results for TEP

constraints solution for α = 0.05 cost solution for α = 0.03 cost

O+D VF9VFCW,RTCW,R 50 VF9VFCW,RTCW,R 50
O+R+D+SVI+I VFCW,RPSF1F9TCW,R 120 VFCW,RPSF1F9TCW,R 120

Figure 1. D chart: fault 1.

Figure 2. Variable contributions to D and SPE: fault 1.

Table 2. Fault Subspace and Identification Vectors

fault sfj ivj

F1 PSF1TCW,R PSF1TCW,R

F2 F9 F9
F3 VFCW,R VFCW,R

F4 TCW,R TCW,R

F5 F1TCW,R F1TCW,R

F6 VFCW,RPSTCW,R VFCW,RPSTCW,R

F7 PSF9 PSF9
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Figures 3 and 4 represent the time series of D and the VCs
values to both statistics when fault 3 happens. Based on the
previous information, results show that fault 3 can be correctly
isolated.

5. CONCLUSIONS

In this paper a new strategy devoted to optimally select the set of
instruments to be installed in an existing process with fault
diagnosis purposes is presented. Problem solution guarantees the
detection and isolation of a predetermined set of failures by
applying the classic PCA before process variables exceed certain
deviation limits. Fault detection is satisfied using restrictions
straightaway defined in terms of the PCA’s statistics. Regarding
failures isolation, constraints are formulated as a function of the
VCs to the inflated statistics. These are commonly used to
determine the subset of measurements that reveal a fault when
statistical monitoring techniques are applied online, but they
have not been incorporated to the SNUP to enhance fault
diagnosis until now.
Two conditions are stated to guarantee that the updated SN is

capable to isolate the predetermined set of faults. The first one
considers that the set of measurements whose contributions
exceed their control limits (ivj) should be equal to the group of
observations affected by the fault occurrence (sfj). The second
one takes into account that all the iv’s should be different. This
condition is formulated using the concept of the NNV.6

The solution of the proposed optimization problems is carried
out using an improved LTTS. Given that fault observability is
a necessary condition for fault detection and that fault resolu-
tion has the same role for its isolation, FOR constraints are
incorporated to the SNUP because they can be posed as linear
inequalities. Therefore, the computational load of the expanded
problem is lower than the corresponding one to the original
formulation.
Application results of the strategy to the TEP are presented

and also validated to prove the ability of the obtained SNs to

detect and isolate the proposed failures while the process is still
operating in a safe mode. Even though this research is focused on
the classic PCA procedure, the proposed upgrade methodology
can be straightway employed for processes monitored using
other statistical strategies such that the CVs to the inflated
statistic are explicitly calculated as a function of the measurement
vector.
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■ NOMENCLATURE
VF1 = A feed flow, manipulated variable (stream 1)
VF2 = D feed flow, manipulated variable (stream 2)
VF3 = E feed flow, manipulated variable (stream 3)
VF4 = total feed flow, manipulated variable (stream 4)
VF9 = purge valve, manipulated variable (stream 9)
VFR,C = compressor recycle valve, manipulated variable
VFCW,R = reactor cooling water flow, manipulated variable
PS = stripper pressure
F1 = A feed (stream 1)
F9 = purge rate (stream 9)
TCW,R = reactor cooling water outlet temperature
yA,4 = molar fraction of A in stream 4
yB,4 = molar fraction of B in stream 4
yC,4 = molar fraction of C in stream 4
TCW,C = condenser cooling water outlet temperature

Figure 3. D chart: fault 3.

Figure 4. Variable contributions to D and SPE: fault 3.
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