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Convergence of homogeneous manifolds

Jorge Lauret

Abstract

We study in this paper three natural notions of convergence of homogeneous manifolds, namely
infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account
only the underlying algebraic structure of the homogeneous manifold and is indeed much more
tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes
the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy,
providing a framework which is very advantageous to approach variational problems for curvature
functionals as well as geometric evolution equations on homogeneous manifolds.
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1. Introduction

It is often complicated to write rigorous proofs in convergence theory of Riemannian manifolds.
In the homogeneous case, however, it is natural to expect that an ‘algebraic’ notion of
convergence may help. With this aim in mind, we study in this paper three natural notions
of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their
relationship with a fourth one, which takes into account only the underlying algebraic structure
of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a
set Hq,n of (q + n)-dimensional Lie algebras which parameterizes the space of all n-dimensional
simply connected homogeneous spaces with q-dimensional isotropy, providing a framework
which is very advantageous to approach variational problems for curvature functionals as well
as geometric evolution equations on homogeneous manifolds.

1.1. Convergence

In order to define convergence of a sequence (Mk, gk) of homogeneous manifolds to a
homogeneous manifold (M, g), it is customary to start by requiring the existence of a
sequence Ωk ⊂M of open neighbourhoods of a basepoint p ∈M together with embeddings
φk : Ωk −→Mk such that φ∗kgk → g smoothly as k →∞ (in particular, all manifolds are of a
given dimension n). The size of the neighbourhoods will make the difference, and according
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to some possible behaviours, one obtains the following notions of convergence in an increasing
degree of strength.

(i) Infinitesimal: no condition on Ωk, it may even happen that
⋂

Ωk = {p} (that is, only
the germs of the metrics at p are involved). Nevertheless, the sequence (Mk, gk) has necessarily
bounded geometry by homogeneity.

(ii) Local: there is a nonempty open subset Ω ⊂ Ωk for all sufficiently large k. A positive
lower bound for the injectivity radii therefore holds.

(iii) Pointed or Cheeger–Gromov: Ωk eventually contains any compact subset of M . Here
topology issues come in.

On the other hand, we know that homogeneous manifolds have a prominent ‘algebraic’ side,
and the point is to what extent this is related to the above notions of convergence. Let us
consider for each (Mk, gk) a presentation Gk/Kk as a homogeneous space endowed with a
Gk-invariant metric gk. By just requiring dimGk to be constant on k, we can assume that a
fixed vector space decomposition g = k⊕ p gives the reductive decomposition for all Gk/Kk

and a fixed inner product 〈·, ·〉 on p is the value of gk at the origin eKk for all k. In this way, the
only algebraic data which vary are the sequence of Lie brackets μk on the vector space g such
that (g, μk) is the Lie algebra of Gk. Thus, a fourth notion of convergence for homogeneous
manifolds comes into play: the standard convergence of brackets μk → λ as vectors in Λ2g∗ ⊗ g,
where λ is the corresponding Lie bracket for the limit (M, g) = G/K.

Our main results can be described as follows. We show that the convergence of brackets
μk → λ is essentially equivalent to the infinitesimal convergence of homogeneous manifolds
(Gk/Kk, gk)→ (G/K, g) (cf. Theorem 6.12), and secondly, that in order to obtain the stronger
local convergence, it is sufficient to have a positive lower bound for the Lie injectivity radii of
the sequence (cf. Theorem 6.14). The Lie injectivity radius of a homogeneous space (G/K, g)
is the largest r > 0 such that its canonical coordinates π ◦ exp are defined on the euclidean
ball of radius r in (p, 〈·, ·〉) (cf. Definition 6.7). Notice that local convergence implies pointed
subconvergence of (Mk, gk) to a homogeneous manifold locally isometric to (M, g), by the
compactness theorem (cf. Theorem 6.3), but we show that such limits may topologically vary
for different subsequences.

It is important to note that for left-invariant metrics on Lie groups (that is, Kk = {e}
for all k), the positive lower bound for the Lie injectivity radii follows at once from the
convergence μk → λ (cf. Lemma 6.19), giving rise to stronger results in this case (cf. Corollary
6.20).

1.2. The space of homogeneous manifolds

Recall that the data (g = k⊕ p, 〈·, ·〉) of a homogeneous space can be canonically fixed at the
level of inner product vector spaces. This motivates us to consider the set Hq,n ⊂ Λ2g∗ ⊗ g,
where q := dim k, n := dim p, of those Lie brackets satisfying the technical conditions (cf. (h1)–
(h4) in Section 3) which allow us to define a simply connected homogeneous space (Gμ/Kμ, gμ)
attached to each μ ∈ Hq,n with Lie(Gμ) = (g, μ), Lie(Kμ) = (k, μ|k×k) and gμ(eKμ) = 〈·, ·〉. The
set Hq,n therefore parameterizes the space of all n-dimensional simply connected homogeneous
spaces with q-dimensional isotropy.

The above approach, that varies Lie brackets rather than metrics has been used for decades,
though only in the case of left-invariant metrics on Lie groups (that is, q = 0). We mention,
among many others, just a few instances. It was used in [8, 14, 27] to study curvature
properties of Lie groups; in the structure results for Einstein solvmanifolds obtained in [13, 23];
in viewing nilsolitons as critical points and their classification (cf. [16, 20, 26, 29, 38]); in the
study of the Ricci flow for 3-dimensional homogeneous geometries (cf. [9]) and for nilmanifolds
(cf. [11, 24, 30]). The approach can also be applied to complex and symplectic homogeneous
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geometry (cf. Remark 3.7). In many of these articles, an intriguing relationship with the
geometric invariant theory of the variety of Lie algebras, including closed orbits, categorical
quotients, moment maps and Kirwan stratification, has been exploited in one way or the other.

1.3. Examples

The paper includes plenty of situations which illustrate our approach and provide examples
and counterexamples to some of the speculations one might make on convergence issues.

(i) Subsets of H0,3 and H1,3 reaching all 3-dimensional geometries (cf. Examples 3.2 and
3.3).

(ii) A family in H1,5 parameterizing all homogeneous metrics on S3 × S2 (cf. 3.4).
(iii) A 6-parameter family in H1,7 attaining any SU(3)-invariant metric on all (generic)

Aloff–Wallach spaces (cf. Example 3.6).
(iv) A sequence of Aloff–Wallach spaces which infinitesimally converges to another

Aloff–Wallach space, but such that it does not admit any pointed or local convergent
subsequence (cf. 6.6).

(v) A sequence of alternating left-invariant metrics on S3 (Berger spheres) and S̃L2(R)
which locally converges to a flat metric on the solvable Lie group E(2), but the corresponding
subsequences pointed converges to S1 × R2 and R3, respectively (cf. Example 6.17).

(vi) A divergent sequence μk ∈ H0,3 of left-invariant metrics on S̃L2(R) which nevertheless
pointed converges to R×H2, where H2 denotes the 2-dimensional hyperbolic space. μk is
actually isometric to a convergent sequence in H1,3 (cf. Example 6.18).
(vii) A sequence μk ∈ H1,5 of homogeneous metrics on S3 × S2 converging to a Lie bracket λ

which is not in H1,5. However, λ can be viewed as an element of H2,4, giving rise to a collapsing
of the μk with bounded curvature to a metric on S2 × S2 (cf. Example 6.22).

1.4. Ricci flow

Our true motivation to study the ‘algebraic’ convergence of homogeneous manifolds is that
the Ricci flow g(t) starting at a homogeneous manifold (M, g0) is proved in [25] to be
equivalent to an evolution equation for Lie brackets in the following precise sense: if (M, g0) =
(Gμ0/Kμ0 , gμ0), μ0 ∈ Hq,n, then the solution μ = μ(t) to the so-called bracket flow given by
the ODE

d
dt
μ = μ

([
0 0
0 Ricμ

]
·, ·
)

+ μ

(
·,
[
0 0
0 Ricμ

]
·
)
−
[
0 0
0 Ricμ

]
μ(·, ·), μ(0) = μ0,

where Ricμ : p −→ p denotes the Ricci operator of gμ at the origin, stays in Hq,n for all t and

g(t) = ϕ(t)∗gμ(t)

for some family ϕ(t) : M = Gμ0/Kμ0 −→ Gμ(t)/Kμ(t) of time-dependent equivariant diffeo-
morphisms. The fixed points of any normalized bracket flow c(t)μ(τ(t)) are Ricci solitons,
and the solutions g(t) and μ(t) have identical maximal interval of existence time and curvature
behaviour. Moreover, as there always exists a convergent subsequence μk := 1/‖μ(tk)‖.μ(tk)→
λ, one can apply the convergence results obtained in this paper to get pointed subconvergence
of the Ricci flow g(t) (up to scaling) to a Ricci soliton gλ (usually nonflat), provided λ ∈ Hq,n

and there is a lower bound for the Lie injectivity radii rμk
.

2. Classical setting

A Riemannian manifold (M, g) is said to be homogeneous if its isometry group I(M, g) acts
transitively on M . The group I(M, g) is known to be naturally a Lie group such that its
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action on M is smooth and the isotropy subgroup Ip(M, g) at every point p ∈M is compact.
A homogeneous Riemannian space is instead a differentiable manifold G/K, where G is a Lie
group and K ⊂ G a closed Lie subgroup, endowed with a G-invariant Riemannian metric. Both
concepts are of course intimately related, though not in a one-to-one way. When studying a
geometric problem on homogeneous manifolds, it is often very useful and healthy to capture
the relevant algebraic information and present the hypotheses and the problem in ‘algebraic’
terms. We refer to the books [4 Chapter 7; 17 Chapter X] for a more detailed treatment of
what follows.

Let (M, g) be a connected homogeneous manifold. Then each closed Lie subgroup G ⊂
I(M, g) acting transitively on M (which can be assumed to be connected) gives rise to a
presentation of (M, g) as a homogeneous space (G/K, g〈·,·〉), where K = G ∩ Ip(M, g) for some
p ∈M . Since K turns out to be compact, there always exists an Ad(K)-invariant direct sum
decomposition

g = k⊕ p,

where g and k are, respectively, the Lie algebras of G and K. Such a decomposition is called
reductive and is not necessarily unique. Thus p can be naturally identified with the tangent
space

p ≡ TpM = TeK G/K,

by taking the value at p of the Killing vector fields corresponding to elements of p. We denote
by g〈·,·〉 the G-invariant metric on G/K determined by

〈·, ·〉 := g(p),

the Ad(K)-invariant inner product on p defined by g.
Any kind of curvature of (G/K, g〈·,·〉), and hence of (M, g), can therefore be computed in

terms of the inner product vector space (p, 〈·, ·〉) and the Lie bracket [·, ·] of g (see, for instance
[4, Chapter 7]).

Remark 2.1. A homogeneous space (G/K, g〈·,·〉) will always be assumed to carry a fixed
Ad(K)-invariant decomposition g = k⊕ p.

In order to get a presentation (M, g) = (G/K, g〈·,·〉) of a connected homogeneous manifold
as a homogeneous space, there is no need for G ⊂ I(M, g) to hold, that is, an effective action.
It is actually enough to have a transitive action of G on M = G/K, where K is the isotropy
subgroup at some point, which is almost-effective (that is, K contains no non-discrete normal
subgroup of G, or equivalently, the normal subgroup {g ∈ G : ghK = hK, ∀h ∈ G} is discrete),
along with a decomposition g = k⊕ p and an inner product 〈·, ·〉 on p, both of them Ad(K)-
invariant. In particular, G can always be chosen to be simply connected (that is, connected
and with trivial fundamental group) and almost-effective. If in addition M is simply connected,
then K must be connected (although not necessarily compact); and conversely, if G is simply
connected and K connected, then M is simply connected (use the homotopy sequence of the
fibration G −→ G/K).

The set of all G-invariant metrics on G/K is in one-to-one correspondence with the set of all
Ad(K)-invariant inner products on p. Such a set can be naturally identified with a symmetric
subspace (possibly flat) of the symmetric space GL+

n (R)/SO(n) and so it is diffeomorphic to
an euclidean space. It could however be far from covering all homogeneous metrics on the
manifold G/K.
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3. Varying Lie brackets viewpoint

A simply connected homogeneous space (G/K, g〈·,·〉) with G simply connected is completely
characterized (as K must be connected) by the following ‘algebraic’ data:

the vector space decomposition g = k⊕ p;
the inner product 〈·, ·〉 on p;
the Lie bracket [·, ·] of g.

As the pair (g = k⊕ p, 〈·, ·〉) can be canonically fixed, this suggests varying Lie brackets to
cover a large number of homogeneous manifolds at the same space. In this light, we shall define
in this section a set Hq,n whose elements are simply connected homogeneous spaces and such
that any simply connected homogeneous space (G/K, g〈·,·〉) of dimension n and dimK = q is
isometric to at least one point in Hq,n.

Let us fix a decomposition
Rq+n = Rq ⊕ Rn,

together with the canonical inner product 〈·, ·〉 on Rn. We consider the space of all skew-
symmetric algebras (or brackets) of dimension q + n, which is parameterized by the vector
space

Vq+n := {μ : Rq+n × Rq+n −→ Rq+n : μ bilinear and skew-symmetric}.
For any x ∈ Rq+n, we denote left multiplication (or adjoint action) as usual by adμ x(y) =
μ(x, y) for all y ∈ Rq+n.

A homogeneous space can be associated to an element μ ∈ Vq+n provided the following
conditions hold for μ.

(h1) μ satisfies the Jacobi condition, μ(Rq,Rq) ⊂ Rq and μ(Rq,Rn) ⊂ Rn.
(h2) If Gμ denotes the simply connected Lie group with Lie algebra (Rq+n, μ) and Kμ is the

connected Lie subgroup of Gμ with Lie algebra Rq, then Kμ is closed in Gμ.
(h3) 〈·, ·〉 is adμ Rq-invariant (that is, (adμ z|Rn)t = − adμ z|Rn for all z ∈ Rq).
(h4) {z ∈ Rq : μ(z,Rn) = 0} = 0.

Indeed, by (h2), the simply connected topological spaceGμ/Kμ admits a unique differentiable
manifold structure such that the quotient map πμ : Gμ −→ Gμ/Kμ is smooth and admits local
smooth sections, or equivalently, the Gμ-action on Gμ/Kμ is smooth (see [37, 3.58,3.63]). Such
an action is almost-effective by (h4), and it follows from (h3) that 〈·, ·〉 is Ad(Kμ)-invariant as
Kμ is connected. All this is already enough to obtain a homogeneous space,

μ ∈ Hq,n � (Gμ/Kμ, gμ), (1)

with Ad(Kμ)-invariant decomposition Rq+n = Rq ⊕ Rn and gμ(eKμ) = 〈·, ·〉 (see [17, p. 200]
or [4, 7.24, 7.12]), where

Hq,n := {μ ∈ Vq+n : conditions (h1)–(h4) hold for μ}. (2)

If for u ∈ Gμ, we denote by τμ(u) : Gμ/Kμ −→ Gμ/Kμ the diffeomorphism

τμ(u)(vKμ) := uvKμ, v ∈ Gμ,

then the metric gμ is given by

gμ(uKμ)(dτμ(u)|eKµ
x, dτμ(u)|eKµ

y) = 〈x, y〉 ∀x, y ∈ Rn, u ∈ Gμ. (3)

We note that any n-dimensional homogeneous Riemannian space (G/K, g〈·,·〉) with G simply
connected and Ad(K)-invariant decomposition g = k⊕ p which is almost effective can be
identified with some μ ∈ Hq,n, where q = dimK. Indeed, one just has to fix a basis of k and
an orthonormal basis of p in order to get identifications k = Rq, p = Rn, and so μ is precisely
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the Lie bracket of g. In particular, in the set

Hn :=
n(n−1)/2⋃

q=0

Hq,n,

all simply connected homogeneous Riemannian manifolds of dimension n (up to isometry) are
represented, though often by several different points which may even represent inequivalent
homogeneous spaces (see Section 4).

If Hq,n is nonempty, which is not always the case (for example, H2,3 = ∅), then there must
be a flat element in Hq,n. Indeed, for any μ ∈ Hq,n, one can define λ ∈ Vq+n by λ|Rq×Rq+n := μ,
λ|Rn×Rn := 0, for which conditions (h1)–(h4) can be easily verified, getting the flat manifold
(Gλ/Kλ, gλ) = ((K � Rn)/K, g〈·,·〉) for some compact subgroup K ⊂ O(n).

Concerning the question of what kind of subset of Vq+n the space Hq,n is, we note that
conditions (h1) and (h3) are closed, they are even defined by polynomial equations on μ. On
the contrary, (h4) is open and (h2) may impose a very subtle condition on μ, as Examples 3.4
and 3.6 show. Note that Hq,n is a cone, that is, invariant by any nonzero scaling.

Example 3.1. If q = 0, then conditions (h2)–(h4) trivially hold and (h1) is just the
Jacobi condition for μ. Thus H0,n = Ln, the variety of n-dimensional Lie algebras, and the
set {(Gμ, gμ) : μ ∈ Ln} parameterizes the set of all left-invariant metrics on simply connected
Lie groups of dimension n (cf. Section 6.4 for a more detailed study of this case).

The next two examples reach all 3-dimensional geometries.

Example 3.2. Let μ = μa,b,c be the Lie bracket in H0,3 = L3 defined by

μ(e2, e3) = ae1, μ(e3, e1) = be2, μ(e1, e2) = ce3.

Their isomorphism classes are invariant by permutation of (a, b, c) and scaling, so we can
assume a � b � c and that at most one of them is negative. The Lie algebras (and geometries)
attained by this family are

μ �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

su(2), a, b, c > 0,
sl2(R), a, b > 0, c < 0,
e(2), a, b > 0, c = 0,
e(1, 1), a > 0, b = 0, c < 0,
h3, a > 0, b = c = 0,
R3, a = b = c = 0,

Gμ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

S3,

S̃L2(R),
E(2),
Sol,
Nil,
R3,

(4)

where e(2) and e(1, 1) are unimodular solvable Lie algebras and h3 is the 3-dimensional
Heisenberg Lie algebra. These are all 3-dimensional unimodular real Lie algebras, and any left-
invariant metric on any of the corresponding simply connected Lie groups is isometric to some
μa,b,c (see [27, Section 4]). We have added on the right of (4) the 3-dimensional geometries from
the Geometrization Conjecture which are covered by the family μa,b,c by using the standard
notation. With the only exception of S3, they are all diffeomorphic to the euclidean space R3.
In [9], this presentation as a space of Lie brackets is used to study the Ricci flow of these
metrics.
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Example 3.3. Consider the decomposition R4 = R⊕ R3 and the bracket μ = μa,b,c,d ∈
V1+3 given by {

μ(e3, e0) = de2, μ(e2, e3) = ae1 + be0, μ(e3, e1) = ce2,
μ(e0, e2) = de3, μ(e1, e2) = ce3.

It is straightforward to see that conditions (h1) and (h3) hold and that (h4) does if and only
if d �= 0. By computing the Killing form, it is easy to conclude that the Lie algebras (and
geometries) attained by this family are

μ �
⎧⎨⎩

R⊕ su(2), ac+ bd > 0,
R⊕ sl2(R), ac+ bd < 0,
R � e(2), R � h3, ac+ bd = 0,

Gμ/Kμ =

⎧⎨⎩
S3, R× S2,

S̃L2(R), R×H2,
E(2), Nil, R3.

(5)

In the case when ac+ bd > 0, one can use the isomorphism Gμ � R× SU(2) to see that Kμ

is a spiral inside a cylinder R× S1 and thus Kμ is closed in Gμ. Note that otherwise, any Lie
subgroup of Gμ is closed, so that condition (h2) is always satisfied. We conclude that μa,b,c,d ∈
H1,3 if and only if d �= 0. For a = 0 and b �= 0, we obtain the geometries R× S2 and R×H2,
where H2 denotes the 2-dimensional hyperbolic space. All the remaining homogeneous metrics
gμa,b,c,d

can be alternatively viewed as left-invariant metrics on 3-dimensional unimodular Lie
groups with an extra symmetry, and hence they have all already appeared in Example 3.2.

All homogeneous metrics on S3 × S2 can be attained as follows.

Example 3.4. Consider the decomposition R6 = R⊕ R5 and the bracket μ =
μp,q,a,b,c,d,e,f ∈ V1+5 given by⎧⎪⎪⎨⎪⎪⎩

μ(e0, e2) = pe3, μ(e1, e2) = ee3, μ(e2, e3) = ae0 + be1,
μ(e0, e3) = −pe2, μ(e1, e3) = −ee2, μ(e4, e5) = ce0 + de1.
μ(e0, e4) = qe5, μ(e1, e4) = fe5,
μ(e0, e5) = −qe4, μ(e1, e5) = −fe4.

It is easy to see that the conditions to obtain μ ∈ H1,5 can be written as follows:

(h1) aq + bf = 0, cp+ de = 0;
(h2) p/q ∈ Q;
(h3) always holds;
(h4) (p, q) �= (0, 0).

If we assume that pf − qe �= 0, then some of the Lie algebras involved are

μ �
⎧⎨⎩

su(2)⊕ su(2), ap+ be > 0, cq + df > 0,
sl2(R)⊕ sl2(R), ap+ be < 0, cq + df < 0,
su(2)⊕ sl2(R), (ap+ be)(cq + df) < 0,

which can be viewed as Lie algebras of matrices in the following way:

e0 = 1
2 (pX1, qX1), e2 = 1

2 (rX2, 0), e4 = 1
2 (0, sX2),

e1 = 1
2 (eX1, fX1), e3 = 1

2 (rX3, 0), e5 = 1
2 (0, sX3),

where r = |ap+ be|1/2, s = |cq + df |1/2 and {X1,X2,X3} ⊂ gl2(C) is a basis of either su(2) or
sl2(R) such that

[X1,X2] = 2X3, [X1,X3] = −2X2, [X2,X3] = ±2X1.

The equivalence between condition (h2) and p/q ∈ Q is now more transparent, as Kμ = eRe0 =
{(etpX1 , etqX1) : t ∈ R} and one may take X1 =

[
i 0
0 −i

]
for su(2) and X1 =

[
0 −1
1 0

]
for sl2(R). A
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particularly interesting case is when μ � su(2)⊕ su(2), since the homogeneous spaces Gμ/Kμ =
(SU(2)× SU(2))/S1 are all diffeomorphic to S3 × S2, and actually any homogeneous metric
on S3 × S2 is represented in H1,5 by a tuple (p, . . . , f) (cf. for example, [5, Example 6.8]). For
different values of p, . . . , f one obtains many other homogeneous spaces, including left-invariant
metrics on solvmanifolds as E(2)× R2 and on nilmanifolds as Nil × R2 or the 5-dimensional
Heisenberg Lie group H5.

Remark 3.5. Any of the brackets considered in the above example can also be viewed as
an element in H2,4 by putting

R6 = R2 ⊕ R4 = 〈e0, e1〉 ⊕ 〈e2, . . . , e5〉,
which is easily seen to cover all homogeneous metrics on S2 × S2, S2 ×H2 and H2 ×H2.

In the following example, we cover all SU(3)-invariant metrics on each (generic) Aloff–
Wallach space SU(3)/S1

p,q.

Example 3.6 (Aloff–Wallach spaces). Consider the decomposition R8 = R⊕ R7 and the
bracket μ = μp,q,a,b,c,d ∈ V1+7, a, b, c, d > 0, given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(e0, e2) = −d(p+ 2q)e3, μ(e1, e2) = −pe3,
μ(e0, e3) = d(p+ 2q)e2, μ(e1, e3) = pe2,
μ(e0, e4) = −d(2p+ q)e5, μ(e1, e4) = qe5,
μ(e0, e5) = d(2p+ q)e4, μ(e1, e5) = −qe4,
μ(e0, e6) = −d(p− q)e7, μ(e1, e6) = (p+ q)e7,
μ(e0, e7) = d(p− q)e6, μ(e1, e7) = −(p+ q)e6,

μ(e4, e6) = μ(e5, e7) = −
(

3bcd
a

)1/2

e2, μ(e5, e6) = −μ(e4, e7) = −
(

3bcd
a

)1/2

e3,

μ(e6, e2) = −μ(e7, e3) = −
(

3acd
b

)1/2

e4, μ(e7, e2) = μ(e6, e3) = −
(

3acd
b

)1/2

e5,

μ(e2, e4) = μ(e3, e5) = −
(

3abd
c

)1/2

e6, μ(e3, e4) = −μ(e2, e5) =
(

3abd
c

)1/2

e7,

μ(e2, e3) = −a(p+ 2q)e0 − 3adpe1, μ(e4, e5) = −b(2p+ q)e0 + 3bdqe1,
μ(e6, e7) = −c(p− q)e0 + 3cd(p+ q)e1.

We have that (R8, μ) is always isomorphic to su(3), as these are precisely the Lie bracket
relations for the basis {e0, . . . , e8} of su(3) given by

e0 =

⎡⎣ipd iqd
−i(p+ q)d

⎤⎦ , e1 =
1
3

⎡⎣−i(p+ 2q)
i(2p+ q)

i(q − p)

⎤⎦ ,
e2 = (3ad)1/2

⎡⎣0
0 −1
1 0

⎤⎦ , e3 = (3ad)1/2

⎡⎣0
0 i
i 0

⎤⎦ , e4 = (3bd)1/2

⎡⎣0 −1
0

1 0

⎤⎦ ,
e5 = (3bd)1/2

⎡⎣0 i
0

i 0

⎤⎦ , e6 = (3cd)1/2

⎡⎣0 −1
1 0

0

⎤⎦ , e7 = (3cd)1/2

⎡⎣0 i
i 0

0

⎤⎦ .
Conditions (h1), (h3) and (h4) are all satisfied by any of these μ’s, and concerning (h2), we

note that
S1

p,q := Kμ = eRe0 ,
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is closed in SU(3) (and hence S1
p,q � S1) if and only if p/q ∈ Q (think of S1

p,q as a subgroup
of the maximal torus S1 × S1of SU(3)). As a differentiable manifold, Gμ/Kμ only depends on
p and q, and so we define

Wp,q := Gμ/Kμ = SU(3)/S1
p,q ∀μ = μp,q,a,b,c,d.

These homogeneous manifolds are called in the literature Aloff–Wallach spaces and have been
extensively studied (cf. for example, [2, 18, 19, 33]). By fixing p and q and varying a, b, c and
d we get all SU(3)-invariant metrics on Wp,q if p �= ±q (cf. [33, Corollary 4.3]). We note for
future use that Wrp,rq = Wp,q as differentiable manifolds for any r ∈ R.

Remark 3.7. If instead of 〈·, ·〉, we fix a complex structure J on Rn (that is, an
endomorphism such that J2 = −I) and change condition (h3) by [adμ Rq|Rn , J ] = 0, then
what each μ ∈ Hq,n will represent is a homogeneous space endowed with a left-invariant
almost-complex structure. By adding the integrability of (Gμ/Kμ, J) as condition (h5) in
the definition of Hq,n, which happens to only depend on μ and in a polynomial way, we
obtain a parametrization of all n-dimensional simply connected complex homogeneous spaces
with q-dimensional isotropy. One may furthermore fix again an inner product 〈·, ·〉 on Rn

compatible with J (that is, 〈J ·, J ·〉 = 〈·, ·〉) and require condition (h3) on 〈·, ·〉, in order to
parameterize hermitian (or almost-hermitian if the integrability of J is removed) homogeneous
spaces (Gμ/Kμ, J, 〈·, ·〉). Notice that the subset of those which are Kähler is just defined by
extra polynomial conditions on μ. An analogous setting can be developed for symplectic,
hypercomplex, and many other classes of geometric structures. This approach has only been
explored in the case of nilmanifolds (that is, q = 0 and μ nilpotent) in [21]. How do the
convergence results obtained in Section 6 fit into deformation theory of complex or symplectic
manifolds?

4. Different notions of equivalence

The question of whether two given homogeneous spaces are isometric or not is usually a
difficult task to handle, as it is the question on determining their diffeomorphism or even
homeomorphism types. There is a fourth natural equivalence relation between homogeneous
spaces which involves their algebraic structure: G/K and G′/K ′ are said to be equivariantly
diffeomorphic if there exists an isomorphism of Lie groups ϕ̃ : G −→ G′ such that ϕ̃(K) = K ′.
In that case, if ϕ : G/K −→ G′/K ′ is the corresponding equivariant diffeomorphism (that is,
ϕ ◦ π = π′ ◦ ϕ̃), then

τ ′(ϕ̃(u)) = ϕτ(u)ϕ−1 ∀u ∈ G,
that is, the actions of G,G′ on G/K,G′/K ′, respectively, are equivalent or equivariant. Two
homogeneous spaces (G/K, g〈·,·〉) and (G′/K ′, g〈·,·〉′) are called equivariantly isometric if g〈·,·〉 =
ϕ∗g〈·,·〉′ for some equivariant diffeomorphism ϕ : G/K −→ G′/K ′ (that is, dϕ|eK is in addition
an inner product space isometry between (p, 〈·, ·〉) and (p′, 〈·, ·〉′)).

In Figure 1, we have listed the equivalence relations between homogeneous spaces we have
just mentioned according to their levels of generality. All the converse assertions are false.
Aloff-Wallach spaces (see Example 4.1) provide examples of homeomorphic but nondiffeo-
morphic homogeneous spaces, as well as diffeomorphic homogeneous spaces which are not
equivariantly diffeomorphic (see also Example 4.6). On the other hand, certain nonabelian solv-
able Lie groups admit flat left-invariant metrics, providing examples of isometric homogeneous
spaces which are not equivariantly isometric.



710 JORGE LAURET

μ equiv. isom. λ

↘↙

μ isom. λ Gμ/Kμ equiv. diff. Gλ/Kλ

↙↘

Gμ/Kμ diff. Gλ/Kλ

↓

Gμ/Kμ homeo. Gλ/Kλ

Figure 1. Notions of equivalence by degree of generality.

Example 4.1. Let Wp,q = SU(3)/S1
p,q be the Aloff–Wallach space described in

Example 3.6, and assume that p, q ∈ Z and are coprime. It is well known that Wp,q has fourth
cohomology ring H4(Wp,q,Z) = Zr, the cyclic group of order r := p2 + pq + q2 (see [2, Lemma
3.3]), showing that there are infinitely many homeomorphism classes among these spaces. More
precisely, if s := pq(p+ q) then the following conditions must be added to r = r̃ in order to get
the respective equivalence type between Wp,q and Wp̃,q̃:

(i) homotopy equivalent: s ≡ ±s̃ mod r (see [19]);
(ii) homeomorphic: s ≡ ±s̃ mod 23.3.r (see [18]);
(iii) diffeomorphic: s ≡ ±s̃ mod 25.3.r if r is a multiple of 7, and mod25.3.7.r otherwise

(see [19]);
(iv) equivariantly diffeomorphic: {p̃, q̃,−(p̃+ q̃)} = {p, q,−(p+ q)} (that is, at the most six

possibilities of having S1
p,q and S1

p̃,q̃ conjugate in SU(3)).

It was not a trivial task to find explicit pairs (p, q) and (p̃, q̃) showing that none of the above
equivalence types coincide for Aloff–Wallach spaces (see [18, 19]).

In what follows, we are interested in describing as simple as possible, for a given notion, the
equivalence class of a homogeneous space μ ∈ Hq,n (see identification (1)) as a subset of Hq,n.
There is a natural linear action of GLq+n(R) on Vq+n given by

h.μ(x, y) = hμ(h−1x, h−1y), x, y ∈ Rq+n, h ∈ GLq+n(R), μ ∈ Vq+n. (6)

The variety of Lie algebras Lq+n is GLq+n(R)-invariant, the Lie algebra isomorphism classes
are precisely the GLq+n(R)-orbits and the isotropy subgroup GLq+n(R)μ equals Aut(Rq+n, μ)
for any μ ∈ Lq+n.

Proposition 4.2. If μ ∈ Hq,n, then h.μ ∈ Hq,n for any h ∈ GLq+n(R) of the form

h :=
[
hq A
0 hn

]
∈ GLq+n(R), hq ∈ GLq(R), hn ∈ GLn(R), A : Rn −→ Rq, (7)

such that

[ht
nhn, adμ Rq|Rn ] = 0, (8)

and

A adμ z|Rn = hq adμ z|Rqh−1
q A ∀z ∈ Rq. (9)
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In that case, Gh.μ/Kh.μ and Gμ/Kμ are equivariantly diffeomorphic and (Gh.μ/Kh.μ, gh.μ) is
equivariantly isometric to (Gμ/Kμ, g〈hn·,hn·〉).

Remark 4.3. It follows from the last assertion in the above proposition that the subspace

{h.μ : hq = I,A = 0, hn satisfies (8)} ⊂ Hq,n,

parameterizes the set of all Gμ-invariant metrics on Gμ/Kμ. Also notice that μ and h.μ have
the same volume if dethn = 1.

Proof. For such an h, we must check that λ := h.μ satisfies conditions (h1)–(h4) defining
Hq,n (see (2)). We first note that

h−1 :=

[
h−1

q −h−1
q Ah−1

n

0 h−1
n

]
.

Condition (h1) always holds since h : (Rq+n, μ) −→ (Rq+n, λ) is an isomorphism of Lie algebras
leaving Rq invariant and it follows from (9) that for all z ∈ Rq, x ∈ Rn,

λ(z, x) =hqμ(h−1
q z,−h−1

q Ah−1
n x) +Aμ(h−1

q z, h−1
n x) + hnμ(h−1

q z, h−1
n x)

=− hq adμ(h−1
q z)h−1

q Ah−1
n x+A adμ(h−1

q z)h−1
n x+ hnμ(h−1

q z, h−1
n x) (10)

=hnμ(h−1
q z, h−1

n x) ∈ Rn.

We therefore obtain that adλ z|Rn = hn adμ h
−1
q z|Rnh−1

n for all z ∈ Rq, which implies that (h4)
holds for λ, and also that λ satisfies (h3) if and only if (8) holds.

There exists a unique isomorphism of Lie groups

ϕ̃ : Gμ −→ Gλ such that dϕ̃|e = h.

Since ϕ̃(Kμ) is a connected Lie subgroup of Gλ with Lie algebra h(Rq) = Rq, we have that
Kλ = ϕ̃(Kμ) and thus (h2) follows.

Concerning the last assertion, we have that the diffeomorphism

ϕ : Gμ/Kμ −→ Gλ/Kλ, ϕ(uKμ) := ϕ̃(u)Kλ ∀u ∈ Gμ, (11)

is well defined and is an isometry between the homogeneous spaces (Gμ/Kμ, g〈hn·,hn·〉) and
(Gλ/Kλ, gλ), as dϕ|eKµ

coincides with the inner product space isometry

hn : (Rn, 〈hn·, hn·〉) −→ (Rn, 〈·, ·〉),
under the natural identifications.

Corollary 4.4. The group GLq(R)×O(n) leaves the set Hq,n invariant and h.μ and μ
are equivariantly isometric homogeneous spaces for any h ∈ GLq(R)×O(n), μ ∈ Hq,n.

Let us now analyse condition (8) more in detail. The isotropy representation adμ : Rq −→
End(Rn) of a homogeneous space μ ∈ Hq,n, which is faithful by (h4) and unitary by (h3), can
be decomposed into isotypical components as

Rn = V n1
1 ⊕ . . .⊕ V nr

r ,

where Viand Vj are non-equivalent irreducible representations of the Lie algebra (Rq, μ) for
all i �= j, and V ni

i � Vi ⊕ . . .⊕ Vi (ni times). The space of intertwining operators is therefore
given by

Endadµ
(Rn) = gln1

(F1)⊕ . . .⊕ glnr
(Fr), (12)
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where Fi = R,C or H depending on the type of Vi. Recall that the possible types of a real
representation are real, complex or quaternionic, that is, Endadµ(Vi) = R,C or H, respectively
(see [6]). It follows from Proposition 4.2 that for each μ ∈ Hq,n, if Uμ is the subset of GLn(R)
defined by

Uμ := {hn ∈ GLn(R) : ht
nhn ∈ Endadµ(Rn)},

then h.μ ∈ Hq,n for any h ∈ Ũμ, where Ũμ is the subset of GLq+n(R) given by

Ũμ :=
{[
hq A
0 hn

]
∈ GLq+n(R) : hq ∈ GLq(R), hn ∈ Uμ, A satisfies (9)

}
.

If we define

sym
F
(m) := {A ∈ glm(F) : Āt = A},

then by using (12) and the polar decomposition one easily obtains that

Uμ = O(n)(U1 × . . .× Ur), Ui := esym
Fi

(ni).

Notice that Ũμ.Hq,n is not necessarily contained in Hq,n, it only satisfies Ũμ.μ ⊂ Hq,n, but we
may consider for each faithful and unitary representation θ : (Rq, μ) −→ End(Rn) the subset
of homogeneous spaces having θ as its isotropy representation, that is,

Hq,n(θ) := {μ ∈ Hq,n : adμ Rq|Rn = θ}.

Thus Uμ = Uλ for any μ, λ ∈ Hq,n(θ), and so if we denote these subsets by Uθ, then

(GLq(R)× Uθ).Hq,n(θ) ⊂ Hq,n(θ).

Proposition 4.5. Gμ/Kμ and Gλ/Kλ, μ, λ ∈ Hq,n, are equivariantly diffeomorphic if and
only if λ ∈ Ũμ.μ.

Proof. If ϕ : Gμ/Kμ −→ Gλ/Kλ is an equivariant diffeomorphism determined by an
isomorphism ϕ̃ : Gμ −→ Gλ and h := dϕ̃|e, then λ = h.μ and hRq ⊂ Rq follows from the fact
that ϕ̃(Kμ) = Kλ. We now use that λ(Rq,Rn) ⊂ Rn to obtain from (10) that A : Rn −→ Rq,
the Rq-component of h|Rn , must satisfy condition (9). Finally, it follows from the fact that
adλ z|Rn = hn adμ h

−1
q z|Rnh−1

n for all z ∈ Rq and condition (h3) that hn satisfies (8), which
implies that h ∈ Ũμ.

The converse assertion is the content of Proposition 4.2.

Summarizing, we have the following.

(i) The group GLq(R)×O(n) acts on Hq,n in such a way that all the elements in the same
orbit are pairwise equivariantly isometric.

(ii) For any μ ∈ Hq,n, the subset Uμ.μ ⊂ Hq,n parameterizes the set of all Gμ-invariant
metrics on Gμ/Kμ, where we embed Uμ ↪→ GLq+n(R) in the usual way (see Remark 4.3).

(iii) For any μ ∈ Hq,n, the subset Ũμ.μ ⊂ Hq,n consists of those elements in Hq,n which are
equivariantly diffeomorphic to Gμ/Kμ.

(iv) The subsets (GLq(R)× Uθ).μ, μ ∈ Hq,n(θ), are precisely the equivariant diffeomorphism
classes inside Hq,n(θ).
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Example 4.6. For μ = μp,q,a,b,c,d,e,f ∈ H1,5 given in Example 3.4 we have that

adμ e0 =

⎡⎢⎢⎢⎢⎣
0

0 −p
p 0

0 −q
q 0

⎤⎥⎥⎥⎥⎦ ,
and hence

Uμ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(5)

⎡⎣r GL1(C)
GL1(C)

⎤⎦ = O(5)

⎡⎣r1 r2I2×2

r3I2×2

⎤⎦ , 0 < p < q,

O(5)
[
GL3(R)

GL1(C)

]
= O(5)

[
esym(3)

rI2×2

]
, 0 = p < q,

O(5)
[
r

GL2(C)

]
=
[
r

eiu(2)

]
, 0 < p = q.

If Gμ � SU(2)× SU(2), then the homogeneous spaces Gμ/Kμ are all diffeomorphic to S3 × S2,
but if 0 � p � q, then two different values of p/q ∈ [0, 1] ∩Q give rise to non-equivalent
Gμ-actions on S3 × S2 (see [5, Example 6.8]), that is, to non-equivariantly diffeomorphic
homogeneous spaces.

5. Curvature invariants

In this section, we describe a quite intriguing necessary and sufficient condition for two
homogeneous spaces μ, λ ∈ Hq,n being isometric. The condition is in the spirit of invariant
theory and was proved by Singer in [34] (see [28, 32] for further information). These results
are being used in some work in progress on homogeneous Ricci solitons.

Let∇μ denote the Levi-Civita connection and Rmμ the corresponding Riemannian curvature
tensor of μ ∈ Hq,n. Recall that any μ ∈ Hq,n is identified with the homogeneous space
(Gμ/Kμ, gμ) according to (1). By identifying Rn with the corresponding Killing vector fields
of Gμ/Kμ, it follows that Rmμ is determined by its value at eKμ, the 4-linear map given by

Rmμ := Rm(gμ)(eKμ) : Rn × Rn × Rn × Rn −→ R.

In the same way, the covariant derivative ∇k
μ Rmμ can be viewed as a vector in

⊗4+k(Rn)∗

for any k � 0 (∇0
μ Rmμ := Rmμ), and we consider for each μ ∈ Hq,n the vector

wμ := (Rmμ,∇μ Rmμ, . . . ,∇m
μ Rmμ) ∈W :=

m⊕
k=0

(⊗4+k(Rn)∗), m :=
n(n− 1)

2
− 1.

If μ, λ ∈ Hq,n are isometric, then the isometry ϕ : Gμ/Kμ −→ Gλ/Kλ can be assumed to satisfy
ϕ(eKμ) = eKλ. Thus h := dϕ|eKµ

∈ O(n) and we have that h.∇k
μ Rmμ = ∇k

λ Rmλ for all k,
where the actions of O(n) ⊂ GLn(R) on the different tensorial vector spaces are the standard
ones. This implies that

wλ ∈ O(n).wμ ∀μ, λ ∈ Hq,n being isometric. (13)

Let us now take f ∈ R[W ]O(n), that is, a polynomial function f : W −→ R which is O(n)-
invariant (that is, f(h.w) = f(w) for all h ∈ O(n), w ∈W ). We also denote by f the function

f : Hq,n −→ R, f(μ) := f(wμ), (14)

which is also polynomial on μ. We call such an f a curvature invariant, as it follows from (13)
that f(μ) = f(λ) for any pair μ, λ ∈ Hq,n of isometric homogeneous spaces. The converse
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assertion is a very nice and important result in homogeneous geometry proved in [34] (see
also [28, Theorem 2.5] for an alternative proof and [32, Theorem 2.3]).

Theorem 5.1. The following assertions are equivalent:

(i) μ, λ ∈ Hq,n are isometric;
(ii) f(μ) = f(λ) for any f ∈ R[W ]O(n);
(iii) wλ ∈ O(n).wμ.

The equivalence between (ii) and (iii) actually follows from a strong result in invariant theory:
R[W ]O(n) separates orbits as O(n) is compact. Since O(n) is a reductive group, another classical
theorem from invariant theory states that R[W ]O(n) is finitely generated as an algebra, say

R[W ]O(n) = 〈f1, . . . , fr〉.
By considering F := (f1, . . . , fr) : Hq,n −→ Rr, we conclude from Theorem 5.1 that

μ, λ ∈ Hq,n are isometric if and only if F (μ) = F (λ).
In other words, the isometry classes in Hq,n are precisely the level sets of a polynomial

function F : Hq,n −→ Rr.

Example 5.2. A family of curvature invariants whose computation is usually doable is
fk(μ) := tr Rick

μ, where Ricμ is the Ricci operator of μ ∈ Hq,n. Recall that the values of
f1, . . . fn at μ actually determine the set of Ricci eigenvalues (counting multiplicities). As
a homogeneous manifold is flat if and only if it is Ricci flat (see [1]), the flat elements in Hq,n

can be characterized by a single polynomial equation: f2(μ) = 0.

The setting described in this section motivates the definition of a distance on Hq,n given by

d(μ, λ) := dW (O(n).wμ,O(n).wλ) = min{dW (h.wμ, h
′.wλ) : h, h′ ∈ O(n)},

where dW is the euclidean distance in W . We may also consider the Hausdorff distance between
compact subsets of W , but this will be equivalent since the subsets involved are orbits by a
group of isometries of W . It follows from Theorem 5.1 that d(μ, λ) = 0 if and only if μ and
λ are isometric as homogeneous manifolds. If μk → λ in Vq+n, as k →∞, then d(μk, λ)→ 0,
and hence the topology of the metric space (Hq,n, d) is weaker than that induced on Hq,n by
the usual vector space topology of Vq+n. We note that these topologies are not equivalent,
it may, for instance, happen that O(n).wμk

→ {0} = O(n).w0, and nevertheless μk → λ �= 0
(for example, take the sequence μk := μ1+1/k,1−1/k,0 in Example 3.2 of nonflat metrics on E(2)
converging to the flat manifold λ := μ1,1,0).

6. Convergence

In this section, all manifolds are assumed to be connected and all Riemannian metrics to be
smooth (that is, C∞) and complete.

6.1. General case

Let M be a differentiable manifold. A sequence gk of Riemannian metrics on M is said to
converge (smoothly) to a Riemannian metric g as k →∞ (denoted by gk → g) if for all compact
subsets K ⊂M , the tensor gk − g and its covariant derivatives of all orders (with respect to
any fixed background connection) each converge uniformly to zero on K.
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Remark 6.1. By using charts with relatively compact domains which coverM , convergence
gk → g can be rephrased as follows: the partial derivative ∂α(gk)ij of the coordinates (gk)ij of
the metrics converges to ∂αgij uniformly, as k →∞, for every chart and every multiindex α.

A pointed Riemannian manifold (M, g, p) is simply a Riemannian manifold (M, g) with
a point p ∈M , which plays the role of a basepoint or a point of reference. Two (M, g, p),
(M ′, g′, p′) are called isometric if there is an isometry ϕ : (M, g) −→ (M ′, g′) such that
ϕ(p) = p′.

Definition 6.2 (Smooth pointed or Cheeger–Gromov topology). A sequence (Mk, gk, pk)
of pointed Riemannian manifolds is said to converge in the pointed sense to a pointed
Riemannian manifold (M, g, p) as k →∞ if there exist

(i) a sequence of open subsets Ωk ⊂M containing p, so that any compact subset of M
eventually lies in all Ωk for sufficiently large k and

(ii) a sequence of smooth maps φk : Ωk −→Mk which are diffeomorphisms onto open subsets
Λk ⊂Mk (that is, embeddings) and satisfy φk(p) = pk for all k;

such that φ∗kgk → g smoothly as k →∞ on M (or more precisely, on every compact sub-
set of M).

Some remarks on this topology may be in order (see, for example, [3, Chapter 9; 7
Chapter 4; 10 Chapter 8+; 31 Chapter 10; 35 Section 7.1] for further information). Assume
that (Mk, gk, pk) converges in the pointed sense to (M, g, p) as k →∞.

(i) If M is compact, then φk : M −→Mk is a diffeomorphism for all k (as φk(M) is open
and closed in M). Thus the basepoints play no role in the pointed convergence, which in this
case just means that (Mk, gk) converges smoothly to (M, g) up to pullback by diffeomorphisms.

(ii) On the contrary, the example of the Rosenau metrics (that is, longer and longer cigars
converging to a cylinder, cf. [3, 9.2.2]) shows that M can be noncompact and nonsimply
connected, even when all the manifolds Mk are compact and simply connected.

(iii) Also, the location of the basepoints can be crucially involved in the convergence when
M is noncompact: if g1 is a metric on Rn which coincides with the flat metric g0 outside a
compact set, then (Rn, g1, pk)→ (Rn, g0, 0) if pk →∞, but (Rn, g1, pk)→ (Rn, g1, p) if pk = p
for all k (see also the first example in [3 Figure 9.3; 35 Section 7.1]).

(iv) It is easy to check that the distances satisfy

dgk
(φk(q), φk(q′)) −→ dg(q, q′), ∀ q, q′ ∈M,

from which it follows that for any r > 0 the metric balls satisfy Bg(p, r) ⊂ Ωk and Bgk
(pk, r) ⊂

Λk for sufficiently large k (recall that metric balls are compact due to completeness).
(v) The limit (M, g, p) is unique up to isometry.
(vi) The following two conditions must hold:

(a) bounded geometry: for all r > 0 and j ∈ Z�0,

sup
k

sup
Bgk

(pk,r)

‖∇j
gk

Rm(gk)‖gk
<∞, (15)

where ∇gk
is the Levi-Civita connection and ‖ · ‖gk

denotes the corresponding norm
in the spaces of sections of the different tensor bundles over Mk;

(b) non-collapsing:
inf
k

inj(Mk, gk, pk) > 0, (16)

where inj(Mk, gk, pk) is the injectivity radius of (Mk, gk) at pk.
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Recall that the injectivity radius of (M, g) at p is the largest ε for which the exponential map
expp : B(0, ε) −→ Bg(p, ε) is a diffeomorphism, where B(0, ε) = {x ∈ TpM : gp(x, x) < ε2}.
The following result is considered the fundamental theorem of convergence theory of
Riemannian manifolds.

Theorem 6.3 (Compactness). Let (Mk, gk, pk) be a sequence of complete pointed Rie-
mannian manifolds of dimension n satisfying (15) and (16). Then there exists a subsequence of
(Mk, gk, pk) which converges to a complete pointed Riemannian manifold (M, g, p) of dimension
n in the pointed topology.

A proof of this theorem can be found in [7, Chapter 4; 12, 2.3; 31, 10.3–10.4], and its origins
can be traced back to ideas of Gromov [10] and Cheeger. We note that the finiteness of the
number of diffeomorphism classes follows on any subset of compact Riemannian manifolds
where a compactness (or precompactness) theorem can be applied (recall that a sequence of
pairwise nondiffeomorphic manifolds can never subconverge to a compact limit).

6.2. Homogeneous case

If gk is a sequence of homogeneous metrics on a differentiable manifoldM such that gk smoothly
converges to a metric g, then g is also homogeneous. Indeed, given p, q ∈M there exists for each
k a gk-isometry ϕk such that ϕk(p) = q, and it follows from gk → g that the set {ϕk} is locally
uniformly bounded and equicontinuous. Hence, by the Arzela–Ascoli theorem, a subsequence
converges locally uniformly to a continuous map ϕ : M −→M which is automatically an
isometry of (M, g) as ϕ preserves its Riemannian distance. Although the set of all isometry
classes of metrics on a given noncompact M endowed with the quotient smooth topology is
not Hausdorff, it is proved in [13, Sections 6.1, 6.2] that, on the contrary, the subset of those
classes which are homogeneous is so, by applying an Arzela–Ascoli argument as above.

We are interested here in pointed convergence of homogeneous manifolds. Special features
for this case are hard to find in the literature. For a strong use of the pointed topology of
compact homogeneous manifolds, we refer to the proofs of [5, Theorems 1.1 and 2.1].

A few comments are in order at this point. Let us assume that all (M, gk) are homogeneous
and that (Mk, gk, pk) converges in the pointed sense to (M, g, p) as k →∞.

(i) Two pointed homogeneous manifolds are isometric if and only if they are isometric in
the usual sense.

(ii) The limit (M, g) is homogeneous. Indeed, given q ∈M , we can assume that p, q ∈ Ωk

for all k and define fk := φ−1
k ◦ hk ◦ φk, where hk ∈ I(Mk, gk) satisfies hk(pk) = φk(q). Thus

fk(p) = q for all k and by an Arzela–Ascoli argument together with a diagonal procedure one
gets a limit f : M −→M with f(p) = q, which automatically satisfies f ∈ I(M, g) by using
that dgk

(φk(a), φk(b))→ dg(a, b) for all a, b ∈ Ωk.
(iii) The location of the basepoints pk and p play no role in the pointed convergence, in

the sense that we can change all of them by any other sequence qk ∈Mk and q ∈M and use
homogeneity. However, unlike the compact case, M being nonhomeomorphic to Mk for all k is
a possible behaviour (for example, a sequence of expanding spheres converges to the plane in
the pointed topology).

(iv) It may also happen in the homogeneous case that all Mk are simply connected but M
is not. Take for instance the sequence gk of left-invariant metrics on S3 obtained by scaling
times k the round metric on the orthogonal complement of any fixed direction X ∈ su(2). It
is not very hard to check that conditions (15) and (16) hold for (S3, gk), and thus there must
be a subsequence converging to a homogeneous manifold (M, g) in the pointed sense by the
compactness theorem, which is easily seen to be flat. Since γ(t) = etX is a closed geodesic of
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(S3, gk) having the same length for all k, it follows that (M, g) must have a closed geodesic as
well and so M cannot be simply connected (see Example 6.17 for a more detailed treatment
of this example, where it is proved that the pointed limit is indeed S1 × R2). The manifolds
(S3, gk) are called Berger spheres in the literature, and the sequence (S3, (1/k)gk) is a famous
example of collapsing (toward S2) with bounded curvature.

There are two other notions of convergence (infinitesimal and local) which naturally arise
in studying the space of homogeneous manifolds and where the topology of the manifolds is
much less involved.

Definition 6.4 (Infinitesimal). A sequence (Mk, gk) of homogeneous manifolds is said to
infinitesimally converge to a homogeneous manifold (M, g) as k →∞ if there exist

(i) a sequence of open subsets Ωk ⊂M containing a point p ∈M and
(ii) a sequence of embeddings φk : Ωk −→Mk;

such that φ∗kgk → g smoothly as k →∞ at p, in the sense that for any ε > 0, there exists
k0 = k0(ε) such that for k � k0,

sup
Ωk

‖∇j
g(φ

∗
kgk − g)‖g < ε ∀j ∈ Z�0.

As in the homogeneous case one only needs to control covariant derivatives up to a finite
order (see Section 5), it is enough for the infinitesimal convergence the existence of a k0(ε, j)
satisfying the required property for each fixed order j. We also note that the point p can
be changed by any other point in M due to homogeneity. The infinitesimal convergence of
homogeneous manifolds is somewhat weak, notice that it does not require any condition on
the size of the neighbourhoods and so actually only the germs of the metrics at p are involved.
The injectivity radius may therefore go to zero and it is even possible that all manifolds Mk

and M be pairwise nonhomeomorphic, as Example 6.6 shows.

Definition 6.5 (local). A sequence (Mk, gk) of homogeneous manifolds is said to locally
converge to a homogeneous manifold (M, g) as k →∞ if there exist

(i) a nonempty open subset Ω ⊂M ;
(ii) a sequence of embeddings φk : Ω −→Mk;

such that φ∗kgk → g smoothly as k →∞ on Ω.

Notice that the open subset Ω can be assumed to contain any point p ∈M by using
homogeneity. It follows at once from the definitions that the three notions of convergence
of homogeneous manifolds are related by

pointed =⇒ local =⇒ infinitesimal.

Actually, the only difference between these three definitions of convergence lies in the size of
the open subsets in the sequence Ωk ⊂M :

(i) Infinitesimal: no condition, Ωk can be arbitrarily small (for example,
⋂

Ωk = {p}).
(ii) Local: Ωk stabilizes, that is, Ωk ⊃ Ω �= ∅, for sufficiently large k.
(iii) Pointed: Ωk exhausts M , that is, it eventually contains any given compact subset of M .

Both converse assertions are false: nonlocal infinitesimal convergence and nonpointed local
convergence can be shown to occur (see Examples 6.6 and 6.17).
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6.3. Algebraic convergence

Our aim in what follows is to study until what extent the algebraic side of a homogeneous
manifold is involved in convergence issues. In Section 3, we have defined a subset Hq,n of
the variety of Lie algebras which parameterizes the set of all n-dimensional simply connected
homogeneous spaces with q-dimensional isotropy. The spaceHq,n inherits the usual vector space
topology from Vq+n, and a first natural question therefore arises: What kind of convergence of
Riemannian manifolds this topology corresponds to?

Before starting with a rather technical matter, let us point out some useful facts.

(i) As for the other notions of convergence, a quick inspection of the examples in Section 3
shows that both the topology and the Lie structure may also drastically change in the limit
for the usual convergence of brackets (for example, in Example 3.2, μ1,1/k,1/k is a sequence of
metrics on the simple Lie group SU(2) = S3 that converges to μ1,0,0, a metric on the Heisenberg
Lie group, which is nilpotent and diffeomorphic to R3).

(ii) For any μ ∈ Hq,n, we can define a sequence μk ∈ Hq,n by μk|Rq×Rq+n := μ, μk|Rn×Rn :=
(1/k)μ, which converges to a flat element λ ∈ Hq,n (recall that λ is of the form (K � Rn)/K
for some compact subgroup K ⊂ O(n)).

(iii) Since in the homogeneous case it is enough to control the curvature tensors and
their covariant derivatives at a single point, and since they all depend continuously on μ
(see Section 5), it follows that the usual convergence μk → λ implies that the sequence
(Gμk

/Kμk
, gμk

) has bounded geometry (see (15)).
(iv) On the other hand, if μk locally converges to λ (see Definition 6.5), then the sequence

satisfies the non-collapsing condition (see (16)). But under local convergence, bounded
geometry also follows easily. We therefore conclude from the compactness theorem that any
locally convergent sequence μk must have a subsequence converging to a homogeneous manifold
in the pointed topology.

(v) Pointed or local subconvergence may however not follow from just the usual convergence
of Lie brackets μk → λ, as Example 6.6 shows.

Example 6.6. Let μp.q denote the Lie bracket μp,q,1,1,1,1 from Example 3.6. We consider
the sequence of Aloff–Wallach spaces μk := μ1,1+1/k, which converges to μ1,1 in H1,7, as
k →∞. However, the sequence (W1,1+1/k, gμk

) = (Gμk
/Kμk

, gμk
) is certainly not converging

in the pointed topology to (W1,1, gμ1,1) since the manifolds W1,1+1/k = Wk,k+1 are pairwise
nonhomeomorphic (see Example 4.1) and W1,1 is compact. Since pointed convergence is
not possible for any subsequence, we conclude again from the compactness theorem that
infk inj(W1,1+1/k, gμk

) = 0 (recall that condition (15) holds by the fact that μk → μ1,1), and
so μk does not locally converge to μ1,1 either.

Let (Gμ/Kμ, gμ) be the homogeneous space associated to μ ∈ Hq,n, as in (1).

Definition 6.7. The Lie injectivity radius of (Gμ/Kμ, gμ) is the largest rμ > 0 such that

ψμ := πμ ◦ expμ : B(0, rμ) −→ Gμ/Kμ,

is a diffeomorphism onto its image, where expμ : Rq+n −→ Gμ is the Lie exponential map,
πμ : Gμ −→ Gμ/Kμ is the usual quotient map and B(0, rμ) denotes the euclidean ball of radius
rμ in Rn.

In other words, B(0, rμ) is the largest ball where the canonical coordinates ψμ are defined.
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Remark 6.8. The Lie injectivity radius can of course be defined for a homogeneous space
(G/K, g〈·,·〉) in its classical presentation, say with Ad(K)-invariant decomposition g = k⊕ p
(see Section 2): just use balls in (p, 〈·, ·〉). Notice that the Lie injectivity radius depends on
both the Lie theoretical data of G/K and the Riemannian metric g〈·,·〉.

Every μ ∈ Hq,n uniquely determines a metric on a neighbourhood of 0 ∈ Rn as follows. By
setting Uμ := ψμ(B(0, rμ)), we can associate to μ a metric g̃μ on B(0, rμ) given by

g̃μ := ψ∗
μ(gμ|Uµ

). (17)

The metric g̃μ on B(0, rμ) does not depend on Gμ, we can actually take any Lie group Gμ

with Lie algebra (Rq+n, μ), not necessarily simply connected, as long as the connected Lie
subgroup Kμ with Lie algebra Rq be closed in Gμ. Moreover, what g̃μ really represents is a
locally homogeneous structure, which happens to depend only on μ ∈ Hq,n. This will become
quite clear in Proposition 6.9.

It will be useful to have an expression for the metric g̃μ in terms of the canonical global
chart (x1, . . . , xn) of B(0, rμ) ⊂ Rn. For a multi-index α = (α1, . . . , αn), we denote by xα the
monomial xα1

1 . . . xαn
n , where x = (x1, . . . , xn) ∈ Rn and |α| := α1 + . . .+ αn. By ‘polynomial

on μ’ we will always mean polynomial on the coordinates of μ defined by

μ(ei, ej) =
q+n∑
k=1

μk
ijek,

where {ei} is the canonical basis of Rq+n.

Proposition 6.9. For each μ ∈ Hq,n, the coordinate (g̃μ)ij of the metric g̃μ is a real
analytic function on x,

(g̃μ)ij(x) =
∑
α

aij
α (μ)xα, 1 � i, j � n,

which converges absolutely for x ∈ B(0, rμ) ⊂ Rn, where rμ is the Lie injectivity radius of
μ. Each coefficient aij

α is a universal polynomial expression on μ homogeneous of degree |α|,
depending only on i, j, α, q and n. The lower terms are given by

(g̃μ)ij(x) = δij − 1
2

n∑
k=1

(μq+i
q+k,q+j + μq+j

q+k,q+i)xk

+
n∑

k,l=1

(
1
4

n∑
s=1

μq+s
q+k,q+iμ

q+s
q+l,q+j +

1
6

q+n∑
r=1

μq+i
q+k,rμ

r
q+l,q+j + μq+j

q+k,rμ
r
q+l,q+i

)
xkxl

+ monomials of degree � 3.

Proof. We start by recalling the formula for the derivative of the exponential map expμ :
Rq+n −→ Gμ (see, for instance [36, 2.14.3]), given by

d expμ |x = dLexpµ(x)|e ◦ I − e
− adµ x

adμ x
∀x ∈ Rq+n, (18)

where Rq+n is identified with the tangent space at x, Lu denotes left multiplication by u on
Gμ and

I − e− adµ x

adμ x
:=

∞∑
k=0

(−1)k

(k + 1)!
(adμ x)k = I − 1

2
adμ x+

1
6
(adμ x)2 − 1

24 (adμ x)3 + . . . .
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Since the ij-entry of the matrix of adμ x with respect to the basis {e1, . . . , eq+n} is given by
(adμ x)ij =

∑
k

μi
kjxk, we have that

(
I − e− adµ x

adμ x

)
ij

=
∑
α

bijα (μ)xα, 1 � i, j � q + n, (19)

where bijα is polynomial on μ of degree |α|. If we set u := expμ(x) and A := (I − e− adµ x)/adμ x
for short, then it follows from (18), equality πμ ◦ Lu = τ(u) ◦ πμ and (3) that

(g̃μ)ij(x) = gμ(ψμ(x))(dψμ|xeq+i, dψμ|xeq+j)
= gμ(uKμ)(dπμ|ud expμ |xeq+i, dπμ|ud expμ |xeq+j)
= gμ(uKμ)(dπμ|udLu|eAeq+i, dπμ|udLu|eAeq+j)
= gμ(uKμ)(dτμ(u)|eKµ

dπμ|eAeq+i, dτμ(u)|eKµ
dπμ|eAeq+j)

= 〈dπμ|eAeq+i, dπμ|eAeq+j〉.
Now we use that dπμ|e : Rq+n −→ Rn is the projection relative to Rq+n = Rq ⊕ Rn, the fact

that x = (0, . . . , 0, x1, . . . , xn) and (19) to obtain

(g̃μ)ij(x) =

〈
n∑

k=1

(∑
α

bq+k,q+i
α (μ)xα

)
eq+k,

n∑
k=1

(∑
α

bq+k,q+j
α (μ)xα

)
eq+k

〉

=
n∑

k=1

⎛⎝∑
α,β

bq+k,q+i
α (μ)bq+k,q+j

β (μ)xα+β

⎞⎠ .

If we set

aij
α (μ) :=

n∑
k=1

∑
α′+β′=α

bq+k,q+i
α′ (μ)bq+k,q+j

β′ (μ),

then (g̃μ)ij(x) =
∑

α a
ij
α (μ)xα, with deg(aij

α ) = deg(bq+k,q+i
α′ bq+k,q+j

β′ ) = |α′|+ |β′| = |α|. The last
assertion on the lower terms easily follows from(

I − e− adµ x

adμ x

)
q+i,q+j

= δi,j − 1
2

n∑
k=1

μq+i
q+k,q+jxk +

1
6

n∑
k,l=1

(
q+n∑
r=1

μq+i
q+k,rμ

r
q+l,q+j

)
xkxl

+ monomials of degree � 3,

concluding the proof of the proposition.

Corollary 6.10. Let μk be a sequence in Hq,n such that μk → λ ∈ Hq,n and all ψμk
and

ψλ are embeddings from an open neighbourhood Ω of 0 ∈ Rn. Then g̃μk
→ g̃λ smoothly on Ω.

Proof. The coordinates (g̃μ)ij of the metric g̃μ have been described in Proposition 6.9 for
any μ ∈ Hq,n. We therefore have that

∂β(g̃μk
)ij =

∑
α

aij
α (μk)∂βxα,

and since the coefficient aij
α (μ) depends polynomially on μk, it follows that aij

α (μk)→ aij
α (λ)

uniformly, as k →∞. This implies that g̃μk
→ g̃λ smoothly on Ω (see Remark 6.1), as was to

be shown.
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Remark 6.11. If instead of canonical coordinates ψμ = πμ ◦ expμ : B(0, rμ) ⊂ Rn −→
Gμ/Kμ, we use any coordinate system of the form

B(0, r1μ)× . . .×B(0, rm
μ ) ⊂W1 ⊕ . . .⊕Wm = Rn −→ Gμ/Kμ,

(x1, . . . , xm) �−→ πμ(expμ(x1) . . . expμ(xm)),

(cf. for example, [15, Lemma 2.4]) we can define the corresponding g̃μ and r1μ, . . . , r
m
μ will play

the role of the Lie injectivity radius for any μ ∈ Hq,n relative to our fixed decomposition Rn =
W1 ⊕ . . .⊕Wm. A universal formula for the coordinate (g̃μ)ij analogous to Proposition 6.9
follows in much the same way, and therefore smooth convergence g̃μk

→ g̃λ for any convergent
sequence μk → λ holds as in Corollary 6.10.

It follows from the proof of Proposition 6.9 that for any x close to 0 in Rn we have

(g̃μ)ij(x) = 〈(I − 1
2 adμ x+ 1

6 (adμ x)2 − . . .)eq+i, (I − 1
2 adμ x+ 1

6 (adμ x)2 − . . .)eq+j〉,
where one has to project onto Rn before taking the inner product. It is therefore evident
that g̃μ does not depend for instance on μ|Rq×Rq , and thus the convergence of a sequence of
metrics g̃μk

→ g̃λ might not affect the brackets completely, in the sense that it might not imply
convergence of some part of the brackets μk to the corresponding part of λ.

We are however in a position to prove that the usual topology onHq,n essentially corresponds
to infinitesimal convergence (see Definition 6.4).

Theorem 6.12. Let μk be a sequence and λ an element in Hq,n.

(i) If μk → λ in Hq,n (usual vector space topology), then (Gμk
/Kμk

, gμk
) infinitesimally

converges to (Gλ/Kλ, gλ).
(ii) If (Gμk

/Kμk
, gμk

) infinitesimally converges to (Gλ/Kλ, gλ), then

pr
Rn ◦μk|Rn×Rn −→ pr

Rn ◦λ|Rn×Rn ,

where pr
Rn : Rq+n −→ Rn is the projection with respect to the decomposition Rq+n = Rq ⊕ Rn.

Proof. Let us first prove part (i). By arguing as in the proof of Corollary 6.10, we get
that g̃μk

→ g̃λ at 0 ∈ Rn, in the sense used in Definition 6.4. In other words, (B(0, rμk
), g̃μk

)
infinitesimally converges to (B(0, rλ), g̃λ), and thus (i) follows. Indeed, if Ωk := ψλ(B(0, r̃)),
where r̃ := min{rμk

, rλ}, and φk := ψμk
◦ ψ−1

λ , then as k →∞,

φ∗kgμk
= (ψ−1

λ )∗ψ∗
μk
gμk

= (ψ−1
λ )∗g̃μk

−→ (ψ−1
λ )∗g̃λ = gλ, at eKλ.

For part (ii), we first note that if ∇μ denotes the Levi-Civita connection of g̃μ, then

g̃μ(0)((∇μ
er
ej)0, ei) = 1

2 (μi
rj + μj

ri + μr
ji), q + 1 � i, j, r � q + n,

(see, for instance [4, 7.27]), and if α is the multi-index with 1 at entry r and 0 elsewhere, then
it is easy to see by using Proposition 6.9 that

∂α(g̃μ)ij(0) = − 1
2 (μi

rj + μj
ri), q + 1 � i, j, r � q + n.

Therefore, the convergence g̃μk
→ g̃λ at 0 ∈ Rn (recall that this is equivalent to gμk

→ gλ at
eKλ) implies that

(μk)i
rj + (μk)j

ri + (μk)r
ji −→ λi

rj + λj
ri + λr

ji, (μk)i
rj + (μk)j

ri −→ λi
rj + λj

ri,

which gives uniform convergence (μk)r
ji → λr

ji for all q + 1 � i, j, r � q + n, as k →∞. This
implies that pr

Rn ◦μk|Rn×Rn → pr
Rn ◦λ|Rn×Rn , concluding the proof of the theorem.
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Remark 6.13. Concerning to what parts of the brackets other than that given in
Theorem 6.12, (ii) will converge under infinitesimal convergence, we can observe the following.

(i) It follows from the almost-effectiveness condition (h4) (see Section 3) that μk|Rq×Rq is
determined by μk|Rq×Rn .

(ii) If μk(Rn,Rn) ⊂ Rn for all k, then it is easy to prove that infinitesimal convergence is
equivalent to only μk|Rn×Rn → λ|Rn×Rn , as k →∞. In other words, the isotropy Lie subalgebra
and its isotropy representation are not affected at all by the convergence g̃μk

→ g̃λ at 0 ∈ Rn

if (Rn, μk) is a Lie subalgebra (and consequently Gμk
is a semidirect product).

(iii) On the other hand, under the assumption pr
Rq ◦μk(Rn,Rn) = Rq for all k, it is

reasonable to expect from Theorem 6.12, (ii), the formula for the coefficients of monomials
of degree 2 in the coordinates of g̃μk

(x) (see Proposition 6.9) and the first observation above
that infinitesimal convergence will imply the full convergence μk → λ.

Recall from Example 6.6 that a positive lower bound on the Lie injectivity radii is necessary
to obtain local convergence from brackets convergence. We now prove that this suffices.

Theorem 6.14. Let μk be a sequence such that μk → λ in Hq,n, as k →∞, and assume
that infk rμk

> 0. Then

(i) g̃μk
→ g̃λ smoothly on some ball B(0, r̃) ⊂ Rn, r̃ > 0;

(ii) (Gμk
/Kμk

, gμk
) locally converges to (Gλ/Kλ, gλ);

(iii) there exists a subsequence of (Gμk
/Kμk

, gμk
) which converges in the pointed sense to a

homogeneous manifold locally isometric to (Gλ/Kλ, gλ) and
(iv) (Gμk

/Kμk
, gμk

) converges in the pointed sense to (Gλ/Kλ, gλ) if Gλ/Kλ is compact.

Remark 6.15. Two different subsequences of (Gμk
/Kμk

, gμk
) may converge to different

limits in the pointed topology if Gλ/Kλ is not compact (see Example 6.17).

Remark 6.16. The metrics g̃μk
and g̃λ, in part (i) can be replaced by the ones obtained by

considering the other possible coordinates described in Remark 6.11. This is often useful as the
radii r1μ, . . . , r

m
μ may be larger than the Lie injectivity radius rμ, providing smooth convergence

on a larger open subset of Rn. We have, for example, that exp : sl2(R) −→ S̃L2(R) is not a
diffeomorphism, and ϕ(xe1 + ye2 + ze3) := exp(xe1). exp(ye2 + ze3) is so if {ei} is a basis of
sl2(R) such that [e2, e3] = −e1, [e3, e1] = e2, [e1, e2] = e3 (this will be used in Examples 6.17
and 6.18 to prove certain pointed convergence).

Proof. The first two items follow by arguing as in the proof of Theorem 6.12 and using
that, in this case, we can fix a neighbourhood of the form Ω = ψλ(B(0, r̃)) of eKλ.

From part (ii) and the compactness theorem, we obtain a subsequence converging to
a complete Riemannian manifold (M, g) which is automatically homogeneous. But such a
subsequence also locally converges to (Gλ/Kλ, gλ), and so (M, g) must be locally isometric
to (Gλ/Kλ, gλ). This proves (iii). If in addition, Gλ/Kλ is compact, then M is necessarily
diffeomorphic to Gλ/Kλ as it must be diffeomorphic to Gμk

/Kμk
for all k and hence M is

simply connected. As (M, g) is also complete, we get that it is isometric to (Gλ/Kλ, gλ) and
part (iv) follows.

We now apply Theorem 6.14 to the following examples.
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Example 6.17. For any μ = μa,b,c as in Example 3.2 we define

ψμ : R× R2 −→ Gμ, ψμ(θ, x, y) := expμ(θe1). expμ(xe2 + ye3).

There exist r, s > 0 depending on μ such that ψμ : (−s, s)×B(0, r) −→ Gμ is an embedding.
We know that any convergent sequence μk → λ of these Lie brackets produces a smooth
convergence ψ∗

μk
gμk
→ ψ∗

λgλ on any neighbourhood of 0 ∈ R3 where all ψμk
, ψλ are embeddings

(see Corollary 6.10 and Remark 6.11).

(i) As a first example, we take μk := μ−1/k,1,1 → μ0,1,1 =: λ, as k →∞, and use that in
this case all ψμk

and ψλ are diffeomorphisms from the whole R3 to the corresponding Lie group
(recall that Gμk

� S̃L2(R) for all k and Gλ � E(2)), to conclude that (Gμk
, gμk

) converges in
the pointed sense to (Gλ, gλ), a flat manifold diffeomorphic to R3.

(ii) Secondly, we consider μk := μ1/k,1,1 → μ0,1,1 = λ, as k →∞, a case that is topologically
more involved as Gμk

� S3 for all k and Gλ is noncompact. By using that

hk : (R3, μ1) −→ (R3, μk = hk.μ1), hk =

⎡⎣1 √
k √

k

⎤⎦ ,
is an isomorphism of Lie algebras, one easily obtains that

ψk := ψμk
: (−s, s)×B(0,

√
kr) −→ Gμk

is an embedding for all k, where r, s > 0 are the existing numbers with this property for ψ1. If

R×B(0,
√
kr)

pk−→ S1 ×B(0,
√
kr)

φk−→ Gμk
,

are, respectively, defined by pk(θ, x, y) := (eiθ/2, x, y) and

φk(eiθ, x, y) := expμk
(2θe1). expμk

(xe2 + ye3),

then ψk = φk ◦ pk and since ψk is an immersion we get that φk is an embedding for all
k. As p∗kφ

∗
kgμk

= ψ∗
kgμk

→ ψ∗
λgλ smoothly on each open subset of the form (−s+ t, s+ t)×

B(0,
√
kr), t > 0, and pk is a local isometry, one obtains that φ∗kgμk

→ g∞ smoothly on compact
subsets of S1 × R2, as k →∞, where g∞ is the metric on S1 × R2 defined by p∗∞g∞ := ψ∗

λg̃λ. In
other words, we conclude that (Gμk

, gμk
) converges to the flat manifold S1 × R2 in the pointed

topology.
(iii) We now use the two sequences above to show that the limit for the pointed

subconvergence stated in Theorem 6.14 may not be unique. Indeed, consider the sequence

μk :=
{
μ1/k,1,1 if k even,
μ−1/k,1,1 if k odd,

which clearly satisfies μk → λ = μ0,1,1, though we have proved pointed convergence μ2k →
S1 × R2 and μ2k+1 → R3.

(iv) The sequence μk := μ0,k,k diverges as k →∞; however, they are all flat and diffeomor-
phic to R3 and hence pointed convergence to the euclidean space R3 holds.

(v) The Ricci eigenvalues of the divergent sequence μ±
k := μ±1/

√
k,
√

k,
√

k satisfy{
1
2k
,±1− 1

2k
,±1− 1

2k

}
−→ {0,±1,±1}.

This suggests that some kind of convergence μ+
k → R× S2 or S1 × S2, and μ−

k → R×H2,
should hold. The first one cannot be pointed subconvergence as the injectivity radii go to 0,
but for the second one, pointed convergence actually holds, and this will be proved in the next
example by working on H1,3 instead of H0,3 (recall that R×H2 is not reached by the family
μa,b,c).
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Example 6.18. We consider a sequence of the form μk := μak,bk,1,1 ∈ H1,3 as in Exam-
ple 3.3, such that a1 = −1, ak → 0−, b1 = 0, bk → −1 and ak + bk ≡ −1. Thus the sequence
μk consists of left-invariant metrics on S̃L2(R) (with an extra symmetry) and μk → λ :=
μ0,−1,1,1, the manifold R×H2. In much the same way as Example 6.17(i), one can construct
diffeomorphisms

ψk : R3 −→ Gμk
/Kμk

= (R× S̃L2(R))/Rk,

ψλ : R3 −→ Gλ/Kλ = R× (S̃L2(R)/R),

such that ψ∗
kgμk

→ ψ∗
λgλ smoothly on R3. We therefore obtain that (Gμk

/Kμk
, gμk

) converges
in the pointed sense to R×H2. By computing the Ricci eigenvalues, we deduce that for all k,
μ−1/

√
k,−1+1/

√
k,1,1 ∈ H1,3 is isometric to μ−

k ∈ H0,3 from Example 6.17(v), which diverges as
a sequence of brackets.

6.4. Lie groups case

Our aim in this section is to go over again the case of left-invariant metrics on Lie groups
(that is, H0,n), the one which has been mostly applied in the literature (cf. for example, the
survey [22] and the references therein). Recall from Example 3.1 that H0,n is simply the variety
Ln of n-dimensional Lie algebras, and we identify

μ ∈ Ln ←→ (Gμ, gμ) = (Gμ, 〈·, ·〉),
where gμ = g〈·,·〉 ≡ 〈·, ·〉 denotes the left-invariant metric on the simply connected Lie group
Gμ determined by the fixed inner product 〈·, ·〉 we have on the Lie algebra (Rn, μ) of Gμ. Every
h ∈ GLn(R) defines an isometry

(Gh.μ, 〈·, ·〉) −→ (Gμ, 〈h·, h·〉),
from which we deduce that the orbit GLn(R).μ ⊂ Ln parameterizes the set of all left-invariant
metrics on Gμ and the orbit O(n).μ the subset of those which are equivariantly isometric to
(Gμ, 〈·, ·〉) (notice that Ũμ = Uμ = GLn(R) for any μ ∈ Ln).

The following lower bound for the Lie injectivity radius gives rise to special convergence
features for Lie groups which are not valid in the general homogeneous case. Recall that μ ∈ Ln

is said to be completely solvable if all the eigenvalues of adμ x are real for any x. In particular,
any nilpotent and any Iwasawa-type solvable μ is completely solvable.

Lemma 6.19. Let rμ be the Lie injectivity radius of μ ∈ Ln = H0,n. Then,

(i) rμ � π/‖μ‖;
(ii) rμ =∞ for any completely solvable μ (in particular, Gμ is diffeomorphic to Rn).

Proof. It is well known that, for any μ ∈ Ln, the neighbourhood of 0 ∈ Rn defined by

Vμ := {x ∈ Rn : |Im(c)| < π for any eigenvalue c of adμ x}
satisfies that expμ : Vμ −→ Gμ is a diffeomorphism onto its image (see [36, pp. 112]). On the
other hand, for any eigenvalue c of adμ x, one has

|Im(c)| � |c| � (tr adμ x(adμ x)t)1/2 � ‖μ‖‖x‖,
where ‖μ‖2 :=

∑ ‖μ(ei, ej)‖2 =
∑

tr adμ ei(adμ ei)t. This implies that B(0, π/‖μ‖) ⊂ Vμ and
so part (i) follows. Concerning part (ii), it is enough to note that Vμ = Rn in the completely
solvable case.
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On the other hand, the parts of the brackets μk which might not be affected by an
infinitesimal convergence g̃μk

→ g̃λ are not present here, as q = 0. We can therefore rephrase
Theorems 6.12 and 6.14 in the case of Lie groups in a much stronger way as follows.

Corollary 6.20. Let μk be a sequence in Ln = H0,n. Then the following conditions are
equivalent:

(i) μk → λ in Ln (usual vector space topology);
(ii) (Gμk

, 〈·, ·〉) infinitesimally converges to (Gλ, 〈·, ·〉);
(iii) (Gμk

, 〈·, ·〉) locally converges to (Gλ, 〈·, ·〉);
(iv) (Gμk

, 〈·, ·〉) converges in the pointed sense to (Gλ, 〈·, ·〉), provided Gλ is compact or all
μk are completely solvable;

(v) gμk
→ gλ smoothly on Rn, provided all μk are completely solvable.

In any case, there is always a subsequence of (Gμk
, 〈·, ·〉) that is convergent in the pointed sense

to a homogeneous manifold locally isometric to (Gλ, 〈·, ·〉).

6.5. Remark on collapsing

The following discussion is in the spirit of [10, Section 3.11]. Actually much of what has been
studied in this paper can be found in Gromov’s book [10].

Let μk be a sequence in Hq,n such that μk → λ ∈ Vq+n, and assume that λ /∈ Hq,n. Recall
from Section 3 that this is possible if and only if either (h2) or (h4) fail for λ, and only if q > 0,
that is, never for left-invariant metrics on Lie groups.

If (h4) does not hold for λ, then by considering new decompositions of the form

Rq = Rq′ ⊕ {z ∈ Rq : μ(z,Rn) = 0}, Rq′+n = Rq′ ⊕ Rn,

and defining λ′ ∈ Vq′+n as the restriction of λ to Rq′+n (and projection on if necessary), we
obtain that λ′ ∈ Hq′,n provided (h2) holds for λ′. It is not hard to convince ourselves on the
validity of Theorems 6.12 and 6.14 if we replace (Gλ/Kλ, gλ) by (Gλ′/Kλ′ , gλ′) everywhere.

Example 6.21. The sequence μk := μ1,1,1,1/k ∈ H1,3 from Example 3.3 converges to λ :=
μ1,1,1,0 /∈ H1,3. In this case, λ′ = μ1,1,1 ∈ H0,3 as in Example 3.2, a round metric on S3.

The behaviour to be understood is therefore under the failure of condition (h2) for λ. So that
Kλ is not closed in Gλ, and a natural thing to do is to consider its closure K̄λ, which is again
a connected Lie subgroup of Gλ such that dim K̄λ = q′ > q = dimKλ. By putting q′ = q + r,
r > 0 and considering decompositions

Rq+n = Rq+r ⊕ Rn−r, Rq+r = Rq ⊕ Rr, Rn = Rr
⊥⊕ Rn−r.

one obtains that λ ∈ Hq+r,n−r. Indeed, both (h1) and (h3) follow easily from the fact that
Adλ(K̄λ) ⊂ O(n), (h2) holds by construction and if (h4) fails, then we can fix it as above and
in any case to get λ ∈ Hq′,n−r for some q′ < q + r.

As (Gλ/Kλ, gλ) has dimension n− r < n, we can just forget about any type of convergence
we had studied in this paper as a candidate for

(Gμk
/Kμk

, gμk
) −→ (Gλ/Kλ, gλ).

A natural guess is that Gromov–Hausdorff topology should be involved in some way (cf. for
example, [10, Chapter 3; 31, 10.1]). More precisely, we expect pointed Gromov–Hausdorff
subconvergence to a homogeneous manifold locally isometric to (Gλ/Kλ, gλ), and thus we
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would be in the presence of what is called collapsing with bounded curvature in the literature
(actually with bounded geometry).

Example 6.22. Consider μk := μpk,1,1,−1,0,1,0,1 ∈ H1,5 as in Example 3.4, where pk ∈ Q

and pk →
√

2 as k →∞. Thus μk is a sequence of homogeneous metrics on S3 × S2 which
are pairwise non-equivariantly diffeomorphic and μk → λ := μ√

2,1,1,−1,0,1,0,1 /∈ H1,5. However,
if we consider the decomposition

R6 = R2 ⊕ R4 = 〈e0, e1〉 ⊕ 〈e2, . . . , e5〉,
then it is easy to check that λ ∈ H2,4 and is a product of round metrics on S2 × S2. The Ricci
eigenvalues of μk are {1, pk − 1

2 , pk − 1
2 ,

1
2 ,

1
2}. In the light of the above speculation, μk → λ

would represent a collapsing with bounded geometry from S3 × S2 to S2 × S2.

Collapsing of homogeneous manifolds from the algebraic point of view used in this paper
will be the object of further study.
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