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Convergence of homogeneous manifolds

Jorge Lauret

ABSTRACT

We study in this paper three natural notions of convergence of homogeneous manifolds, namely
infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account
only the underlying algebraic structure of the homogeneous manifold and is indeed much more
tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes
the space of all n-dimensional simply connected homogeneous spaces with g-dimensional isotropy,
providing a framework which is very advantageous to approach variational problems for curvature
functionals as well as geometric evolution equations on homogeneous manifolds.

Contents
1. Introduction . . . . . . . . . . . . . . . . 701
2. Classical setting . . . . . .. 703
3. Varying Lie brackets viewpoint . . . . . . . . . . . 705
4. Different notions of equivalence . . . . . . . . . . . 709
5. Curvature invariants . . . . . . . . . . . . . . 713
6. Convergence . . . . . . . . . . . . . . . . 714
References . . . . . . . . . . . . . . . . . 726

1. Introduction

It is often complicated to write rigorous proofs in convergence theory of Riemannian manifolds.
In the homogeneous case, however, it is natural to expect that an ‘algebraic’ notion of
convergence may help. With this aim in mind, we study in this paper three natural notions
of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their
relationship with a fourth one, which takes into account only the underlying algebraic structure
of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a
set Hgy.p of (¢ + n)-dimensional Lie algebras which parameterizes the space of all n-dimensional
simply connected homogeneous spaces with g-dimensional isotropy, providing a framework
which is very advantageous to approach variational problems for curvature functionals as well
as geometric evolution equations on homogeneous manifolds.

1.1. Convergence

In order to define convergence of a sequence (Mjy,gr) of homogeneous manifolds to a
homogeneous manifold (M,g), it is customary to start by requiring the existence of a
sequence () C M of open neighbourhoods of a basepoint p € M together with embeddings
¢+ Qp — My, such that ¢fgr — ¢ smoothly as k — oo (in particular, all manifolds are of a
given dimension n). The size of the neighbourhoods will make the difference, and according
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to some possible behaviours, one obtains the following notions of convergence in an increasing
degree of strength.

(i) Infinitesimal: no condition on €, it may even happen that (Qx = {p} (that is, only
the germs of the metrics at p are involved). Nevertheless, the sequence (My, gi) has necessarily
bounded geometry by homogeneity.

(ii) Local: there is a nonempty open subset ) C 2 for all sufficiently large k. A positive
lower bound for the injectivity radii therefore holds.

(iii) Pointed or Cheeger—Gromov: €, eventually contains any compact subset of M. Here
topology issues come in.

On the other hand, we know that homogeneous manifolds have a prominent ‘algebraic’ side,
and the point is to what extent this is related to the above notions of convergence. Let us
consider for each (My,gr) a presentation Gj/Kj as a homogeneous space endowed with a
G-invariant metric gx. By just requiring dim Gy to be constant on k, we can assume that a
fixed vector space decomposition g = €@ p gives the reductive decomposition for all Gy /K,
and a fixed inner product (-, -) on p is the value of g at the origin e K}, for all k. In this way, the
only algebraic data which vary are the sequence of Lie brackets pi on the vector space g such
that (g, uk) is the Lie algebra of Gy. Thus, a fourth notion of convergence for homogeneous
manifolds comes into play: the standard convergence of brackets y;, — A as vectors in A%g* ® g,
where A is the corresponding Lie bracket for the limit (M, g) = G/K.

Our main results can be described as follows. We show that the convergence of brackets
i — A is essentially equivalent to the infinitesimal convergence of homogeneous manifolds
(Gr/Kk,gr) — (G/K, g) (cf. Theorem 6.12), and secondly, that in order to obtain the stronger
local convergence, it is sufficient to have a positive lower bound for the Lie injectivity radii of
the sequence (cf. Theorem 6.14). The Lie injectivity radius of a homogeneous space (G/K, g)
is the largest » > 0 such that its canonical coordinates 7 o exp are defined on the euclidean
ball of radius 7 in (p, (-,-)) (cf. Definition 6.7). Notice that local convergence implies pointed
subconvergence of (Mg, gr) to a homogeneous manifold locally isometric to (M, g), by the
compactness theorem (cf. Theorem 6.3), but we show that such limits may topologically vary
for different subsequences.

It is important to note that for left-invariant metrics on Lie groups (that is, Kj = {e}
for all k), the positive lower bound for the Lie injectivity radii follows at once from the
convergence i — A (cf. Lemma 6.19), giving rise to stronger results in this case (cf. Corollary
6.20).

1.2. The space of homogeneous manifolds

Recall that the data (g =€® p, (-,-)) of a homogeneous space can be canonically fixed at the
level of inner product vector spaces. This motivates us to consider the set Hy ., C Ag* @ g,
where ¢ := dim €, n := dim p, of those Lie brackets satisfying the technical conditions (cf. (h1)—
(h4) in Section 3) which allow us to define a simply connected homogeneous space (G /K, g,.)
attached to each u € Hy , with Lie(G ) = (g, 1), Lie(K,,) = (€, pt|exe) and g, (eK,) = (-, -). The
set Hg,» therefore parameterizes the space of all n-dimensional simply connected homogeneous
spaces with g-dimensional isotropy.

The above approach, that varies Lie brackets rather than metrics has been used for decades,
though only in the case of left-invariant metrics on Lie groups (that is, ¢ = 0). We mention,
among many others, just a few instances. It was used in [8, 14, 27] to study curvature
properties of Lie groups; in the structure results for Einstein solvmanifolds obtained in [13, 23];
in viewing nilsolitons as critical points and their classification (cf. [16, 20, 26, 29, 38]); in the
study of the Ricci flow for 3-dimensional homogeneous geometries (cf. [9]) and for nilmanifolds
(cf. [11, 24, 30]). The approach can also be applied to complex and symplectic homogeneous
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geometry (cf. Remark 3.7). In many of these articles, an intriguing relationship with the
geometric invariant theory of the variety of Lie algebras, including closed orbits, categorical
quotients, moment maps and Kirwan stratification, has been exploited in one way or the other.

1.3. Examples

The paper includes plenty of situations which illustrate our approach and provide examples
and counterexamples to some of the speculations one might make on convergence issues.

(i) Subsets of Hp s and Hj g reaching all 3-dimensional geometries (cf. Examples 3.2 and
3.3).

(ii) A family in H; 5 parameterizing all homogeneous metrics on 5% x S? (cf. 3.4).

(i) A 6-parameter family in H; ; attaining any SU(3)-invariant metric on all (generic)
Aloff-Wallach spaces (cf. Example 3.6).

(iv) A sequence of Aloff-Wallach spaces which infinitesimally converges to another
Aloff-Wallach space, but such that it does not admit any pointed or local convergent
subsequence (cf. 6.6). -

(v) A sequence of alternating left-invariant metrics on S® (Berger spheres) and SLy(R)
which locally converges to a flat metric on the solvable Lie group E(2), but the corresponding
subsequences pointed converges to S' x R?* and R?, respectively (cf. Example 6.17).

(vi) A divergent sequence py € Ho,3 of left-invariant metrics on SLa(R) which nevertheless
pointed converges to R x H?, where H? denotes the 2-dimensional hyperbolic space. uy is
actually isometric to a convergent sequence in H; 3 (cf. Example 6.18).

(vii) A sequence py, € Hi 5 of homogeneous metrics on S3 x S? converging to a Lie bracket A
which is not in H; 5. However, A can be viewed as an element of Hs 4, giving rise to a collapsing
of the py, with bounded curvature to a metric on S? x S? (cf. Example 6.22).

1.4. Ricci flow

Our true motivation to study the ‘algebraic’ convergence of homogeneous manifolds is that
the Ricci flow g¢(t) starting at a homogeneous manifold (M,gy) is proved in [25] to be
equivalent to an evolution equation for Lie brackets in the following precise sense: if (M, go) =
(Go/Kpuos Guo)s Mo € Hgn, then the solution p = pu(t) to the so-called bracket flow given by
the ODE

%“ K ({8 Riocu] ) e ( {8 R?CJ ) - [8 R?CJ pui-s-),  p(0) = po,

where Ric, : p — p denotes the Ricci operator of g, at the origin, stays in H,,, for all ¢ and

g(t) = o(t)" g

for some family o(t) : M = G, /K., — G.@)/K,@) of time-dependent equivariant diffeo-
morphisms. The fixed points of any normalized bracket flow c¢(¢)u(7(t)) are Ricci solitons,
and the solutions ¢(t) and u(t) have identical maximal interval of existence time and curvature
behaviour. Moreover, as there always exists a convergent subsequence i, := 1/||p(tx)||- () —
A, one can apply the convergence results obtained in this paper to get pointed subconvergence
of the Ricci flow g(t) (up to scaling) to a Ricci soliton gy (usually nonflat), provided A € H, ,,
and there is a lower bound for the Lie injectivity radii r,,, .

2. Classical setting

A Riemannian manifold (M, g) is said to be homogeneous if its isometry group I(M,g) acts
transitively on M. The group I(M,g) is known to be naturally a Lie group such that its
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action on M is smooth and the isotropy subgroup I,(M, g) at every point p € M is compact.
A homogeneous Riemannian space is instead a differentiable manifold G/K, where G is a Lie
group and K C G a closed Lie subgroup, endowed with a G-invariant Riemannian metric. Both
concepts are of course intimately related, though not in a one-to-one way. When studying a
geometric problem on homogeneous manifolds, it is often very useful and healthy to capture
the relevant algebraic information and present the hypotheses and the problem in ‘algebraic’
terms. We refer to the books [4 Chapter 7; 17 Chapter X] for a more detailed treatment of
what follows.

Let (M,g) be a connected homogeneous manifold. Then each closed Lie subgroup G C
I(M,g) acting transitively on M (which can be assumed to be connected) gives rise to a
presentation of (M, g) as a homogeneous space (G/K, g...y), where K = G N1,(M, g) for some
p € M. Since K turns out to be compact, there always exists an Ad(K)-invariant direct sum
decomposition

g=top,

where g and ¢ are, respectively, the Lie algebras of G and K. Such a decomposition is called
reductive and is not necessarily unique. Thus p can be naturally identified with the tangent
space

p=T,M="T.xG/K,

by taking the value at p of the Killing vector fields corresponding to elements of p. We denote
by g(.,) the G-invariant metric on G/K determined by

() == g(p),

the Ad(K)-invariant inner product on p defined by g.

Any kind of curvature of (G/K,g,..y), and hence of (M, g), can therefore be computed in
terms of the inner product vector space (p, (-,-)) and the Lie bracket [, -] of g (see, for instance
[4, Chapter T7]).

REMARK 2.1. A homogeneous space (G/K, g..y) will always be assumed to carry a fixed
Ad(K)-invariant decomposition g = ¢ @ p.

In order to get a presentation (M,g) = (G/K,g,..y) of a connected homogeneous manifold
as a homogeneous space, there is no need for G C I(M, g) to hold, that is, an effective action.
It is actually enough to have a transitive action of G on M = G/K, where K is the isotropy
subgroup at some point, which is almost-effective (that is, K contains no non-discrete normal
subgroup of G, or equivalently, the normal subgroup {g € G : ghK = hK, Yh € G} is discrete),
along with a decomposition g = €@ p and an inner product (-,-) on p, both of them Ad(K)-
invariant. In particular, G can always be chosen to be simply connected (that is, connected
and with trivial fundamental group) and almost-effective. If in addition M is simply connected,
then K must be connected (although not necessarily compact); and conversely, if G is simply
connected and K connected, then M is simply connected (use the homotopy sequence of the
fibration G — G/K).

The set of all G-invariant metrics on G/K is in one-to-one correspondence with the set of all
Ad(K)-invariant inner products on p. Such a set can be naturally identified with a symmetric
subspace (possibly flat) of the symmetric space GL, (R)/SO(n) and so it is diffeomorphic to
an euclidean space. It could however be far from covering all homogeneous metrics on the
manifold G/K.



CONVERGENCE OF HOMOGENEOUS MANIFOLDS 705

3. Varying Lie brackets viewpoint

A simply connected homogeneous space (G/K,g,..y) with G simply connected is completely
characterized (as K must be connected) by the following ‘algebraic’ data:

the vector space decomposition g = ¢ @ p;
the inner product (-, -) on p;
the Lie bracket [-, ] of g.

As the pair (g=€¢&p, (-,-)) can be canonically fixed, this suggests varying Lie brackets to
cover a large number of homogeneous manifolds at the same space. In this light, we shall define
in this section a set H,,, whose elements are simply connected homogeneous spaces and such
that any simply connected homogeneous space (G/K, g,..y) of dimension n and dim K = q is
isometric to at least one point in Hg,p.

Let us fix a decomposition

R = RY @ R™,

together with the canonical inner product (-,-) on R™. We consider the space of all skew-
symmetric algebras (or brackets) of dimension ¢ + n, which is parameterized by the vector
space

Virn = {p : RIT" x RIT™ — RIT™ ;44 bilinear and skew-symmetric}.

For any z € R7"™, we denote left multiplication (or adjoint action) as usual by ad, z(y) =
w(x,y) for all y € RIT™,

A homogeneous space can be associated to an element p € V4, provided the following
conditions hold for p.

(h1) p satisfies the Jacobi condition, pu(R%,R?) C R? and pu(R%,R™) C R™.
(h2) If G, denotes the simply connected Lie group with Lie algebra (R?*", 1) and K, is the
connected Lie subgroup of G, with Lie algebra R, then K, is closed in G,,.
h3) (-,-) is ad, R%-invariant (that is, (ad, z|gn)! = —ad,, z|g~ for all z € RY).
i i i
(h4) {z € R?: u(z,R™) =0} = 0.

Indeed, by (h2), the simply connected topological space G,/ K, admits a unique differentiable
manifold structure such that the quotient map 7, : G,, — G,/ K, is smooth and admits local
smooth sections, or equivalently, the G ,-action on G, /K, is smooth (see [37, 3.58,3.63]). Such
an action is almost-effective by (h4), and it follows from (h3) that (-,-) is Ad(K,)-invariant as
K,, is connected. All this is already enough to obtain a homogeneous space,

p € Hyn ~ (GP«/KI“gM)’ (1)

with Ad(K,)-invariant decomposition Rt = R? ® R" and g,(eK,) = (-,-) (see [17, p. 200]
or [4, 7.24, 7.12]), where

Hyn = {p € Vgun : conditions (h1)—(h4) hold for pu}. (2)
If for u € G, we denote by 7,(u) : G,/K, — G, /K, the diffeomorphism
T (w)(vK,) = wkK,, veG,,
then the metric g, is given by
9 (UK, ) (@ (W]ere, @, dr(0) e, 9) = (2.9) Yoy €R”, we G )

We note that any n-dimensional homogeneous Riemannian space (G/K, g;...y) with G simply
connected and Ad(K)-invariant decomposition g = €@ p which is almost effective can be
identified with some p € Hy y, where ¢ = dim K. Indeed, one just has to fix a basis of ¢ and
an orthonormal basis of p in order to get identifications € = R?, p = R"™, and so p is precisely
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the Lie bracket of g. In particular, in the set

n(n—1)/2
Hy = U Hq,fu
q=0

all simply connected homogeneous Riemannian manifolds of dimension n (up to isometry) are
represented, though often by several different points which may even represent inequivalent
homogeneous spaces (see Section 4).

If H,,, is nonempty, which is not always the case (for example, Hy 3 = 0)), then there must
be a flat element in H,, ,,. Indeed, for any p € H,,,, one can define A € V1, by A|gaxratn == g,
A|gn g := 0, for which conditions (h1)—(h4) can be easily verified, getting the flat manifold
(GA/Kx,9x) = (K x R")/K, g,..y) for some compact subgroup K C O(n).

Concerning the question of what kind of subset of V4, the space H,, is, we note that
conditions (h1) and (h3) are closed, they are even defined by polynomial equations on p. On
the contrary, (h4) is open and (h2) may impose a very subtle condition on u, as Examples 3.4
and 3.6 show. Note that H, , is a cone, that is, invariant by any nonzero scaling.

ExampPLE 3.1. If ¢ =0, then conditions (h2)-(h4) trivially hold and (hl) is just the
Jacobi condition for u. Thus Hy, = L,, the variety of n-dimensional Lie algebras, and the
set {(Gu,9,) : 1 € Ly} parameterizes the set of all left-invariant metrics on simply connected
Lie groups of dimension n (cf. Section 6.4 for a more detailed study of this case).

The next two examples reach all 3-dimensional geometries.

EXAMPLE 3.2. Let pt = pigp, be the Lie bracket in Hg 3 = L3 defined by

plea,e3) = aer, ples,er) =bes, p(er,ez) = ces.

Their isomorphism classes are invariant by permutation of (a,b,c¢) and scaling, so we can
assume a > b > ¢ and that at most one of them is negative. The Lie algebras (and geometries)
attained by this family are

su(2), a,b,c> 0, s,
slh(R), a,b>0,c<0, SLy(R),
) e2), a,b>0,c=0, ) E(2),
PE 1), a>0b=0,c<0, =30l )
b3, a>0,b=c=0, Nil,
R3, a=b=c=0, R3,

where ¢(2) and e¢(1,1) are unimodular solvable Lie algebras and b3 is the 3-dimensional
Heisenberg Lie algebra. These are all 3-dimensional unimodular real Lie algebras, and any left-
invariant metric on any of the corresponding simply connected Lie groups is isometric to some
Habc (see [27, Section 4]). We have added on the right of (4) the 3-dimensional geometries from
the Geometrization Conjecture which are covered by the family 4.5 . by using the standard
notation. With the only exception of S3, they are all diffeomorphic to the euclidean space R3.
In [9], this presentation as a space of Lie brackets is used to study the Ricci flow of these
metrics.
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ExaMpPLE 3.3. Consider the decomposition R* =R @ R3 and the bracket W= Uabed €
Vits given by

(e, e2) = des, uler, ea) = ces.

It is straightforward to see that conditions (h1) and (h3) hold and that (h4) does if and only
if d # 0. By computing the Killing form, it is easy to conclude that the Lie algebras (and
geometries) attained by this family are

{M(es,eo) =dey, p(ez,e3) =aey +beg, p(es,er) = cea,

R @ su(2), ac+bd > 0, 5% R x 82,
p~ < R slh(R), ac+bd <0, G,/K,=1<SLy(R), R x H?, (5)
R x ¢(2), R x b3, ac+bd =0, E(2), Nil, R3.

In the case when ac+ bd > 0, one can use the isomorphism G, ~ R x SU(2) to see that K,
is a spiral inside a cylinder R x S' and thus K u is closed in G,. Note that otherwise, any Lie
subgroup of G, is closed, so that condition (h2) is always satisfied. We conclude that fiq p.c,a €
Hi.3 if and only if d # 0. For a = 0 and b # 0, we obtain the geometries R x S? and R x H?,
where H? denotes the 2-dimensional hyperbolic space. All the remaining homogeneous metrics
Gpia.b.c.a Can be alternatively viewed as left-invariant metrics on 3-dimensional unimodular Lie
groups with an extra symmetry, and hence they have all already appeared in Example 3.2.

All homogeneous metrics on S® x S? can be attained as follows.

EXAMPLE 3.4. Consider the decomposition R® =R @ R® and the bracket pu=
Ip,g,ab.edef € Vigs given by

/U‘(eOa 62) pes, :u‘(ela 62) = ee€g, :LL(627 63) = aep + bela
pleo, e3) = —pea, p(er,e3) = —eea, ples,es) = ceg + dey.
(607 4) = gés, /L(€1764) = f€5,
p(eos e5) = —qeq, p(er,es5) = —feq
It is easy to see that the conditions to obtain p € Hj 5 can be written as follows

(h1) ag+0bf =0, cp+de = 0;

(h2) p/q € Q;

(h3) always holds;
4)

(b) (p,q) # (0.0).

If we assume that pf — ge # 0, then some of the Lie algebras involved are

su(2) @ su(2), ap+be >0, cq+df >0,
=< slh(R) @ sl (R), ap +be <0, cq+df <O,
su(2) @ sly(R), (ap + be)(cq + df) <0,

which can be viewed as Lie algebras of matrices in the following way:

%(lequl)v €2 = %(TX%O)a €4 = %(OvsXQ)v
€1 = %(elefxl)a €3 = %(TX?nO)a €5 = %(OaSX?))a
where r = |ap + be|'/?, s = |cq + df|'/? and {X1, X2, X3} C gl,(C) is a basis of either su(2) or
slo(R) such that
(X1, Xo] =2X5, [X1,X3] = —2Xs, [Xo, X3] = £2X;.
]Re() —

The equivalence between condition (h2) and p/q € (@ is now more transparent, as K, = e
{(eP*X1,e!7X1) : t € R} and one may take X; = [§ %] for su(2) and X; = [¥ '] for sh(R). A
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particularly interesting case is when ;o =~ su(2) @ su(2), since the homogeneous spaces G,/ K, =
(SU(2) x SU(2))/S! are all diffeomorphic to S* x S?, and actually any homogeneous metric
on S% x S? is represented in H; 5 by a tuple (p, ..., f) (cf. for example, [5, Example 6.8]). For
different values of p, ..., f one obtains many other homogeneous spaces, including left-invariant
metrics on solvmanifolds as E(2) x R? and on nilmanifolds as Nil x R? or the 5-dimensional

Heisenberg Lie group Hs.

REMARK 3.5.
an element in Hs 4 by putting

R% =R2 @ R* = (eg, e1) ® (ea, ..

Any of the brackets considered in the above example can also be viewed as

’765>7

which is easily seen to cover all homogeneous metrics on S? x S2, S? x H? and H? x H?.

In the following example, we cover all SU(3)-invariant metrics on each (generic) Aloff—

Wallach space SU(3)/S,, .

EXAMPLE 3.6 (Aloff-Wallach spaces).

Consider the decomposition R® = R @ R” and the

bracket i = piy g.a,b,c,d € Vigr, a,b,¢c,d > 0, given by

wlea,es) = —a(p + 2q)ep — 3adper,
p(es, er) = —c(p — q)eo + 3cd(p + g)ey.

p(eo, e2) = —d(p + 2q)es, pler, e2) = —pes,
p(eo, e3) = d(p + 2q)es, (e, e3) = pez,
p(eo, 1) = —d(2p + g)es, (e, ea) = ges,
:LL(e()a 65) = d(2p + q)64a :u‘(elv 65) = —(Qéy,
p(eo, e6) = —d(p — q)er, pler,es) = (p + q)er,
(e, er) = d(p — q)es, pler,er) = —(p + q)es,
3bed /2 3bed \ /2
pessee) = ples,en) = = (0) e ptes,e) = —nlenser) = - (20) aa
3acd\ V/? 3acd\ /?
ples, e2) = —p(er, e3) = — ( b e, pler,e2) = p(es, e3) = — < b €5,
3abd\ */? 3abd\ */?
H(€2,64) = H(€3,65) = - - €6, M(€3,€4) = —M(€2765) = - > €7,

p(es, es) = —b(2p + q)eg + 3bdgey,

We have that (R®, 1) is always isomorphic to su(3), as these are precisely the Lie bracket

relations for the basis {eo, ..

., es} of su(3) given by

ipd 1| i +29)
ey = iqd , e1=— 1(2p + q) ,
—i(p+q)d i(q —p)
0 0 0 ~1
es = (3ad)*/? 0 —1|, e3=(3ad)'/? 0 i|, es=(3bd)"? 0 :
1 0 i 0 1 0
0 i -1 0 i
es = (3bd)/? 0 . oeg=Bed)? 1 0 , er=Bcd)? i 0
i 0 0 0

Conditions (h1), (h3) and (h4) are all satisfied by any of these p’s, and concerning (h2), we

note that

1 P — REO
Spq = Ku=¢e",
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is closed in SU(3) (and hence S}, ~ S') if and only if p/q € Q (think of S} as a subgroup
of the maximal torus S* x S'of SU(3)). As a differentiable manifold, G,,/K,, only depends on

p and ¢, and so we define
Whq = Gu/Ky = SU(3)/S;,q Vi = fip,g.a.b.c.d-

These homogeneous manifolds are called in the literature Aloff-Wallach spaces and have been
extensively studied (cf. for example, [2, 18, 19, 33]). By fixing p and ¢ and varying a, b, ¢ and
d we get all SU(3)-invariant metrics on W, , if p # £q (cf. [33, Corollary 4.3]). We note for
future use that W, ., = W, 4 as differentiable manifolds for any » € R.

REMARK 3.7. If instead of (-,-), we fix a complex structure J on R™ (that is, an
endomorphism such that J? = —1I) and change condition (h3) by [ad, R?|gs,J] =0, then
what each p € H,, will represent is a homogeneous space endowed with a left-invariant
almost-complex structure. By adding the integrability of (G,/K,,J) as condition (h5) in
the definition of H, ,, which happens to only depend on p and in a polynomial way, we
obtain a parametrization of all n-dimensional simply connected complex homogeneous spaces
with g-dimensional isotropy. One may furthermore fix again an inner product (-,-) on R™
compatible with J (that is, (J-,J-) = (-,-)) and require condition (h3) on (-,-), in order to
parameterize hermitian (or almost-hermitian if the integrability of J is removed) homogeneous
spaces (G /K, J,(-,-)). Notice that the subset of those which are Kéhler is just defined by
extra polynomial conditions on p. An analogous setting can be developed for symplectic,
hypercomplex, and many other classes of geometric structures. This approach has only been
explored in the case of nilmanifolds (that is, ¢ =0 and p nilpotent) in [21]. How do the
convergence results obtained in Section 6 fit into deformation theory of complex or symplectic
manifolds?

4. Different notions of equivalence

The question of whether two given homogeneous spaces are isometric or not is usually a
difficult task to handle, as it is the question on determining their diffeomorphism or even
homeomorphism types. There is a fourth natural equivalence relation between homogeneous
spaces which involves their algebraic structure: G/K and G'/K’ are said to be equivariantly
diffeomorphic if there exists an isomorphism of Lie groups ¢ : G — G’ such that ¢(K) = K'.
In that case, if ¢ : G/K — G'/K’ is the corresponding equivariant diffeomorphism (that is,
pom=m7"0¢), then

T(p() = pr(we™ VueG,

that is, the actions of G,G" on G/K,G’/K’, respectively, are equivalent or equivariant. Two
homogeneous spaces (G/K, g...y) and (G'/K’, g(...y/) are called equivariantly isometric if g(. ., =
©*gq.,.,» for some equivariant diffeomorphism ¢ : G/K — G’/K' (that is, dy|ck is in addition
an inner product space isometry between (p, (-,-)) and (p’, (-,-)")).

In Figure 1, we have listed the equivalence relations between homogeneous spaces we have
just mentioned according to their levels of generality. All the converse assertions are false.
Aloff-Wallach spaces (see Example 4.1) provide examples of homeomorphic but nondiffeo-
morphic homogeneous spaces, as well as diffeomorphic homogeneous spaces which are not
equivariantly diffeomorphic (see also Example 4.6). On the other hand, certain nonabelian solv-
able Lie groups admit flat left-invariant metrics, providing examples of isometric homogeneous
spaces which are not equivariantly isometric.
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/4 equiv. isom. A

v N
wisom. A G/ Ky equiv. diff. G\ /Ky
N\ v

G,/ K, diff. Gy /Ky
!

G/ K, homeo. Gy /Ky

FIGURE 1. Notions of equivalence by degree of generality.

ExampLE 4.1. Let W,,=SU(3)/S,, be the Aloff-Wallach space described in
Example 3.6, and assume that p,q € Z and are coprime. It is well known that W, ; has fourth
cohomology ring H*(W,, 4, Z) = Z,, the cyclic group of order r := p? + pq + ¢* (see [2, Lemma
3.3]), showing that there are infinitely many homeomorphism classes among these spaces. More
precisely, if s := pg(p + ¢) then the following conditions must be added to r = 7 in order to get
the respective equivalence type between W), , and Wj 5

(i) homotopy equivalent: s = +5 mod r (see [19]);
(ii) homeomorphic: s = 5 mod 23.3.r (see [18]);
(iii) diffeomorphic: s = £35 mod 2°.3.r if r is a multiple of 7, and mod25.3.7.r otherwise
(see [19]);

(iv) equivariantly diffeomorphic: {p,q, —(p+ ¢)} = {p,q,—(p + q)} (that is, at the most six

possibilities of having S, , and S} ; conjugate in SU(3)).

It was not a trivial task to find explicit pairs (p, ¢) and (p, §) showing that none of the above
equivalence types coincide for Aloff-Wallach spaces (see [18, 19]).

In what follows, we are interested in describing as simple as possible, for a given notion, the
equivalence class of a homogeneous space p € H, ,, (see identification (1)) as a subset of H .
There is a natural linear action of GLg4,(R) on V., given by

hou(z,y) = hu(h™ e, h YY), 2,y €RIT™ h € GLyn(R), € Vi, (6)

The variety of Lie algebras L4+, is GLg4, (R)-invariant, the Lie algebra isomorphism classes
are precisely the GL,,(R)-orbits and the isotropy subgroup GL,4,(R), equals Aut(R?*™, p)
for any p € Lyyn.

PROPOSITION 4.2. If i € Hyp, then h.p € Hy,, for any h € GL41, (R) of the form

h = [fgq ;i] € GLyn(R), hy € GLy(R), hy € GL,(R), A:R"—R%, (7

such that
(AL hp,ad, RY|ga] = 0, (8)
and
Aad, z|gn = hgad, z|lrehy ' A ¥z € R (9)
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In that case, G, /K., and G,/ K,, are equivariantly diffeomorphic and (Gh.../Kn s Gh.p) 15
equivariantly isometric to (G, /Ky, gin, . h,-))-

REMARK 4.3. It follows from the last assertion in the above proposition that the subspace
{h.p:hy=1,A=0,h, satisfies (8)} C Hy.n,

parameterizes the set of all G ,-invariant metrics on G, /K. Also notice that p and h.p have
the same volume if det h,, = 1.

Proof. For such an h, we must check that A\ := h.u satisfies conditions (h1)—(h4) defining
Hyn (see (2)). We first note that

R hyt —hyl'An?
0 hit

Condition (h1) always holds since h : (R9T", 1) — (R9T™ X) is an isomorphism of Lie algebras
leaving R? invariant and it follows from (9) that for all z € RY, z € R",

Az, @) =hgu(hy 'z, —hg ' Ahytw) + Ap(hy 2, by M) + hyp(hy 'z, by )
= — hgad,(h; ' 2)h; ' Ahyte + Aad,(hy ' 2)hy o + hop(hy P2, by o) (10)
zhnu(hglz, htz) € R™
We therefore obtain that ady z|gn = hy ad, hy ' z|gehy, ! for all z € RY, which implies that (h4)

holds for A, and also that A satisfies (h3) if and only if (8) holds.
There exists a unique isomorphism of Lie groups

¢: G, — Gy such thatdp|. = h.

Since ¢(K,) is a connected Lie subgroup of G with Lie algebra h(R?) = R?, we have that
K) = ¢(K,) and thus (h2) follows.
Concerning the last assertion, we have that the diffeomorphism
0:G,/K, — G\/K\, ¢(uK,):=9¢uw)K, YueG,, (11)

is well defined and is an isometry between the homogeneous spaces (G /K, g(n, . n,.y) and
(Gx/Kx,gr), as dplcx, coincides with the inner product space isometry

hn : (Rn7 <hnﬂhn>) - (Rn7 <'7'>)7

under the natural identifications. ]

COROLLARY 4.4. The group GL4(R) x O(n) leaves the set H, , invariant and h.p and p
are equivariantly isometric homogeneous spaces for any h € GL4(R) x O(n), p € Hqn-

Let us now analyse condition (8) more in detail. The isotropy representation ad, : R —
End(R"™) of a homogeneous space p € Hy,, which is faithful by (h4) and unitary by (h3), can
be decomposed into isotypical components as

Rt=V"a&...0V",

where V;and V; are non-equivalent irreducible representations of the Lie algebra (R?, u) for
all i # 7, and V" ~V; @ ... ®V; (n; times). The space of intertwining operators is therefore
given by

Endaq, (R") = gl,, (F1) & ... ®gl, (F.), (12)
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where F; = R,C or H depending on the type of V;. Recall that the possible types of a real
representation are real, complex or quaternionic, that is, Endaq, (Vi) = R, C or H, respectively
(see [6]). It follows from Proposition 4.2 that for each p € Hg p, if U, is the subset of GL, (R)
defined by

Uy :={hy € GLy(R) : h} by, € Endag, (R™)},

then h.p € Hy ), for any h € Uﬂ, where Uﬂ is the subset of GLg4n(R) given by
~ hy A .
U, = h, € GLg4n(R) : hy € GLy(R), hy, € Uy, Asatisfies (9) ¢ .

If we define
symg(m) i= {A € gl,, (F) : A = A},
then by using (12) and the polar decomposition one easily obtains that
U,=0n)(Uy x...xU,), U;:= e (i),

Notice that U,.H,., is not necessarily contained in H, ., it only satisfies U,,.pu C Hy.n, but we
may consider for each faithful and unitary representation 6 : (R?, u) — End(R"™) the subset
of homogeneous spaces having 6 as its isotropy representation, that is,

Hon(0) :=={p € Hypn :ad, RYgn = 60}.
Thus U, = U, for any p, A € Hy»(0), and so if we denote these subsets by Uy, then

(GL4(R) x Ug). Hgn(8) C Hyn(6).

PROPOSITION 4.5. G, /K, and Gx/K, p, A € Hyn, are equivariantly diffeomorphic if and
only if X € Uy,.p.

Proof. If ¢:G,/K, — G\/K) is an equivariant diffecomorphism determined by an
isomorphism ¢ : G, — G and h := dp|c, then A = h.p and hR? C R? follows from the fact
that ¢(K,) = Kx. We now use that A(R?,R™) C R™ to obtain from (10) that A : R" — RY,
the R?-component of h|g~, must satisfy condition (9). Finally, it follows from the fact that
ady z[gn = hyady hy'z|gnh, ! for all z € R? and condition (h3) that h, satisfies (8), which
implies that h € U/r

The converse assertion is the content of Proposition 4.2. ]

Summarizing, we have the following.

(i) The group GL4(R) x O(n) acts on H,,, in such a way that all the elements in the same
orbit are pairwise equivariantly isometric.

(ii) For any g € Hgn, the subset U,.u C Hy, parameterizes the set of all G,-invariant
metrics on G,/ K, where we embed U, — GLg4,(R) in the usual way (see Remark 4.3).

(iii) For any p € Hy.n, the subset U,.uu C H,.p, consists of those elements in H,, ,, which are
equivariantly diffeomorphic to G,/ K,,.

(iv) The subsets (GL4(R) x Up).p, it € Hqn(#), are precisely the equivariant diffeomorphism
classes inside H, ,(0).
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EXAMPLE 4.6. For it = iy g.a.b,c.de,f € Hi,5 given in Example 3.4 we have that

0
0 —p
ad, eg = p 0 ;
0 —q
q O
and hence
[ 1
0(5) GL, ((C) = 0(5) rolax2 ) 0<p<yq,
i GL(C) r3laxo
U, = [GL3(R) ey
O 5 = O 5 0 = < 5
(5) I GL,(C) rlax2 p=1
N .
0(5) GLQ((C)] = |: eiu(z)] ) 0<p=gq

If G, ~ SU(2) x SU(2), then the homogeneous spaces G,/ K,, are all diffeomorphic to S x 52,
but if 0 <p<gq, then two different values of p/q € [0,1]NQ give rise to non-equivalent
G,-actions on S? x 5% (see [5, Example 6.8]), that is, to non-equivariantly diffeomorphic
homogeneous spaces.

5. Curvature invariants

In this section, we describe a quite intriguing necessary and sufficient condition for two
homogeneous spaces u, A € Hy,, being isometric. The condition is in the spirit of invariant
theory and was proved by Singer in [34] (see [28, 32] for further information). These results
are being used in some work in progress on homogeneous Ricci solitons.

Let V,, denote the Levi-Civita connection and Rm,, the corresponding Riemannian curvature
tensor of p € H,p,. Recall that any p € Hy, is identified with the homogeneous space
(G./K,,g,) according to (1). By identifying R™ with the corresponding Killing vector fields
of G, /K,, it follows that Rm, is determined by its value at ek, the 4-linear map given by

Rm, := Rm(g,)(eK,) : R" x R" x R" x R" — R.

In the same way, the covariant derivative V¥ Rm,, can be viewed as a vector in Q" (R
for any k > 0 (V, Rm,, := Rm,,), and we consider for each y € H,,, the vector
i —1
wy, = (Rm,, V,Rm,,, ..., VI'Rm,) € W := ED(@‘H’“(R”)*), m:= % —1.
k=0
If 1, A € Hy p are isometric, then the isometry ¢ : G,/ K,, — Gx/K) can be assumed to satisfy
¢(eK,) = eKx. Thus h:=dp|ck, € O(n) and we have that h.VERm, = V5 Rm, for all k,
where the actions of O(n) C GL,,(R) on the different tensorial vector spaces are the standard
ones. This implies that
wy € O(n).w, Yu, A € Hypn being isometric. (13)
Let us now take f € R[W]°( that is, a polynomial function f: W — R which is O(n)-
invariant (that is, f(h.w) = f(w) for all h € O(n), w € W). We also denote by f the function
e Hen — R, f(M) = f(wu)a (14)

which is also polynomial on . We call such an f a curvature invariant, as it follows from (13)
that f(p) = f(\) for any pair pu, A € Hy, of isometric homogeneous spaces. The converse
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assertion is a very nice and important result in homogeneous geometry proved in [34] (see
also [28, Theorem 2.5] for an alternative proof and [32, Theorem 2.3]).

THEOREM 5.1. The following assertions are equivalent:

(i) p, A € Hy,y are isometric;
(ii) f(n) = f(N) for any f € R[W]OM;
(iii) wx € O(n).w,.

The equivalence between (ii) and (iii) actually follows from a strong result in invariant theory:
R[W]°() separates orbits as O(n) is compact. Since O(n) is a reductive group, another classical
theorem from invariant theory states that R[W]O(”) is finitely generated as an algebra, say

RWIOM = (fi,..., fr).
By considering F' := (f1,..., fr) : Hgn — R", we conclude from Theorem 5.1 that
i, A € Hy p are isometric if and only if F'(u) = F()\).

In other words, the isometry classes in H,, are precisely the level sets of a polynomial
function I : Hy . — R,

EXAMPLE 5.2. A family of curvature invariants whose computation is usually doable is
fe(p) = trRicﬁ, where Ric, is the Ricci operator of p € H, . Recall that the values of
fiy... fn at p actually determine the set of Ricci eigenvalues (counting multiplicities). As
a homogeneous manifold is flat if and only if it is Ricci flat (see [1]), the flat elements in H, ,,
can be characterized by a single polynomial equation: fo(p) = 0.

The setting described in this section motivates the definition of a distance on ‘H,,, given by
d(p, A) := dw (0O(n).w,, O(n).wy) = min{dw (h.w,, h'.wy) : h, k" € O(n)},

where dyy is the euclidean distance in W. We may also consider the Hausdorff distance between
compact subsets of W, but this will be equivalent since the subsets involved are orbits by a
group of isometries of W. It follows from Theorem 5.1 that d(u, A) =0 if and only if x and
A are isometric as homogeneous manifolds. If py — X in Vgyp, as k — oo, then d(p, A) — 0,
and hence the topology of the metric space (Hg,n,d) is weaker than that induced on H, , by
the usual vector space topology of V,,. We note that these topologies are not equivalent,
it may, for instance, happen that O(n).w,, — {0} = O(n).wo, and nevertheless p — A # 0
(for example, take the sequence jig := 1141 /k,1-1/k,0 in Example 3.2 of nonflat metrics on F(2)
converging to the flat manifold A := pq1.10).

6. Convergence

In this section, all manifolds are assumed to be connected and all Riemannian metrics to be
smooth (that is, C°°) and complete.

6.1. General case

Let M be a differentiable manifold. A sequence g; of Riemannian metrics on M is said to
converge (smoothly) to a Riemannian metric g as k — oo (denoted by gx, — ¢) if for all compact
subsets K C M, the tensor g; — g and its covariant derivatives of all orders (with respect to
any fixed background connection) each converge uniformly to zero on K.
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REMARK 6.1. By using charts with relatively compact domains which cover M, convergence
gr — g can be rephrased as follows: the partial derivative 0% (g );; of the coordinates (gi);; of
the metrics converges to 0“g;; uniformly, as k — oo, for every chart and every multiindex o

A pointed Riemannian manifold (M,g,p) is simply a Riemannian manifold (M,g) with
a point p € M, which plays the role of a basepoint or a point of reference. Two (M, g,p),
(M',q',p') are called isometric if there is an isometry ¢ : (M,g) — (M’,¢’) such that

e(p) =p'.

DEFINITION 6.2 (Smooth pointed or Cheeger—Gromov topology). A sequence (My, gk, Pk)
of pointed Riemannian manifolds is said to converge in the pointed sense to a pointed
Riemannian manifold (M, g,p) as k — oo if there exist

(i) a sequence of open subsets Q C M containing p, so that any compact subset of M
eventually lies in all Q0 for sufficiently large k£ and

(ii) a sequence of smooth maps ¢, : 2 — M}, which are diffeomorphisms onto open subsets
A C My, (that is, embeddings) and satisfy ¢x(p) = py for all k;

such that ¢}gr — ¢ smoothly as k — oo on M (or more precisely, on every compact sub-
set of M).

Some remarks on this topology may be in order (see, for example, [3, Chapter 9; 7
Chapter 4; 10 Chapter 8*; 31 Chapter 10; 35 Section 7.1] for further information). Assume
that (Mg, g, px) converges in the pointed sense to (M, g,p) as k — co.

(i) If M is compact, then ¢y : M — My, is a diffeomorphism for all k (as ¢ (M) is open
and closed in M). Thus the basepoints play no role in the pointed convergence, which in this
case just means that (My, gi) converges smoothly to (M, g) up to pullback by diffeomorphisms.

(ii) On the contrary, the example of the Rosenau metrics (that is, longer and longer cigars
converging to a cylinder, cf. [3, 9.2.2]) shows that M can be noncompact and nonsimply
connected, even when all the manifolds M}, are compact and simply connected.

(iii) Also, the location of the basepoints can be crucially involved in the convergence when
M is noncompact: if g; is a metric on R™ which coincides with the flat metric gy outside a
compact set, then (R”, g1, pr) — (R™, go,0) if pr — o0, but (R™, g1,px) — (R™, g1,p) if pr = p
for all k (see also the first example in [3 Figure 9.3; 35 Section 7.1]).

(iv) It is easy to check that the distances satisfy

dgk (¢k(q)7 (bk(q/)) I dg(qvql)a v q, ql € Ma

from which it follows that for any r > 0 the metric balls satisfy B, (p,r) C Q and By, (pk, ) C
Ay for sufficiently large k (recall that metric balls are compact due to completeness).

(v) The limit (M, g,p) is unique up to isometry.

(vi) The following two conditions must hold:

(a) bounded geometry: for all r > 0 and j € Zx,,

sup sup [[V] Rm(gk)llg, < oo, (15)
k B!]k (pk 7T)
where Vg, is the Levi-Civita connection and || - ||, denotes the corresponding norm

in the spaces of sections of the different tensor bundles over My;

(b) non-collapsing:
i%finj(Mkagkapk) >0, (16)

where inj(My, gk, pr) is the injectivity radius of (My, gr) at pg.
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Recall that the injectivity radius of (M, g) at p is the largest e for which the exponential map
exp, : B(0,€) — By(p,€) is a diffeomorphism, where B(0,€) = {z € T, M : g,(x,z) < €}.
The following result is considered the fundamental theorem of convergence theory of
Riemannian manifolds.

THEOREM 6.3 (Compactness). Let (Mg, gk, pr) be a sequence of complete pointed Rie-
mannian manifolds of dimension n satisfying (15) and (16). Then there exists a subsequence of
(M, g, pi.) which converges to a complete pointed Riemannian manifold (M, g, p) of dimension
n in the pointed topology.

A proof of this theorem can be found in [7, Chapter 4; 12, 2.3; 31, 10.3-10.4], and its origins
can be traced back to ideas of Gromov [10] and Cheeger. We note that the finiteness of the
number of diffeomorphism classes follows on any subset of compact Riemannian manifolds
where a compactness (or precompactness) theorem can be applied (recall that a sequence of
pairwise nondiffeomorphic manifolds can never subconverge to a compact limit).

6.2. Homogeneous case

If gy is a sequence of homogeneous metrics on a differentiable manifold M such that g smoothly
converges to a metric g, then g is also homogeneous. Indeed, given p, g € M there exists for each
k a gg-isometry ¢y, such that ¢ (p) = ¢, and it follows from g5 — g that the set {¢} is locally
uniformly bounded and equicontinuous. Hence, by the Arzela—Ascoli theorem, a subsequence
converges locally uniformly to a continuous map ¢ : M — M which is automatically an
isometry of (M, g) as ¢ preserves its Riemannian distance. Although the set of all isometry
classes of metrics on a given noncompact M endowed with the quotient smooth topology is
not Hausdorff, it is proved in [13, Sections 6.1, 6.2] that, on the contrary, the subset of those
classes which are homogeneous is so, by applying an Arzela—Ascoli argument as above.

We are interested here in pointed convergence of homogeneous manifolds. Special features
for this case are hard to find in the literature. For a strong use of the pointed topology of
compact homogeneous manifolds, we refer to the proofs of [5, Theorems 1.1 and 2.1].

A few comments are in order at this point. Let us assume that all (M, gi) are homogeneous
and that (My, gk, pr) converges in the pointed sense to (M, g,p) as k — oo.

(i) Two pointed homogeneous manifolds are isometric if and only if they are isometric in
the usual sense.

(ii) The limit (M, g) is homogeneous. Indeed, given ¢ € M, we can assume that p,q € Q
for all k£ and define fj := qblzl o hg o ¢y, where hy € I(My, gx) satisfies hy(pr) = ¢x(q). Thus
fx(p) = ¢ for all k and by an Arzela—Ascoli argument together with a diagonal procedure one
gets a limit f: M — M with f(p) = ¢, which automatically satisfies f € I(M,g) by using
that dg, (¢r(a), dr(b)) — dg4(a,b) for all a,b € Q.

(iii) The location of the basepoints p, and p play no role in the pointed convergence, in
the sense that we can change all of them by any other sequence g € M} and ¢ € M and use
homogeneity. However, unlike the compact case, M being nonhomeomorphic to My, for all & is
a possible behaviour (for example, a sequence of expanding spheres converges to the plane in
the pointed topology).

(iv) It may also happen in the homogeneous case that all M) are simply connected but M
is not. Take for instance the sequence g of left-invariant metrics on S® obtained by scaling
times k the round metric on the orthogonal complement of any fixed direction X € su(2). It
is not very hard to check that conditions (15) and (16) hold for (53, gx), and thus there must
be a subsequence converging to a homogeneous manifold (M, g) in the pointed sense by the
compactness theorem, which is easily seen to be flat. Since v(t) = !X is a closed geodesic of
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(52, gx) having the same length for all k, it follows that (M, g) must have a closed geodesic as
well and so M cannot be simply connected (see Example 6.17 for a more detailed treatment
of this example, where it is proved that the pointed limit is indeed S* x R?). The manifolds
(53, gx) are called Berger spheres in the literature, and the sequence (S®, (1/k)gy) is a famous
example of collapsing (toward S?) with bounded curvature.

There are two other notions of convergence (infinitesimal and local) which naturally arise
in studying the space of homogeneous manifolds and where the topology of the manifolds is
much less involved.

DEFINITION 6.4 (Infinitesimal). A sequence (My, gr) of homogeneous manifolds is said to
infinitesimally converge to a homogeneous manifold (M, g) as k — oo if there exist

(i) a sequence of open subsets 0, C M containing a point p € M and
(ii) a sequence of embeddings ¢y : Q — My;

such that ¢} gr — g smoothly as k — oo at p, in the sense that for any € > 0, there exists
ko = ko(€) such that for k > ko,

sup IV (drgr — 9)llg <€ Vj € Zxo.
!

As in the homogeneous case one only needs to control covariant derivatives up to a finite
order (see Section 5), it is enough for the infinitesimal convergence the existence of a ko (e, 7)
satisfying the required property for each fixed order j. We also note that the point p can
be changed by any other point in M due to homogeneity. The infinitesimal convergence of
homogeneous manifolds is somewhat weak, notice that it does not require any condition on
the size of the neighbourhoods and so actually only the germs of the metrics at p are involved.
The injectivity radius may therefore go to zero and it is even possible that all manifolds M}
and M be pairwise nonhomeomorphic, as Example 6.6 shows.

DEFINITION 6.5 (local). A sequence (My, g) of homogeneous manifolds is said to locally
converge to a homogeneous manifold (M, g) as k — oo if there exist

(i) a nonempty open subset Q C M;
(ii) a sequence of embeddings ¢y, : Q@ — My;

such that ¢;g;, — g smoothly as k — oo on €.

Notice that the open subset {2 can be assumed to contain any point p € M by using
homogeneity. It follows at once from the definitions that the three notions of convergence
of homogeneous manifolds are related by

pointed = local = infinitesimal.

Actually, the only difference between these three definitions of convergence lies in the size of
the open subsets in the sequence Q) C M:

(i) Infinitesimal: no condition, ) can be arbitrarily small (for example, (2 = {p}).
(ii) Local: Qy stabilizes, that is, Q; D Q # 0, for sufficiently large k.
(iii) Pointed: ) exhausts M, that is, it eventually contains any given compact subset of M.

Both converse assertions are false: nonlocal infinitesimal convergence and nonpointed local
convergence can be shown to occur (see Examples 6.6 and 6.17).
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6.3. Algebraic convergence

Our aim in what follows is to study until what extent the algebraic side of a homogeneous
manifold is involved in convergence issues. In Section 3, we have defined a subset H,, of
the variety of Lie algebras which parameterizes the set of all n-dimensional simply connected
homogeneous spaces with g-dimensional isotropy. The space H, ,, inherits the usual vector space
topology from V., and a first natural question therefore arises: What kind of convergence of
Riemannian manifolds this topology corresponds to?

Before starting with a rather technical matter, let us point out some useful facts.

(i) As for the other notions of convergence, a quick inspection of the examples in Section 3
shows that both the topology and the Lie structure may also drastically change in the limit
for the usual convergence of brackets (for example, in Example 3.2, j11 15,15 is a sequence of
metrics on the simple Lie group SU(2) = S3 that converges to p11 0 0, a metric on the Heisenberg
Lie group, which is nilpotent and diffeomorphic to R?).

(ii) For any pu € Hy pn, we can define a sequence pi, € Hyn by fik|Raxratn =y fg|rn xrn 1=
(1/E) e, which converges to a flat element A € H, ,, (recall that A is of the form (K x R")/K
for some compact subgroup K C O(n)).

(iii) Since in the homogeneous case it is enough to control the curvature tensors and
their covariant derivatives at a single point, and since they all depend continuously on p
(see Section 5), it follows that the usual convergence uj, — A implies that the sequence
(G /Ky, 9u,,) has bounded geometry (see (15)).

(iv) On the other hand, if u locally converges to A (see Definition 6.5), then the sequence
satisfies the non-collapsing condition (see (16)). But under local convergence, bounded
geometry also follows easily. We therefore conclude from the compactness theorem that any
locally convergent sequence puj, must have a subsequence converging to a homogeneous manifold
in the pointed topology.

(v) Pointed or local subconvergence may however not follow from just the usual convergence
of Lie brackets up — A, as Example 6.6 shows.

EXAMPLE 6.6. Let p, 4 denote the Lie bracket fip 4.1,1,1,1 from Example 3.6. We consider
the sequence of Aloff-Wallach spaces py := pi1,141/%, which converges to p11 in Hiz, as
k — oo. However, the sequence (Wy 141/k,9u,.) = (Gu, /Ky, s gu,) is certainly not converging
in the pointed topology to (Wi 1,9y, ,) since the manifolds Wy 11 1/; = Wi k11 are pairwise
nonhomeomorphic (see Example 4.1) and Wi, is compact. Since pointed convergence is
not possible for any subsequence, we conclude again from the compactness theorem that
infy, inj (Wi 141 /%5 9u,,) = 0 (recall that condition (15) holds by the fact that pup — py.1), and
so p does not locally converge to 1 either.

Let (G./K,,g,) be the homogeneous space associated to p € Hg,p, as in (1).

DEFINITION 6.7. The Lie injectivity radius of (G, /K, g,) is the largest r, > 0 such that
Y =T 0exp, B(0,r,) — G,/K,,

is a diffeomorphism onto its image, where exp,, : R?t™ — @G, is the Lie exponential map,
m, : G, — G, /K, is the usual quotient map and B(0,7,) denotes the euclidean ball of radius
r, in R™.

In other words, B(0,r,) is the largest ball where the canonical coordinates 1, are defined.
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REMARK 6.8. The Lie injectivity radius can of course be defined for a homogeneous space
(G/K,gq.,y) in its classical presentation, say with Ad(K)-invariant decomposition g =€@ p
(see Section 2): just use balls in (p, (-,-)). Notice that the Lie injectivity radius depends on
both the Lie theoretical data of G/K and the Riemannian metric g,. .

e

Every p € Hg,n, uniquely determines a metric on a neighbourhood of 0 € R™ as follows. By
setting Uy, :=1,(B(0,r,)), we can associate to u a metric §, on B(0,r,) given by

I = Vulgulu,)- (17)

The metric g, on B(0,7,) does not depend on G,,, we can actually take any Lie group G,
with Lie algebra (RYT™ 1), not necessarily simply connected, as long as the connected Lie
subgroup K, with Lie algebra RY be closed in G,. Moreover, what g, really represents is a
locally homogeneous structure, which happens to depend only on p € Hy . This will become
quite clear in Proposition 6.9.

It will be useful to have an expression for the metric g, in terms of the canonical global
chart (z1,...,2,) of B(0,r,) C R”. For a multi-index a = (v, ..., ®,), we denote by = the
monomial z{* ...x%", where z = (x1,...,2,) € R" and |o| := a1 + ... + a,. By ‘polynomial

on u’ we will always mean polynomial on the coordinates of u defined by

g+n

E k
:u’(eiaej) = /’Lijeka

k=1

where {e;} is the canonical basis of RZ".

PROPOSITION 6.9. For each pn € Hy,, the coordinate (§,);; of the metric §, is a real
analytic function on x,

(G)ij (@) = a (wa®, 1<i,j<n,

which converges absolutely for x € B(0,r,) C R", where r, is the Lie injectivity radius of
w. Each coefficient a is a universal polynomial expression on p homogeneous of degree |c/,
depending only on i, j, a, ¢ and n. The lower terms are given by

n

1 . .
5. — 5. = gt q+J
(Gu)ij(w) = ij B E :(“q+k,q+j + 'U’q-‘rlc,q-‘ri)xk
k=1
n 1 n 1 g+n
q+s q+s q+i r q+j r
+ > 1 PR AT AT 6 Dl Hitars Mgk igttat | TR
k=1 s=1 r=1

+ monomials of degree > 3.

Proof.  We start by recalling the formula for the derivative of the exponential map exp,, :
RI*™ — G, (see, for instance [36, 2.14.3]), given by

J — e aduz

———— VzeRM, (18)
i

dexp# |m = dLexpu(ac)|e @)

where R9*" is identified with the tangent space at z, L, denotes left multiplication by u on
G, and

[ — e aduz 0 —1)k 1 1
—e ' . !(adux)k:I—iadua:—i—f(aduxf—ﬁ(adux)3+....

|
ad, x — (k+1)! 6
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Since the ij-entry of the matrix of ad, z with respect to the basis {e1,...,eq4n} is given by
(ady, @)ij = >_ py;2k, we have that
k

(I_e_adﬂx) Z ..
— =) _bi(wz*, 1<ij<q+n, (19)
ad, = i —

where b} is polynomial on i of degree |al. If we set u := exp,,(z) and A := (I — e~ adu @) fad, ©
for short, then it follows from (18), equality 7, o L, = 7(u) o 7, and (3) that
(gu)ij (x) = gu("/};t(x) (d"/}u|weq+ia dwulwqurj)
= gu(uKy)(dmy|udexp, [zeqri, dm,|udexp, [zeq+))
= g, (uK,,)(dm,|udLy|cAeqri, dmy|ywdLy|cAeqy ;)
= gu(“Ku)(dTu(u) |eKM dryleAeqyi, dr,(u) ‘eKu dT"u|eAeq+j)
= (dmyleAeqi, dmyle Aeqtj).

Now we use that drm,|. : R7T™ — R" is the projection relative to R9"" = R? ¢ R", the fact
that © = (0,...,0,z1,...,2,) and (19) to obtain

(u)ij(z) = <Z <Z byk’q“(ﬂ)xa) @q+k7z (Z bg+k’q+j(u)l‘a> eq+k>
k=1 «

k=1 a

Zb?ﬁk’q“(u)b%* q+J (H)anrﬁ
1 \ap

n

If we set

Z Z bq+k,q+z bq+k,q+J (M)7

k=1a'+p'=a

then (§,.)i; (x) = 3, aif (1)z*, with deg(aif) = deg(bZ T bL 747y = |o/| + |#'| = |a|. The last

(e} «
assertion on the lower terms easily follows from

—ad, z n n qg+n
fme ™t —(5»»—12 at x—i— E E ot TpT
ad, = T % T 5 2 Patkgti TR 'uq+k Mgttt | TR
H q+i,q+j k=1

k =1
-+ monomials of degree > 3,

concluding the proof of the proposition. ]

COROLLARY 6.10. Let pu, be a sequence in ‘H, ,, such that up — A\ € Hy,, and all ¥, and
1 are embeddings from an open neighbourhood € of 0 € R™. Then §,, — gx smoothly on €.

Proof. The coordinates (g, );; of the metric g, have been described in Proposition 6.9 for
any i € Hy . We therefore have that

Gy = S )0

and since the coefficient a¥ (1) depends polynomially on s, it follows that a¥ (ug) — a¥())
uniformly, as k — co. This implies that g, — ¢ smoothly on Q (see Remark 6 1), as was to
be shown. |
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REMARK 6.11. If instead of canonical coordinates v, =, cexp, : B(0,r,) CR" —
G, /K,, we use any coordinate system of the form

B(0,7,) X ... x B(O,r]") CW1 & ...&W,, =R" — G, /K,,

IR v

(L1, Tm) — ﬂu(expu(xl) ... expu(xm)),
(cf. for example, [15, Lemma 2.4]) we can define the corresponding g, and ri, ..,y will play
the role of the Lie injectivity radius for any p1 € H, ,, relative to our fixed decomposition R" =
Wi &...8 W,,. A universal formula for the coordinate (g,);; analogous to Proposition 6.9
follows in much the same way, and therefore smooth convergence g, — g for any convergent
sequence fi, — A holds as in Corollary 6.10.

It follows from the proof of Proposition 6.9 that for any x close to 0 in R we have
(Gu)ij(x) = (I — zad,a + %(adu ) = egris (I - zad, z + %(adu )% = egts),

where one has to project onto R™ before taking the inner product. It is therefore evident
that g, does not depend for instance on fi|gexrae, and thus the convergence of a sequence of
metrics §,, — §» might not affect the brackets completely, in the sense that it might not imply
convergence of some part of the brackets px to the corresponding part of A.

We are however in a position to prove that the usual topology on ‘H, ,, essentially corresponds
to infinitesimal convergence (see Definition 6.4).

THEOREM 6.12. Let ui be a sequence and A an element in H y,.

(i) If ux — X in Hy,n (usual vector space topology), then (G, /K, ,9.,) infinitesimally
converges to (Gr/Kx, gx).
(i) If (Gu./Kpuys 9y, ) infinitesimally converges to (Gx/Kx, gy), then
PIrn Ofik|Rr xR — PTRa OA|Rn xR,

where prg, : RIT" — R" is the projection with respect to the decomposition RIT" = RY @ R™.

Proof. Let us first prove part (i). By arguing as in the proof of Corollary 6.10, we get
that g,, — g at 0 € R™, in the sense used in Definition 6.4. In other words, (B(0, 7y, ), Gu.)
infinitesimally converges to (B(0,7)),gx), and thus (i) follows. Indeed, if Qj := ¢\(B(0,7)),
where 7 := min{r,,,r\}, and ¢y := v, 0¥y ", then as k — oo,

PrYp. = (wgl)*w;kgﬂk = (’l/);l)*gﬂk - (¢;1)*§A =gx, ateK,.

For part (ii), we first note that if V# denotes the Levi-Civita connection of g,, then
Gu(0)((VE €j)o, e:) = %(Hij + Nii +p5), g+ 1<i,j,r<q+n,
(see, for instance [4, 7.27]), and if « is the multi-index with 1 at entry » and 0 elsewhere, then
it is easy to see by using Proposition 6.9 that
9*(3:)i5(0) = =5 (up; +1ly), a+1<ijr <q+n
Therefore, the convergence g,, — gx at 0 € R™ (recall that this is equivalent to g,, — g at
eK ) implies that
(Uk)ij + () + () — )‘ij + X+ N (Mk)iy + ()7 — /\ij + X

which gives uniform convergence (uk);z — Aj; for all ¢ +1<1,j,r <qg+mn, as k — oo. This
implies that prga opg|rn xgrn — Prgn OA|Rn e, concluding the proof of the theorem. O
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REMARK 6.13. Concerning to what parts of the brackets other than that given in
Theorem 6.12, (ii) will converge under infinitesimal convergence, we can observe the following.

(i) Tt follows from the almost-effectiveness condition (h4) (see Section 3) that pi|raxre is
determined by pix|rexrn -

(i) If pp(R™,R™) C R™ for all k, then it is easy to prove that infinitesimal convergence is
equivalent to only iy |gnxrr — A|RnxRn, a8 k — 00. In other words, the isotropy Lie subalgebra
and its isotropy representation are not affected at all by the convergence g,, — gx at 0 € R"
if (R™, px) is a Lie subalgebra (and consequently G, is a semidirect product).

(ili) On the other hand, under the assumption prrqopur(R™,R™) =R? for all k, it is
reasonable to expect from Theorem 6.12, (ii), the formula for the coefficients of monomials
of degree 2 in the coordinates of g, (x) (see Proposition 6.9) and the first observation above
that infinitesimal convergence will imply the full convergence pp — A.

Recall from Example 6.6 that a positive lower bound on the Lie injectivity radii is necessary
to obtain local convergence from brackets convergence. We now prove that this suffices.

THEOREM 6.14. Let u, be a sequence such that u, — X in Hgyp, as k — oo, and assume
that infy r,, > 0. Then

(i) gux — Gx smoothly on some ball B(0,7) C R", 7 > 0;
(1) (Gup/Kpuys gue) locally converges to (Ga/Kx, gr);
(ili) there exists a subsequence of (G, /K, ,9u,) which converges in the pointed sense to a
homogeneous manifold locally isometric to (Gx/Kx, gx) and
(iv) (Gup/K . 9u,) converges in the pointed sense to (Ga/Kx, gx) if Gy/Ky is compact.

REMARK 6.15. Two different subsequences of (G, /K,,,g,,) may converge to different
limits in the pointed topology if G/K) is not compact (see Example 6.17).

REMARK 6.16. The metrics g, and gy, in part (i) can be replaced by the ones obtained by
considering the other possible coordinates described in Remark 6.11. This is often useful as the
radii T}L, ..., 7" may be larger than the Lie injectivity radius r,,, providing smooth convergence
on a larger open subset of R™. We have, for example, that exp : sls(R) — §VL2(]R) is not a
diffeomorphism, and ¢(ze; + yea + ze3) := exp(zey). exp(yes + zes) is so if {e;} is a basis of
sl (R) such that [es, e3] = —eq, [e3,e1] = e, [e1, 2] = e3 (this will be used in Examples 6.17
and 6.18 to prove certain pointed convergence).

Proof. The first two items follow by arguing as in the proof of Theorem 6.12 and using
that, in this case, we can fix a neighbourhood of the form Q = ¢, (B(0,7)) of eK,.

From part (ii) and the compactness theorem, we obtain a subsequence converging to
a complete Riemannian manifold (M, g) which is automatically homogeneous. But such a
subsequence also locally converges to (Gy/K»,gx), and so (M, g) must be locally isometric
to (Gx/Kx,gx). This proves (iii). If in addition, G/K) is compact, then M is necessarily
diffeomorphic to G/Ky as it must be diffeomorphic to G, /K, for all k¥ and hence M is
simply connected. As (M, g) is also complete, we get that it is isometric to (Gy/Ky,gx) and
part (iv) follows. O

We now apply Theorem 6.14 to the following examples.



CONVERGENCE OF HOMOGENEOUS MANIFOLDS 723

EXAMPLE 6.17. For any p = iq,,c as in Example 3.2 we define
Uy RXR? — G, ¢u(0,2,y) := exp,,(fe1). exp,, (zea + yes).

There exist r,s > 0 depending on p such that ¢, : (—s,s) x B(0,7) — G, is an embedding.
We know that any convergent sequence ui — A of these Lie brackets produces a smooth
convergence ¥, g,, — ¥} g on any neighbourhood of 0 € R? where all 1, , ¢ are embeddings
(see Corollary 6.10 and Remark 6.11).

(i) As a first example, we take jup == p_q/51,1 — fo,1,1 = A, as k — oo, and use that in
this case all 1, and ¥, are diffeomorphisms from the whole R? to the corresponding Lie group
(recall that G, ~ SLa(R) for all k and G ~ E(2)), to conclude that (G, ,g,,) converges in
the pointed sense to (G, gy ), a flat manifold diffeomorphic to R3.

(ii) Secondly, we consider g = fi1/5,1,1 — po,1,1 = A, as k — 00, a case that is topologically
more involved as G, ~ S for all k and G, is noncompact. By using that

1
hy, (R‘S,Nl) - (Rsa,ufk = hkvufl)a hy = \/E s
vk

is an isomorphism of Lie algebras, one easily obtains that
Vi o=y, (—s,8) x B(0,Vkr) — G,
is an embedding for all k, where r, s > 0 are the existing numbers with this property for . If

R x B(0, VEr) 25 S x B(0,VEkr) 25 G,

are, respectively, defined by pr (6, z,7) := (€’/2, z,y) and

(e, z,y) = exp,,, (20e1).exp,,, (ves + yes),

then ¥y = ¢ o pr and since v is an immersion we get that ¢, is an embedding for all
k. As pidigu, = Vigu, — ¥igx smoothly on each open subset of the form (—s+t,s+1) x
B0, \/Er), t > 0, and py, is a local isometry, one obtains that ¢} g,, — goo smoothly on compact
subsets of ST x R?, as k — 0o, where go. is the metric on S x R? defined by p goo 1= ¥}gx. In
other words, we conclude that (G, , g,, ) converges to the flat manifold S* x R? in the pointed
topology.

(ili) We now use the two sequences above to show that the limit for the pointed
subconvergence stated in Theorem 6.14 may not be unique. Indeed, consider the sequence

e if k£ even,
PR ik ik odd,
which clearly satisfies p, — A = po,1,1, though we have proved pointed convergence pop —
St x R? and pigp,1 — R3.
(iv) The sequence py := fio k,k diverges as k — oo; however, they are all flat and diffeomor-
phic to R? and hence pointed convergence to the euclidean space R3 holds.
(v) The Ricci eigenvalues of the divergent sequence ,uf = L R AEVE satisfy

1 1 1
— 4+l - — 41— — +1,+1}.
{Qka 2k" 2]{5}‘){0’ ) }

This suggests that some kind of convergence ug —Rx S or S' x 52, and pu;, — R x H?,
should hold. The first one cannot be pointed subconvergence as the injectivity radii go to 0,
but for the second one, pointed convergence actually holds, and this will be proved in the next
example by working on H; 3 instead of Hg 3 (recall that R x H? is not reached by the family

Na,b,c)~
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EXAMPLE 6.18. We consider a sequence of the form py := fiq, p,,1,1 € Hi,3 as in Exam-
ple 3.3, such that a; = —1, ax — 07, b1 =0, by — —1 and ay + by = —1. Thus the sequence
pr, consists of left-invariant metrics on SLy(R) (with an extra symmetry) and pp — A =
to,—~1,1,1, the manifold R x H?. In much the same way as Example 6.17(i), one can construct
diffeomorphisms

U R® — G, /K, = (R x SLy(R)) /Ry,

¥ R¥ — Gy /K =R x (SLy(R)/R),
such that ¢} g,, — ¥}g, smoothly on R®. We therefore obtain that (G, /K, g.,) converges
in the pointed sense to R x H2. By computing the Ricci eigenvalues, we deduce that for all &,

B/ F—141/Vk 1,1 € H,3 is isometric to p;, € Ho,s from Example 6.17(v), which diverges as
a sequence of brackets.

6.4. Lie groups case

Our aim in this section is to go over again the case of left-invariant metrics on Lie groups
(that is, Ho.n), the one which has been mostly applied in the literature (cf. for example, the
survey [22] and the references therein). Recall from Example 3.1 that H , is simply the variety
L, of n-dimensional Lie algebras, and we identify

P& Ly (Gurgp) = (Gus (),

where g, = g..y = (-,-) denotes the left-invariant metric on the simply connected Lie group
G,, determined by the fixed inner product (-, -) we have on the Lie algebra (R", u) of G,,. Every
h € GL,(R) defines an isometry

(Gh.;u <'7 >) I (G/u <ha h>)»

from which we deduce that the orbit GL, (R).u C £,, parameterizes the set of all left-invariant
metrics on G, and the orbit O(n).u the subset of those which are equivariantly isometric to
(G, (-, ) (notice that U, = U, = GL,(R) for any p € L,,).

The following lower bound for the Lie injectivity radius gives rise to special convergence
features for Lie groups which are not valid in the general homogeneous case. Recall that u € £,
is said to be completely solvable if all the eigenvalues of ad,, x are real for any x. In particular,
any nilpotent and any Iwasawa-type solvable u is completely solvable.

LeEmMA 6.19. Let 7, be the Lie injectivity radius of u € L,, = Ho,n. Then,

(i) 7 = m/|pll;
(ii) r, = oo for any completely solvable pi (in particular, G, is diffeomorphic to R™).

Proof. Tt is well known that, for any p € £,,, the neighbourhood of 0 € R™ defined by
V., = {2z € R" : |Im(c)| < 7 for any eigenvalue ¢ of ad, x}
satisfies that exp,, : V, — G, is a diffeomorphism onto its image (see [36, pp. 112]). On the
other hand, for any eigenvalue c of ad, x, one has
Im()] < |e| < (trad, a(ad, 2)")"/* < [|u]||l],

where [|u||? :=>" [|u(ei e;)||* = Y trad, e;(ad, e;)*. This implies that B(0,7/[|u||) C V,, and
so part (i) follows. Concerning part (ii), it is enough to note that V,, = R™ in the completely
solvable case. |
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On the other hand, the parts of the brackets pp which might not be affected by an
infinitesimal convergence §,, — §x are not present here, as ¢ = 0. We can therefore rephrase
Theorems 6.12 and 6.14 in the case of Lie groups in a much stronger way as follows.

COROLLARY 6.20. Let u be a sequence in L, = Ho . Then the following conditions are
equivalent:

(i) pr — X in L, (usual vector space topology);
(i) (Guy,(-,-)) infinitesimally converges to (G, (-, -));
(iii) (G, (-,-)) locally converges to (Gx,(:,-));
(iv) (Guys (-, +)) converges in the pointed sense to (G, (-,-)), provided Gy is compact or all
i are completely solvable;
(V) gu. — g smoothly on R™, provided all j1;, are completely solvable.

In any case, there is always a subsequence of (G, , (-,-)) that is convergent in the pointed sense
to a homogeneous manifold locally isometric to (G, (-,-)).

6.5. Remark on collapsing

The following discussion is in the spirit of [10, Section 3.11]. Actually much of what has been
studied in this paper can be found in Gromov’s book [10].

Let pj be a sequence in Hgy, such that pp — A € Vi, and assume that A ¢ H, . Recall
from Section 3 that this is possible if and only if either (h2) or (h4) fail for A, and only if ¢ > 0,
that is, never for left-invariant metrics on Lie groups.

If (h4) does not hold for A, then by considering new decompositions of the form

R?=R? & {z € R?: y(z,R") =0}, R7*"=R? &R",

and defining \' € V1, as the restriction of A to R¥*" (and projection on if necessary), we
obtain that A" € Hy ,, provided (h2) holds for X’. It is not hard to convince ourselves on the
validity of Theorems 6.12 and 6.14 if we replace (Gx/Kx, gx) by (Gx /Ky, gx) everywhere.

EXAMPLE 6.21.  The sequence py := py 11,1/ € H1,3 from Example 3.3 converges to A :=
pi1,1,0 ¢ His. In this case, N = p111 € Ho3 as in Example 3.2, a round metric on S3.

The behaviour to be understood is therefore under the failure of condition (h2) for . So that
K is not closed in GG, and a natural thing to do is to consider its closure K, which is again
a connected Lie subgroup of G such that dim Ky = ¢ > ¢ = dim K. By putting ¢’ = ¢ + r,
r > 0 and considering decompositions

1
RIT" = RIT" @R, RIT"=RI@GR", R"=R" @ R"".

one obtains that A € Hyq,n—r. Indeed, both (hl) and (h3) follow easily from the fact that
Ady(Ky) € O(n), (h2) holds by construction and if (h4) fails, then we can fix it as above and
in any case to get A € Hy/ n—r for some ¢' < g+ 1.

As (Gy/Ky, gx) has dimension n — r < n, we can just forget about any type of convergence
we had studied in this paper as a candidate for

(Gﬂk/Kl»’flﬁng) - (G)\/K)\,g)\).

A natural guess is that Gromov—Hausdorff topology should be involved in some way (cf. for
example, [10, Chapter 3; 31, 10.1]). More precisely, we expect pointed Gromov—Hausdorff
subconvergence to a homogeneous manifold locally isometric to (Gx/Ky,gx), and thus we
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would be in the presence of what is called collapsing with bounded curvature in the literature
(actually with bounded geometry).

ExAMPLE 6.22. Consider pj = fip, 1,1,-1,0,1,0,1 € H1,5 as in Example 3.4, where p;, € Q
and pp — V2 as k — oo. Thus py, is a sequence of homogeneous metrics on S% x S? which
are pairwise non-equivariantly diffeomorphic and pr — A := pu V3.1,1,-1,0,1,0,1 ¢ Hi 5. However,
if we consider the decomposition

R6 = R2 @R4 = <60,€1> D <€2,...,65>,

then it is easy to check that A € Ha 4 and is a product of round metrics on S? x S2. The Ricci
eigenvalues of py are {1,py — %,pk — %, %, %} In the light of the above speculation, up — A
would represent a collapsing with bounded geometry from S x S? to S2? x S2.

Collapsing of homogeneous manifolds from the algebraic point of view used in this paper
will be the object of further study.
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References

1. D. ALEKSEEVSKII and B. KIMEL'FEL'D, ‘Structure of homogeneous Riemannian spaces with zero Ricci
curvature’, Funktional Anal. i Prilozen 9 (1975) 5-11. (English translation: Funct. Anal. Appl. 9 (1975)
97-102.

2. S. ALorr and N. WALLACH, ‘An infinite family of distinct 7-manifolds admitting positively curved
Riemannian structures’, Bull. Amer. Math. Soc. 81 (1975) 93-97.

3. B. ANDREWS and C. HOPPER, The Ricci flow in Riemannian geometry, Lecture Notes in Mathematics
(Springer, Berlin, 2011).

4. A. BEsSE, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 10 (Springer, Berlin,
1987).

5. C. Boum, M. Y. WANG and W. ZILLER, ‘A variational approach for compact homogeneous Einstein
manifolds’, Geom. Funct. Anal. 14 (2004) 681-733.

6. T. BROCKER and T. TOM DIECK, Representations of compact Lie groups (Springer, New York, 1985).

7. B. Caow, S.-C. CHu, D. GLICKENSTEIN, C. GUENTHER, J. ISENBERG, T, IvEY, D. KNnoPF, P. LU, F. Luo
and L. N1, The Ricci flow: techniques and applications, part I: geometric aspects, American Mathematical
Society Mathematical Survey Monographs 135 (American Mathematical Society, Providence, RI 2007).

8. P. EBERLEIN, Riemannian 2-step nilmanifolds with prescribed Ricci tensor, Contemporary Mathematics
469 (World Scientific, Singapore, 2008) 167-195.

9. D. GLICKENSTEIN and T. PAYNE, ‘Ricci flow on three-dimensional, unimodular metric Lie algebras’, Comm.
Anal. Geom. 18 (2010) 927-962.

10. M. GrRoOMOV, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152
(Birkh&user, Basel, 1999).

11. G. GuzHVINA, ‘The action of the Ricci flow on almost flat manifolds’, Ph.D. thesis, (Universitat Miinster,
2007).

12. R. HAMILTON, ‘A compactness property for solutions of the Ricci flow’, Amer. J. Math. 117 (1995) 545-572.

13. J. HEBER, ‘Noncompact homogeneous Einstein spaces’, Invent. Math. 133 (1998) 279-352.

14. H. HEINTZE, ‘On homogeneous manifolds of negative curvature’, Math. Ann. 211 (1974) 23-34.

15. S. HELGASON, Differential geometry, Lie groups and symmetric spaces, Graduate Studies in Mathematics
34 (American Mathematical Society, Providence, RI, 1978).

16. M. JABLONSKI, ‘Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups’,
Geom. Topol. 15 (2011) 735-764.

17. S. KoBayasHI and K. Nomizu, ‘Foundations of differential geometry, Interscience, vol. II (Wiley, New York,
1969).

18. M. KRECK and S. STOLZ, ‘Some nondiffecomorphic homeomorphic homogeneous 7-manifolds with positive
sectional curvature’, J. Diferential Geom. 33 (1991) 465-486.

19. B. KRUGCGEL, ‘A homotopy classification of certain 7-manifolds’, Trans. Amer. Math. Soc. 349 (1997)
2827-2843.



20.
21.

22.
23.
24.
25.
26.

27.

29.

30.

32.

33.

34.

36.

37.
38.

CONVERGENCE OF HOMOGENEOUS MANIFOLDS 727

J. LAURET, ‘Ricci soliton homogeneous nilmanifolds’, Math. Ann. 319 (2001) 715-733.

J. LAURET, ‘A canonical compatible metric for geometric structures on nilmanifolds’, Ann. Global Anal.
Geom. 30 (2006) 107-138.

J. LAURET, Einstein solvmanifolds and nilsolitons, Contemporary Mathematics 491 (World Scientific,
Singapore, 2009) 1-35.

J. LAURET, ‘Einstein solvmanifolds are standard’, Ann. of Math. 172 (2010) 1859-1877.

J. LAURET, ‘The Ricci flow for simply connected nilmanifolds’, Comm. Anal. Geom. 19 (2011) 831-854.
J. LAURET, ‘Ricci flow of homogeneous manifolds’, Preprint, 2011, http://arxiv.org/abs/1112.5900.

J. LAURET and C. E. WILL, ‘Einstein solvmanifolds: existence and non-existence questions’, Math. Ann.
350 (2011) 199-225.

J. MILNOR, ‘Curvature of left-invariant metrics on Lie groups’, Adv. Math. 21 (1976) 293-329.

. L. Nicoropt and F. TRICERRI, ‘On two theorems of .M. Singer about homogeneous spaces’, Ann. Global
Anal. Geom. 8 (1990) 193-209.

Y. NIKOLAYEVSKY, ‘Einstein solvmanifolds and the pre-Einstein derivation’, Trans. Amer. Math. Soc. 363
(2011) 3935-3958.

T. PAYNE, ‘The Ricci flow for nilmanifolds’, J. Modern Dyn. 4 (2010) 65-90.

. P. PETERSEN, Riemannian geometry, Graduate Texts in Mathematics 171 (Springer, Berlin, 1998).

F. PrRUFER, F. TRICERRI and L. VANHECKE, ‘Curvature invariants, differential operators and local
homogeneity’, Trans. Amer. Math. Soc. 348 (1996) 4643-4652.

T. PUTTMANN, ‘Optimal pinching constants of odd dimensional homogeneous spaces’, Invent. Math. 138
(1999) 631-684.

I. M. SINGER, ‘Infinitesimally homogeneous spaces’, Comm. Pure Appl. Math. 13 (1960) 685-697.

. P. TorpING, Lectures on the Ricci flow, London Mathematical Society Lecture Notes 325 (Cambridge
University Press, Cambridge, UK, 2006).

V. S. VARADARAJAN, Lie groups, Lie algebras and their representations (Prentice-Hall, Englewood Cliffs,
NJ, 1974).

F. WARNER, Foundations of differentiable manifolds and Lie groups (Springer, Berlin, 1983).

C. E. WILL, ‘A curve of nilpotent Lie algebras which are not Einstein nilradicals’, Monatsh. Math. 159
(2010) 425-437.

Jorge Lauret

FaMAF and CIEM

Universidad Nacional de Cérdoba
Cérdoba

Argentina

lauret@famaf.unc.edu.ar


http://arxiv.org/abs/1112.5900

	1. Introduction
	2. Classical setting
	3. Varying Lie brackets viewpoint
	4. Different notions of equivalence
	5. Curvature invariants
	6. Convergence
	References

