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Abstract. The paper is devoted to present the Continuum Strong Discontinuity Approach (CSDA
to examine its capabilities for modeling cracking of concrete. After introducing the main ingredien
the CSDA, an isotropic continuum damage model, which distinguishes tension and compression s
used to implicitly induce a projected traction separation-law that rules the cracking phenomena. C
for onset and propagation of material failure and specific finite elements with embedded disconti
are also briefly sketched. Finally, some representative numerical simulations of cracking, in plai
reinforced concrete specimens, using the CSDA are presented.

Keywords: concrete; crack modeling; strong discontinuity; continuum damage.

1. Introduction: crack modeling in concrete

Inelastic behavior of concrete structures is intimately related to crack formation. In a first 
microcrack nucleation and growing can be observed in the so-called fracture process zone. After
that, in a second stage micro cracks coalesce and macrocracks, which propagate through
body, are visible.

In the first stage, the number of microcracks is large and densely distributed, which m
suitable the continuum model hypothesis for the analysis. Phenomenological continuum d
models, see for example Lemaitre (1985), have been introduced in the past as a way of de
the nucleation and growth of microcracks. They make use of the effective stress concept, i
introduced by Kachanov (1958). Strain softening and elastic stiffness degradation are funda
characteristics of these models.

However, it is well known that constitutive models equipped with strain softening fail to des
the solid fracture process since the resulting boundary value problem becomes ill posed. Nu
procedures have been presented in the past to circumvent this deficiency as, for instance, n
modes, gradient models, rate dependent models, etc.

In recent years the so-called strong discontinuity approach (SDA) has became a promising
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methodology to analyze failure in concrete structures caused by crack propagation. D
descriptions can be found, for instance, in Simo, et al. (1993), Oliver (1996), Armero, et al. (1996),
Larsson, et al. (1996), Borja (2000), Wells, et al. (2001). As a specific branch of the SDA, th
continuum strong discontinuity approach (CSDA) emphasizes the use of continuum formats to
model displacement discontinuities (see Oliver, et al. (1999), Oliver (2000), Oliver, et al. (2002) for
a complete description). In there, it is proved that, with appropriate ingredients, any sta
continuum (stress-strain) constitutive model projects onto the discontinuity interface, in form
traction-separation model typical of cohesive discrete fracture mechanics. Therefore, that pro
introduces a natural way of modeling fracture and cracking processes in concrete by me
continuum constitutive models. The procedure bridges fracture and damage mechanics, si
same continuum model describes both the degradation into the fracture process zone an
material instability onsets, the discrete traction-separation law governing the macro-fra
propagation.

In this work, after a description of the continuum strong discontinuity approach and
corresponding numerical simulation procedures, that methodology is used to model developm
cracking in several problems in order to make an assessment of both the viability and potenti
the CSDA for modeling cracking in concrete.

2. The continuum strong discontinuity approach (CSDA)

The CSDA grounds on classical continuum mechanics by generalizing the admi
displacement space, i.e. : the occurrence of fractures in the solid medium is captured by intro
discontinuous displacement fields in the problem. The resulting kinematics, termed str
discontinuity kinematics, requires a reinterpretation of the constitutive model to make it capabl
dealing with the unbounded strains emerging from those discontinuous displacement fields. I
from equilibrium requirements, the constitutive model should furnish bounded stresses ev
unbounded strains. This can be achieved through the redefinition of only one paramete
softening modulus, which has to be regularized in points where unbounded strains take plac
rest of ingredients and features of the continuum constitutive model remain unmodified.

The corresponding numerical procedures should preserve that characteristic kinematics by a
capturing discontinuous displacement fields. The so-called finite elements with embedded discont
fulfill this condition, and therefore, they become a fundamental ingredient of the approach.

The strong discontinuity kinematics, the adapted continuum constitutive model and the u
specific discontinuous finite elements, are then the fundamental aspects of the CSDA th
described in this Section.

2.1. Strong discontinuity kinematics

An admissible displacement field u(x) exhibiting displacement discontinuities can be described
(see Fig. 1):

(1)u x( ) u x( ) �S+ u[ ][ ] x( ) ;  �S
1 x∀ Ω+∈=

0 x∀ Ω −∈=




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==
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where  is a smooth field and �s[[u]]( x) (�S being the Heaviside/step function shifted to S)
captures the displacement jump field [[u]]( x) at the discontinuity interface S of normal n , which
divides the body Ω into two disjoints parts Ω+ and Ω −. The strain field kinematically compatible
with the discontinuous displacement field (1) is then:

(2)

which displays un unbounded term due to the presence of the Dirac’s delta function δS.
For computational purposes, the singular term in Eq. (2) should be regularized throug

following “h-sequence”, in terms of the bandwidth h, of the regularization domain Sh (see Fig. 1):

(3)

2.2. Isotropic continuum damage model for concrete

Although the CSDA is not restricted to any specific constitutive model, let us conside
isotropic continuum damage model which belongs to the family of classical continuum da
models (see for example Lemaitre (1985)) where a scalar internal variable  describes the
elastic stiffness degradation (d=0 for the undamaged material and d=1 for the fully damaged
material). According to Oliver (2000) the damage variable d is made dependent on an intern
strain-like variable r. The model can then be described as follows:

u

εεεε x( ) ∇∇∇∇Su x( ) εεεε x( ) δS u[ ][ ] n⊗( )sym,+= =

regular
(bounded)

singular
(unbounded)

δS x( ) µS

h
-----

h 0→
lim  ;  µS x( ) 1 x∀ Sh∈=

0  otherwise=



= =

d 0 1,[ ]∈

Fig. 1 Strong discontinuity kinematics
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astic

ded
Free energy: (4)

Damage variable: (5)

Internal variable: (6)

Constitutive equation (7)

Damage function (8)

Loading conditions: (9)

Softening law : (10)

Incremental
constitutive
law:

(11)

where ϕ (εεεε, r ) is the free energy, depending on the strain tensor εεεε and the internal variable r, and ϕo

is the elastic strain energy for the undamaged material;  is the el
constitutive tensor,  and µ are the Lame’s parameters and 1 and I are the identity tensors of 2nd
and 4th order respectively.

In Eq. (7), :  is the effective stress. Its positive counterpart is then defined as:

(12)

where  stands for the positive part (Mac Auley brackets) of the i-th principal effective stress

 ( =  for  and = 0 for ) and pi stands for the i-th principal stress
eigenvector. The initial elastic domain defined as  is then unboun

ϕ εεεε r,( ) 1 d–( )ϕo ; ϕo
1
2
--- εεεε : C : εεεε= =

d r( ) 1
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----------;–=
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stress states as usual for modeling cracking in concrete.
The actual stresses σσσσ and the stress-like variable q are determined via the state Eqs. (7) and (1

Eq. (10) defines the softening law in terms of the continuum softening parameter . In Eq. (6),
σu and E are, respectively, the tensile strength and the Young’s modulus. Finally, Eq. (11) is th
constitutive law in terms of the tangent constitutive operator Ctan.

2.3. Softening modulus regularization

As the discontinuous displacement field (1) is activated, the unbounded strains in Eq. (2) d
inside Sh. Furthermore, the equilibrium condition imposes the tractions � =  to be continuous
in the neighborhood of Sh. Since the strains and stresses are regular outside Sh that condition
enforces boundedness of the traction vector � = , and therefore of the whole stress tensor,
Sh which, in consequence, has to be bounded in presence of unbounded strains. As it ha
proven in Oliver (2000) a sufficient condition for this to happen is to redefine the character o
softening modulus H as follows :

(13)

where  is termed the intrinsic softening modus, and can be characterized as material param
terms of the fracture energy Gf the ultimate tensile strength σu and the Young’s modulus E :

                       (linear softening)

(14)
   (exponent softening)

Eq. (14) clearly links the CSDA with non-linear fracture mechanics via the classical conce
fracture energy. The regularized version of Eq. (14) reads, after insertion of Eq. (3):

(15)

which is the so called softening regularization condition.

2.4. Induced discrete constitutive model: traction separation law

The introduction, in the continuum constitutive model in Eqs. (4) to (11), of the st
discontinuity kinematics (2)-(3) and the softening modulus regularization (15), leads to a c
result in the CSDA. In fact, it can be shown, see Oliver (2000), that a discrete constitutive d
model relating the traction � =  and the displacement jump [[u]] is automatically fulfilled at the
failure (cracking) interface S i.e.:

σσσσ+ 0=

H 0≤

σσσσ n⋅

σσσσSh n⋅

1
H
---- δS

1

H
---- ;=

H

H
σu

2

2EGf

------------–=

H
σu

2

EGf

---------
ro–

Gf

------- r r o–( ) 
 exp–=

H hH=

σσσσ n⋅
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were ω is a discrete damage variable having a different character respect to the continuum ond in
Eq. (5)). This model is a projection of the original constitutive model into the failure surface and
inherits its properties. Therefore, discrimination from tension to compression in Eq. (1
implicitly fulfilled in Eq. (16). It is important to emphasize that this discrete constitutive mode
neither derived nor implemented in practice, but fulfilled from the aforementioned ingredients, 
enjoying the physical significance of the continuum model. This fact constitutes one of the
relevant benefits of the CSDA.

2.5. Local material failure. Cracking propagation direction

Detection of material failure in concrete and, consequently, onset of cracking, is many 
established in terms of the maximum principal (tensile) stress as it reaches the uniaxial strenσu.
The fracture propagation direction is then orthogonal to that principal stress.

Nevertheless, onset of local failure can be determined in a more mechanically rigorou
consistent way, from the material stability properties of the continuum constitutive model. Lo
strong ellipticity of the tangent constitutive operator Cload in Eq. (11) signals the time, tB, at which
bifurcation of the stress-strain field (material instability) takes place. This can be set in terms of th
so-called localization tensor Qloc as:

det(Qloc(x,n, tB))=0

Qloc(x,n, tB)= (17)

from which the normal n , orthogonal to the propagation direction, can be determined (see
example Runesson, et al. (1991) and Oliver, et al. (2003b)).

Both criteria can be inserted in the CSDA. The first one provides many times enough ac
results for tensile dominated damage phenomena as cracking. On the other side, the use
criterion (17) seems relevant when plastic dissipation dominates the failure, like in compre
failure in concrete or in metals. In any case, in the context of the CSDA the relevant asp
detection of local failure is the activation, at the corresponding material point, of the s
discontinuity kinematics (2)-(3), associated to the selected direction n.

3. Numerical aspects. Finite elements with embedded discontinuities

Numerical implementation of the CSDA lies on the so-called finite elements with embe
discontinuities, see Oliver, et al. (2003a), admitting discontinuous displacement fields. They consis
of adding, to the basic displacement modes, an enriching mode �s(x)[[u]] e, whose shape function
�s(x) exhibits a unit jump in the element, as shown in Fig. 2. The elemental jump is constant
the elemental discontinuity interface Se, and the resulting displacement jump field is discontinuo
between elements.

The orientation of Se is provided by the local material failure criterion discussed in the previ
sections. Its position inside every element results from specific algorithms devoted to trac

Q u[ ][ ]⋅ Q n C n⋅ ⋅=

n Cload n⋅ ⋅
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propagation of every crack. In Oliver, et al. (2002) a global tracking algorithm capable to deal w
multiple, and simultaneously propagating, cracks is presented.

4. Representative numerical simulations

A series of numerical simulations of fracture and cracking in concrete is presented in this s
One of the aims is to assess the numerical results (both quantitative and qualitative) in front o
documented experiments. An additional goal is to show the possibilities of the CSDA to ca
multiple crack formation mechanisms in reinforced concrete structures.

Several cases of fracture propagation in typical mode I and mixed mode, as categoriz
fracture mechanics, are presented. Although there is no consensus about the question if mixe
fracture actually exists in heterogeneous materials like concrete, typical examples of those 
are presented. In the first and second simulations, the slip displacement jump is at least on
smaller than the opening mode, this characterizing a mode I of fracture. In the third simulation
magnitudes are much closer to each other, this approaching a mixed-mode of fracture.

The numerical results have been obtained using the general-purpose finite element code C
(Cervera, et al. 2001) where the specific ingredients of the CSDA have been implemented.

4.1. Notched specimen in Mode I of fracture

The concrete, 0.0508[m] of thickness, specimen of Fig. 3 with a crack line wedge, is ana
assuming a plane stress state. It is subjected to a wedge couple of loads F1 and diagonal
compression forces F2 changing along time as shown in Fig. 3(b). Kobayashi, et al. (1985)
published experimental results of this test. In Rots (1988) a numerical simulation based o
smeared crack approach can be found.

The material model parameters are: Young’s modulus E=30.5(GPa), Poisson’s ratio ν =0.2,
ultimate tensile strength σu=3.(MPa) and fracture energy Gf=100.(N/m). The finite element mesh
consists of 1332 enhanced linear triangles.

Fig. 2 Elemental enrichment of triangles and quadrilaterals
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Fig. 3 Concrete fine slab specimen fracturing in mode I

Fig. 4 Concrete fine slab specimen fracturing in mode I. Finite element mesh: 1332 enhanced linear triangles,
2048 nodes

Fig. 5 Concrete fine slab specimen. Load vs. displacement curves
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The fracture propagates in mode I from the notch toward the upper part of the spe
displaying an approximately constant angle of 71o with the horizontal axis. In Fig. 3(c) the
numerically obtained fracture path is compared with the experimental one.

Fig. 5(a) shows the load vs. CMOD curve. There it can be checked a slight limit 
overestimation and a good agreement in the post-critical stage. Fig. 5(b) stresses the 
character of the obtained numerical results by displaying the normal versus tangential 
displacement at point A of Fig. 3(c).

4.2. Concrete L-shaped panel

L-shaped concrete specimens are popular benchmark tests for validation of computational m
The one considered here, performed by Winkler, Niederwanger and Hofstetter is fully descri
NW-Ialad (2003). A schematic diagram is represented in Fig. 6.

The material parameters are the following: E=25859.(MPa), σu=2.70(MPa), ν =0.2. The fracture
energy value Gf=90.5(N/m) was obtained by integrating the experimental curve load-ver
displacement at the load application point (see Fig. 7) and dividing this value by the total len
the crack shown in Fig. 6.

A potential-type softening law was considered. The evolution of the continuum softe
parameter H in Eq. (11) is given by H(q)=αqβ where the material parameters α and β are:

The fracture problem has been modeled by six different meshes:
� 1071, 3007 and 6645 triangles (meshes 1, 2 and 3 respectively) and
� 627, 1555 and 3401 quadrilaterals (meshes 4, 5 and 6).

Numerically obtained load versus δv curves are plotted in Fig. 8  and Fig. 9 and compared with 
experimental results.

α
σu

E
-------- 

  2 β–( )
–=

1
2 β–( )Gf

-----------------------  ; β 1.5=

Fig. 6 Concrete L-shaped panel. Experimental
fracture paths

Fig. 7 Experimental force P[N] vs. displacement δv[mm]
curve and determination of the fracture energy
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In Figs. 10 and 11 the numerically obtained crack paths, for these meshes, are displaye
remarkable that, in spite of the different type and number of elements, the results are very sim
all the cases.

Fig. 8 P[N] vs. δv [mm] curves. Triangular meshes Fig. 9 P[N] vs. δv [mm] curves. Quadrilateral meshes

Fig. 10 Crack paths (triangular meshes)

Fig. 11 Crack paths (quadrilateral meshes)
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4.3. Double notched specimen in mixed mode of fracture

A double-notched concrete specimen undergoing a mixed mode fracture is analyzed. N
Mohamed (1992) has presented experimental results of this test. Nechnech (2001) and S
(2002) reported numerical solutions.

The specimen is a concrete block, of [mm] size and 50.[mm] of thickness, with
depth symmetrical notches as shown in Fig. 12(a). It is fixed to the loading device on those
where loading and displacement conditions are imposed. An initial horizontal load 

 is applied, which remains constant through the complete experiment. In a se
stage, the loading device imposes an incremental vertical displacement δv. Plane stress assumptio
has been taken for the modeling. Material parameter values are: E=30.[Gpa], ν =0.2, σu=3.(MPa).
In the spirit of the CSDA the fracture energy Gf=110.(N/m) has been considered the same for bo
fracture modes I and II.

The finite element mesh has 1572 quadrilateral elements including the rigid support, whic

200 200×

Ph 5. kN( )=

Fig. 13 Double-notched concrete specimen: (a) experimental crack pattern (taken from Spencer, 20
numerical crack pattern

Fig. 12 Double-notched concrete specimen: (a) schematic diagram of the experimental test; (b) vertica
versus vertical displacement curve. Experimental results from Nooru-Mohamed (1992), taken
Nechnech (2001)
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Fig. 12(b) shows the vertical force versus the vertical displacement both for numerical simu

and the experiment. It can be observed that numerical results provide a slight underestimation
initial stiffness, but the peak load and the post-peak curve agree very well with the experim
test. In Fig. 13 the numerical obtained crack patterns and the experimental ones display an e
agreement.

Fig. 12(b) displays in dark gray, elements belonging to a zone surrounding the fracture 
which are determined by the algorithm tracing the discontinuity line. Those elements are forb
to get a failure state by imposing an elastic response. This condition provides a more 
numerical response.

Fig. 14 presents the evolution of the crack pattern obtained at different stages of the num
simulation. In this case, the propagation direction was considered orthogonal to the first 
principal stress.

4.4. Crack development in a reinforced concrete specimen

The goal of the test is to qualitatively reproduce the sequential process of formation of cra
the neighborhood of the reinforcement, due to the bond-slip effects in the concrete/steel inter
is not intended to make an exhaustive study but to check if the proposed methodology could 
the essentials of cracking generation phenomena.

In the model a reinforced concrete specimen is subjected, under plane strain conditions, to

Fig. 14 Double-notched concrete specimen: crack pattern evolution at different stages marked at th
displacement curve in Fig. 12
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out state in the rebar as shown in Fig. 15(a) (in Rots (1988) a numerical solution of a s
configuration, assuming axial symmetry can be found).

Adhesion along the steel-concrete interface is modeled using bond-slip elements with a
perfectly plastic J2 material model. Additional material parameters characterizing the prob
Young’s modulus, E, Poisson’s ratio, ν, ultimate tensile strength, σu, and fracture energy, Gf of
concrete, as well as steel parameters and the sliding stress, σyd, of the bounding material are
displayed in Table 1.

Due to the problem symmetries, only one fourth of the specimen was discretized. In or
check mesh sensitivity two different finite element meshes, A and B in Fig. 15(b), were consi
Since similar results were obtained, no comparison is presented in terms of the density of th
element mesh.

Results in Figs. 16 and 17, although not experimentally assessed, display the phenomena o
in reinforced concrete structures i.e.: in a first stage of the loading process developmen

Fig. 15 Reinforced concrete specimen. (a) geometrical model; (b) coarse and fine meshes; (c) deforme
after the primary cracks have propagated

Table 1 Material properties

Material Model E ν Gf σu

Concrete Only traction damage 25. GPa 0.18 25 N/m 2.8 MPa
Reinforcement Elastic 214. GPa 0.3 -- --
Joint Rigid-Plastic (J2) ---- 0.3 -- 3.0 MPa

Fig. 16 Reinforced concrete specimen. Crack patterns along the failure evolution process
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secondary crack system takes place without causing substantial loss of the structural strength
a loading increase leads to the formation of primary crack systems propagating across the c
section, resulting into a sudden loss of strength of the structure.

This characteristic feature is also present in the numerical solution. The load P vs. displacement δ
curve of Fig. 17(a), the detail of this curve in Fig. 17(b) and the crack system developed 
concrete bulk in Fig. 16 show that a severe snap-back behavior is associated with the propag
a primary crack through the corresponding concrete section. However, after that, the load c
capacity of the reinforced concrete structure is not yet exhausted since a subsequent re
translates into the development of a second primary crack in front of the first one. For a 
specimen the process would continue from the center to the end. The crack spacing wou
depend on the concrete/steel material and geometrical properties but, essentially, on the a
properties of the interface.

5. Concluding remarks

In the preceding sections, the most relevant ingredients of the CSDA have been introduc
the approach has been applied to the numerical modeling of concrete cracking for a repres
set of examples. From them, and from the authors’ experience in using that approach in mo
additional problems, the following remarks can be made:
� Limit loads provided by the numerical simulations are acceptable. However, in some cas

numerical response displays a slightly more rigid (or flexible in other cases) pre-peak stru
response when compared with experimental results. This fact is also found in the literat
using alternative numerical solution procedures. Since this seems to be a well-fitted part 
simulation, mainly affected by theoretically well-determined material parameters, reason
those discrepancies could be either the accuracy of the reported experimental results
intrinsic feature of the considered type of finite element to be determined in subse
research.

� In the CSDA the softening law and the intrinsic softening parameter  in Eq. (14) govern
post-peak response stage. Therefore, the accuracy of the obtained results lies very much
correct estimation of the fracture energy as a material property. As for the softening law, 
results are obtained using an exponential law, such as the one shown in Eq. (10) rath
linear softening law; the former providing longer tails in the post-critical response similar t
ones observed in experimental responses.

H

Fig. 17 Reinforced concrete specimen. Equilibrium curve and detail of the snap-back zone
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� As for the crack pattern it can be, at least when a reduced number of cracks are inv
precisely captured in both the onset and propagation aspects. In addition, mechanis
sequential crack generation in the reinforcement neighborhood can be qualitatively repro
Whether or not this statement can be extended to more general crack patterns and stre
should be determined by subsequent works.

As for computational aspects, the CSDA exhibits the following features:

� The scheme is objective (mesh convergent) in terms of the mesh size and alignment, an
independent of the considered type of finite elements (triangular o quadrilateral).

� Even coarse finite element meshes provide acceptable solutions. This is a substantial ad
of using finite elements with embedded discontinuities. In contrast with alternative contin
methodologies, which require several (very small) finite elements to capture a displac
jump across their width, here that discontinuity is captured by only one element. This res
a reasonable computational cost and provides expectations on the viability of the CSD
modeling cracking in larger concrete structures.
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