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Abstract. The paper is devoted to present the Continuum Strong Discontinuity Approach (CSDA) and
to examine its capabilities for modeling cracking of concrete. After introducing the main ingredients of
the CSDA, an isotropic continuum damage model, which distinguishes tension and compression states, is
used to implicitly induce a projected traction separation-law that rules the cracking phenomena. Criteria
for onset and propagation of material failure and specific finite elements with embedded discontinuities
are also briefly sketched. Finally, some representative numerical simulations of cracking, in plain and
reinforced concrete specimens, using the CSDA are presented.
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1. Introduction: crack modeling in concrete

Inelastic behavior of concrete structures is intimately related to crack formation. In a first stage
microcrack nucleation and growing can be observed in the so-called fracture procesdifter
that, in a second stage micro cracks coalesce and macrocracks, which propagate throughout th
body, are visible.

In the first stage, the number of microcracks is large and densely distributed, which makes
suitable the continuum model hypothesis for the analysis. Phenomenological continuum damage
models, see for example Lemaitre (1985), have been introduced in the past as a way of describing
the nucleation and growth of microcracks. They make use of the effective stress concept, initially
introduced by Kachanov (1958). Strain softening and elastic stiffness degradation are fundamental
characteristics of these models.

However, it is well known that constitutive models equipped with strain softening fail to describe
the solid fracture process since the resulting boundary value problem becomes ill posed. Numerous
procedures have been presented in the past to circumvent this deficiency as, for instance, non-loca
modes, gradient models, rate dependent models, etc.

In recent years the so-called strodgcontinuity approachiSDA) has became a prasing
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methodology to analyze failure in concrete structures caused by crack propagation. Detailed
descriptions can be found, for instance, in Sietoal (1993), Oliver (1996), Armeret al. (1996),
Larsson,et al (1996), Borja (2000), Wellst al (2001). As a specific branch of the SDA, the
continuum strong discontinuity approa¢@SDA) emphasizes the use of continuum formiats

model displacement discontitias (see Olivergt al (1999), Oliver (2000), Olivert al (2002) for

a complete description). In there, it is proved that, with appropriate ingredients, any standard
continuum (stress-strain) constitutive model projects onto the discontinuity interface, in form of a
traction-separation model typical of cohesive discrete fracture mechanics. Therefore, that projection
introduces a natural way of modeling fracture and cracking processes in concrete by means of
continuum constitutive models. The procedure bridges fracture and damage mechanics, since the
same continuum model describes both the degradation into the fracture process zone and, afte
material instability onsets, the discrete traction-separation law governing the macro-fracture
propagation.

In this work, after a description of the continuum strong discontinuity approach and the
corresponding numerical simulation procedures, that methodology is used to model development of
cracking in several problems in order to make an assessment of both the viability and potentiality of
the CSDA for modeling cracking in concrete.

2. The continuum strong discontinuity approach (CSDA)

The CSDA grounds on classical continuum mechanics by generalizing the admissible
displacement space, i.e. : the occurrence of fractures in the solid medium is captured by introducing
discontinuous dispcement fields in the problem. The resulting kinematics, termed strong
discontinuity kinematigsrequires a reinterpretation of the constitutive model to make it capable of
dealing with the unbounded strains emerging from those discontinuous displacement fields. In fact,
from equilibrium requirements, the constitutive model should furnish bounded stresses even for
unbounded strains. This can be achieved through the redefinition of only one parameter: the
softening modulus, which has to be regularized in points where unbounded strains take place. The
rest of ingredients and features of the continuum constitutive model remain unmodified.

The corresponding numerical procedures should preserve that characteristic kinematics by allowing
capturing discontinuous displacement fields. The so-called finite elements with embedded discontinuities
fulfill this condition, and therefore, they become a fundamental ingredient of the approach.

The strong discontinuity kinematics, the adapted continuum constitutive model and the use of
specific discontinuous finite elements, are then the fundamental aspects of the CSDA that are
described in this Section.

2.1. Strong discontinuity kinematics

An admissible displacement fieldx) exhibiting displacement discontinuities can be described by
(see Fig. 1):
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Fig. 1 Strong discontinuity kinematics

where U is a smooth field and+[[u]](x) (Hsbeing the Heaviside/step function shifted $p
captures the displacement jump field][{ x) at the discontinuity interfac8 of normaln, which
divides the bodyQ into two disjoints part€2* and Q. The strain field kinematically compatible
with the discontinuous displacement field (1) is then:

e(x) = O°u(x) = &(x) + ag([[u]] O )™,
— ———— (2)
regular singular
(bounded) (unbounded)

which displays un unbounded term due to the presence of the Dirac’s delta fidgction
For computational purposes, the singular term in Eq. (2) should be regularized through the
following “h-sequence”, in terms of the bandwidithof the regularization domai’ (see Fig. 1):

Ox O Sh (3)

. 0 -
55x) = imE; ) = o= 1 |
h-0 O = 0 otherwise

2.2. Isotropic continuum damage model for concrete

Although the CSDA is not restricted to any specific constitutive model, let us consider an
isotropic continuum damage model which belongs to the family of classical continuum damage
models (see for example Lemaitre (1985)) where a scalar internal vadiabl®, 1] describes the
elastic stiffness degradatiord£0 for the undamaged material a1 for the fully damaged
material). According to Oliver (2000) the damage variables made dependent on an internal
strain-like variablea. The model can then be described as follows:
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Free energy: o, r) = (1-d)o, ; ¢, = %s:c:e 4)

Damage variable: d(r) = 1—91}2; (5)

Internal variable: F = A ; r|,_y = f, = 0/ AE (6)

Constitutive equatiomr = (1—d)C:g = %Ci_:: = %6 (7)
o

g(e r) =1.(e) -1

1(e) =0 T B

Damage function

(8)

Loading conditions: A=0; g<0; Ag=0 9)
E]] H, = constant- ( linear softenirg
Softening law: G = Hr; H(r) = 0 o (10)
0 H, expE]E—(r —ro)E]]_. (exponent softeniny
0 f
0 |
Incremental E] c'"=(1-d)C= %C (unloading)
constitutive 6 =C"g;C*" =0 ’
law: E]C"’adEgC—g_Tr&D G (loading)
r
0 r (12)

where @ (g, r) is the free energy, depending on the strain tegisord the internal variable and ¢,
is the elastic strain energy for the undamaged mate@Gak A(10 1)+ 2ul is the elastic
constitutive tensord  angd are the Lame’s parameters ahdnd| are the identity tensors of 2nd
and 4th order respectively.

In Eq. (7), :0 = C:e is the effective stress. Its positive counterpart is then defined as:

6" = [B:i0p; O p (12)

where [0 stands for the positive part (Mac Auley brackets) of ittie principal effective stress
o0 ([oil=o; for g;=z0 and [(bid=0 for gy<0 ) andp; stands for thei-th principal stress
eigenvector. The initial elastic domain definedEs = {o;J0" o< ro} is then unbounded
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for compressive stress stateS = 0 and, therefore, damage becomes only associated to tensil
stress states as usual for modeling cracking in concrete.

The actual stresses and the stress-like variabtpare determined via the state Egs. (7) and (10).
Eqg. (10) defines the softening law in terms of the continuum softening paramstér In Eq. (6),
o, andE are, respectively, the tensile strength and the Young’'s modulus. Finally, Eq. (11) is the rate
constitutive law in terms of the tangent constitutive oper@ttr

2.3. Softening modulus regularization

As the discontinuous displacement field (1) is activated, the unbounded strains in Eq. (2) develop
inside S". Furthermore, the equilibrium condition imposes the tractibrss [h to be continuous
in the neighborhood of". Since the strains and stresses are regular ouSSidhat condition
enforces boundedness$ the traction vectoZ =04 [h, and therefore of the whole stress tensor, in
S" which, in consequence, has to be bounded in presence of unbounded strains. As it has beel
proven in Oliver (2000) a sufficient condition for this to happen is to redefine the character of the
softening modulu$d as follows :

1
= Ot (13)

whereH is termed the intrinsic softening modus, and can be characterized as material parameter in
terms of the fracture enerdy; the ultimate tensile strength, and the Young’'s modulus :

o3 . .
= _ (linear softening)

2EG,

I

(14)

o2 r .
- aexpE]_G—:(r—ro)E] (exponent softening)

Eq. (14) clearly links the CSDA with non-linear fracture mechanics via the classical concept of
fracture energy. The regularized version of Eq. (14) reads, after insertion of Eq. (3):

H = hH (15)

which is the so called softening regularization condition.

2.4. Induced discrete constitutive model: traction separation law

The introduction, in the continuum constitutive model in Egs. (4) to (11), of the strong
discontinuity kinematics (2)-(3) and the softening modulus regularization (15), leads to a crucial
result in the CSDA. In fact, it can be shown, see Oliver (2000), that a discrete constitutive damage

model relating the tractiof=c [h and the displacement jump][ is automatically fulfilled at the
failure (cracking) interfac&i.e.:
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T=1-w)QU[u]] ;Q =nCh (16)

were w is a discrete damage variable having a different character respect to the continudrnmone (
Eq. (5)). This model is a projectiarf the original constitutive model into the failure swweé and
inherits its properties. Therefore, discrimination from tension to compression in Eq. (12) is
implicitly fulfilled in Eq. (16). It is important to emphasize that this discrete constitutive model is
neither derived nor implemented in practice, but fulfilled from the aforementioned ingredients, while
enjoying the physical significance of the continuum model. This fact constitutes one of the most
relevant benefits of the CSDA.

2.5. Local material failure. Cracking propagation direction

Detection of material failure in concrete and, consequently, onset of cracking, is many times
established in terms of the maximum principal (tensile) stress as it reaches the uniaxial gtrength
The fracture propagation direction is then orthogonal to that principal stress.

Nevertheless, onset of local failure can be determined in a more mechanically rigorous and
consistent way, from the material stability properties of the continuum constitutive model. Loss of
strong ellipticity of the tangent constitutive opera®@? in Eq. (11) signals the timég, at which
bifurcation of the stress-strain field (material instability) takesel This can be set in terms of the
so-called localization tens@'"¢ as:

det(@Q"°(x,n,tg))=0
Qc(x,n, tg)=n [C°** [ (17)

from which the normal, orthogonal to the propagation direction, can be determined (see for
example Runessoet al (1991) and Oliveret al (2003b)).

Both criteria can be inserted in the CSDA. The first one provides many times enough accurate
results for tensile dominated damage phenomena as cracking. On the other side, the use of the
criterion (17) seems relevant when plastic dissipation dominates the failure, like in compression
failure in concrete or in metals. In any case, in the context of the CSDA the relevant aspect of
detection of local failure is the activation, at the corresponding material point, of the strong
discontinuity kinematics {2(3), associated to the selected direction

3. Numerical aspects. Finite elements with embedded discontinuities

Numerical implementation of the CSDA lies on the so-called finite elements with embedded
discontinuities, see Oliveet al (2003a), admitting discontinuous diapément fields. They consist
of adding, to the basic displacement modes, an enriching thage)[[u]]®, whose shape function
M(x) exhibits a unit jump in the element, as shown in Fig. 2. The elemental jump is constant along
the elemental discontinuity interfa&s, and the resulting displacement jump field is discontinuous
between elements.

The orientation ofS°® is provided by the local material failure criterion discussed in the previous
sections. Its position inside every element results from specific algorithms devoted to track the
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solitary

node

Ps(X)

Fig. 2 Elemental enrichment of triangles and quadrilaterals

propagation of every crack. In Olivest al (2002) a global tracking algorithm capable to deal with
multiple, and simultaneously propagating, cracks is presented.

4. Representative numerical simulations

A series of numerical simulations of fracture and cracking in concrete is presented in this section.
One of the aims is to assess the numerical results (both quantitative and qualitative) in front of well-
documented experiments. An additional goal is to show the possibilities of the CSDA to capture
multiple crack formation mechanisms in reinforced concrete structures.

Several cases of fracture propagation in typical mode | and mixed mode, as categorized by
fracture mechanics, are presented. Although there is no consensus about the question if mixed-mods
fracture actually exists in heterogeneous materials like concrete, typical examples of those modes
are presented. In the first and second simulations, the slip displacement jump is at least one ordel
smaller than the opening mode, this characterizing a mode | of fracture. In the third simulation, both
magnitudes are much closer to each other, this approaching a mixed-mode of fracture.

The numerical results have been obtained using the general-purpose finite element code COMET
(Cerveraset al 2001) where the specific ingredients of the CSDA have been implemented.

4.1. Notched specimen in Mode | of fracture

The concrete, 0.0508[m] of thickness, specimen of Fig. 3 with a crack line wedge, is analyzed
assuming a plane stress state. It is subjected to a wedge couple ofFloadsl diagonal
compression force$, changing along time as shown in Fig. 3(b). Kobayashial. (1985)
published experimental results of this test. In Rots (1988) a numerical simulation based on the
smeared crack approach can be found.

The material model parameters are: Young's modes30.5(GPa), Poisson’s ratio=0.2,
ultimate tensile strengte,=3.(MPa) and fracture enerdy=100.(N/m). The finite element mesh
consists of 1332 enhanced linear triangles.
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Fig. 3 Concrete fine slab specimen fracturing in mode |

Fig. 4 Concrete fine slab specimen fracturing in mode |. Finite element mesh: 1332 enhanced linear triangles,
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Fig. 5 Concrete fine slab specimen. Load vs. displacement curves
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The fracture propagates in mode | from the notch toward the upper part of the specimen
displaying an approximately constant angle of Wiith the horizontal axis. In Fig. 3(c) the
numerically obtained fracture path is compared with the experimental one.

Fig. 5(@) shows the load vs. CMOD curve. There it can be checked a slight limit load
overestimation and a good agreement in the post-critical stage. Fig. 5(b) stresses the mode |
character of the obtained numerical results by displaying the normal versus tangential jump
displacement at point A of Fig. 3(c).

4.2. Concrete L-shaped panel

L-shaped concrete specimens are popular benchmark tests for validation of computational models.
The one considered here, performed by Winkler, Niederwanger and Hofstetter is fully described in
NW-lalad (2003). A schematic diagram is represented in Fig. 6.

The material parameters are the followikg:25859.(MPa),0,=2.70(MPa),v=0.2. The fracture
energy valueG;=90.5(N/m) was obtained by integrating the experimental curve load-vertical
displacement at the load application point (see Fig. 7) and dividing this value by the total length of
the crack shown in Fig. 6.

A potential-type softening law was considered. The evolution of the continuum softening
parameteH in Eq. (11) is given by (q)=ag® where the material parametersand 8 are:

%P _ 1,
“TOED @ope PTYO

The fracture problem has been modeled by six different meshes:

e 1071, 3007 and 6645 triangles (meshes 1, 2 and 3 respectively) and

e 627, 1555 and 3401 quadrilaterals (meshes 4, 5 and 6).
Numerically obtained load versuds curves are plotted in Fig. 8 and Fig. 9 and compared with the
experimental results.
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Fig. 6 ConcreteL-shaped panel. ExperimentaFig. 7 Experimental force P[N] vs. displaceméyimm]
fracture paths curve and determination of the fracture energy
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Fig. 10 Crack paths (triangular meshes)

A
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Fig. 11 Crack paths (quadrilateral meshes)

In Figs. 10 and 11 the numerically obtained crack paths, for these meshes, are displayed. It is
remarkable that, in spite of the different type and number of elements, the results are very similar in
all the cases.
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4.3. Double notched specimen in mixed mode of fracture

A double-notched concrete specimen undergoing a mixed mode fracture is analyzed. Nooru-
Mohamed (1992) has presented experimental results of this test. Nechnech (2001) and Spence
(2002) reported numerical solutions.

The specimen is a concrete block, 200x 200 [mm] size and 50.[mm] of thickness, with two
depth symmetrical notches as shown in Fig. 12(a). It is fixed to the loading device on those sides
where loading and displacement conditions are imposed. An initial horizontal load force
P, = 5.(kN) is applied, which remains constant through the complete experiment. In a second
stage, the loading device imposes an incremental vertical displacén&iane stress assumption
has been taken for the modeling. Material parameter value&aBf.[Gpa],v=0.2, g,=3.(MPa).

In the spirit of the CSDA the fracture energy=110.(N/m)has been considered the same for both
fracture modes | and II.
The finite element mesh has 1572 quadrilateral elements including the rigid support, which has

Normal force R, (kN)

(c)

d
AR 8y 14.meft, @

“ & Experimental

=U
v

o.ozsﬂ;

‘ 0.2m 1
0. ‘ . .
(a) 0.0 0.04 0.08 0.12 0.16
Normal displacemen 6V(x10'3m)
(b)

Fig. 12 Double-notched concrete specimen: (a) schematic diagram of the experimental test; (b) vertical force
versus vertical displacement curve. Experimental results from Nooru-Mohamed (1992), taken from
Nechnech (2001)

Experimental
Fracture path

(a) (b)

Fig. 13 Double-notched concrete specimen: (a) experimental crack pattern (taken from Spencer, 2002); (b)
numerical crack pattern
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Fig. 14 Double-notched concrete specimen: crack pattern evolution at different stages marked at the load-
displacement curve in Fig. 12

also been modeled.

Fig. 12(b) shows the vertical force versus the vertical displacement both for numerical simulation
and the experiment. It can be observed that numerical results provide a slight underestimation of the
initial stiffness, but the peak load and the post-peak curve agree very well with the experimental
test. In Fig. 13 the numerical obtained crack patterns and the experimental ones display an excellen
agreement.

Fig. 12(b) displays in dark gray, elements belonging to a zone surrounding the fracture paths,
which are determined by the algorithm tracing the discontinuity line. Those elements are forbidden
to get a failure state by imposing an elastic response. This condition provides a more robust
numerical response.

Fig. 14 presents the evolution of the crack pattern obtained at different stages of the numerical
simulation. In this case, the propagation direction was considered orthogonal to the first tensile
principal stress.

4.4. Crack development in a reinforced concrete specimen

The goal of the test is to qualitatively reproduce the sequential process of formation of cracks, at
the neighborhood of the reinforcement, due to the bond-slip effects in the concrete/steel interface. It
is not intended to make an exhaustive study but to check if the proposed methodology could capture
the essentials of cracking generation phenomena.

In the model a reinforced concrete specimen is subjected, under plane strain conditions, to a pull
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Fig. 15 Reinforced concrete specimen. (a) geometrical model; (b) coarse and fine meshes; (c) deformed mest
after the primary cracks have propagated

Table 1 Material properties

Material Model E % Gt oy
Concrete Only traction damage 25. GPa 0.18 25 N/m 2.8 MPa
Reinforcement Elastic 214. GPa 0.3 - --
Joint Rigid-Plastic 1) 0.3 -- 3.0 MPa

out state in the rebar as shown in Fig. 15(a) (in Rots (1988) a numerical solution of a similar
configuration, assuming axial symmetry can be found).

Adhesion along the steel-concrete interface is modeled using bond-slip elements with a rigid-
perfectly plasticJ, material model. Additional material parameters characterizing the problem,
Young’'s modulus,E, Poisson’s ratioy, ultimate tensile strengthg,, and fracture energyGs of
concrete, as well as steel parameters and the sliding strgssof the bounding material are
displayed in Table 1.

Due to the problem symmetries, only one fourth of the specimen was discretized. In order to
check mesh sensitivity two different finite element meshes, A and B in Fig. 15(b), were considered.
Since similar results were obtained, no comparison is presented in terms of the density of the finite
element mesh.

Results in Figs. 16 and 17, although not experimentally assessed, display the phenomena observe
in reinforced concrete structures i.e.: in a first stage of the loading process development of a

Secondary cracks First primary crack Second primary crack

Fig. 16 Reinforced concrete specimen. Crack patterns along the failure evolution process
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Fig. 17 Reinforced concrete specimen. Equilibrium curve and detail of the snap-back zone

secondary crack system takes place without causing substantial loss of the structural strength. Then
a loading increase leads to the formation of primary crack systems propagating across the concrete
section, resulting into a sudden loss of strength of the structure.

This characteristic feature is also present in the numerical solution. ThE imadlisplacemend
curve of Fig. 17(a), the detail of this curve in Fig. 17(b) and the crack system developed in the
concrete bulk in Fig. 16 show that a severe snap-back behavior is associated with the propagation o
a primary crack through the corresponding concrete section. However, after that, the load carrying
capacity of the reinforced concrete structure is not yet exhausted since a subsequent reloading
translates into the development of a second primary crack in front of the first one. For a longer
specimen the process would continue from the center to the end. The crack spacing would then
depend on the concrete/steel material and geometrical properties but, essentially, on the adhesiol
properties of the interface.

5. Concluding remarks

In the preceding sections, the most relevant ingredients of the CSDA have been introduced and
the approach has been applied to the numerical modeling of concrete cracking for a representative
set of examples. From them, and from the authors’ experience in using that approach in modeling
additional problems, the following remarks can be made:

e Limit loads provided by the numerical simulations are acceptable. However, in some cases, the
numerical response displays a slightly more rigid (or flexible in other cases) pre-peak structural
response when compared with experimental results. This fact is also found in the literature by
using alternative numerical solution procedures. Since this seems to be a well-fitted part of the
simulation, mainly affected by theoretically well-determined material parameters, reasons for
those discrepancies could be either the accuracy of the reported experimental results or an
intrinsic feature of the considered type of finite element to be determined in subsequent
research. _

¢ In the CSDA the softening law and the intrinsic softening parantéter  in Eq. (14) governs the
post-peak response stage. Therefore, the accuracy of the obtained results lies very much on thi
correct estimation of the fracture energy as a material property. As for the softening law, better
results are obtained using an exponential law, such as the one shown in Eqg. (10) rather than
linear softening law; the former providing longer tails in the post-critical response similar to the
ones observed in experimental responses.
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e As for the crack pattern it can be, at least when a reduced number of cracks are involved,
precisely captured in both the onset and propagation aspects. In addition, mechanisms of
sequential crack generation in the reinforcement neighborhood can be qualitatively reproduced.
Whether or not this statement can be extended to more general crack patterns and stress state
should be determined by subsequent works.

As for computational aspects, the CSDA exhibits the following features:

e The scheme is objective (mesh convergent) in terms of the mesh size and alignment, and fairly
independent of the considered type of finite elements (triangular o quadrilateral).

e Even coarse finite element meshes provide acceptable solutions. This is a substantial advantag
of using finite elements with embedded discontinuities. In contrast with alternative continuum
methodologies, which require several (very small) finite elements to capture a displacement
jump across their width, here that discontinuity is captured by only one element. This results in
a reasonable computational cost and provides expectations on the viability of the CSDA for
modeling cracking in larger concrete structures.
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