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GEOLOGY

Slab underthrusting is the primary control on

flat-slab size

Guido M. Gianni'*t, Leandro C. Gallo*t, Jeremias Likerman3, Andrés Echaurren?,

Conrado R. Gianni? Claudio Faccenna'*

Flat subduction, an intermittent phenomenon along active margins, arises from well-known causes, yet the mech-
anisms driving its expansion remain poorly understood. The prevailing view suggests that trenchward continental
motion drives slab overthrusting, causing the flat slab to expand oceanward. Here, we explore an alternative
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mechanism: underthrusting of the subducting plate through forward propagation of the flat-slab hinge. We di-
rectly evaluate both hypotheses through a kinematic analysis of trench and flat-slab motions using a global flat
subduction database cast into multiple absolute plate motion models. Our results indicate that flat-slab expan-
sion reflects distinct end-member processes, with forward propagation emerging as the dominant mode. We pres-
ent a framework for flat-slab propagation that emphasizes the dynamic interaction between lower-plate motion
and slab pull from adjacent subduction zones, an interplay validated through numerical modeling. These findings
challenge conventional assumptions and underscore the need to reconsider the role of lower-plate kinematics in

flat-slab dynamics.

INTRODUCTION

Flat subduction, characterized by slab dipping angles of <10°
(1, 2), represents a distinctive geodynamic phenomenon with
far-reaching implications. It influences magmatic activity, crustal
deformation, seismicity frequency, basin subsidence, and litho-
spheric thermal state in subduction zones (3-6). Now, flat sub-
duction manifests in discrete segments of the circum-Pacific Ocean
subduction (5) and has been extensively documented in ancient
active margins (3, 7-15). Conceptual and numerical modeling stud-
ies have devoted efforts to decipher the driving mechanisms and geo-
logical consequences associated with this phenomenon. While these
studies have advanced our understanding of the causes of slab flat-
tening by highlighting the roles of specific properties, structure,
and kinematics of the lower and/or upper plates [e.g., (10, 11, 16—
21)], the mechanisms driving the pronounced horizontal expan-
sion of subduction zones after achieving a flat geometry remain
poorly understood.

The formation and propagation of flat slabs have traditionally
been regarded as driven by the same mechanism, overlooking the
possibility that they are distinct yet interconnected processes {i.e.,
the flat slab is first formed by any of the suggested causes [e.g.,
(10, 11, 16-21)] and then continues propagating horizontally during
plate convergence}. This lack of distinction has led some studies to
support the early notion of large-scale slab angle changes (3) as the
primary mechanism controlling the final extent of flat slabs [e.g.,
(11, 22)]. However, changes in slab dip involving extensive slab seg-
ments, such as those observed in the broad flat slabs of Peru and
Alaska [~400 to 460 km; (5, 23)] or in the extinct Late Cretaceous-
Paleogene Laramide flat slab [~1200 to 1500 km; (24)], are not rep-
licated in subduction models, as they would require the displacement
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of a large volume of mantle. Instead, these models show a change in
geometry mostly at flat-slab initiation and simulate oceanward or
landward propagation during plate convergence [e.g., (16, 18, 25)].
Recent experimental (16-19) and kinematic (26) studies in active
settings in central Chile and Peru suggest that the horizontal propa-
gation of flat slabs most likely results from oceanward expansion
driven by the trenchward motion of the advancing upper plate rela-
tive to the mantle (i.e., continental overthrusting), supporting the
early hypothesis proposed by Barazangi and Isacks in the 1970s
(27). In this mode, flat slabs propagate when the total amount of
trench retreat exceeds the retreat of the slab hinge (26) (i.e., slab
rollback; see Fig. 1A). We refer to this mechanism (16-19, 26, 27) as
the backward-propagation mode.

Here, we examine the motion of the slab hinge relative to the
mantle to assess a natural alternative: That flat slabs may expand
inland beneath the continent due to forward migration of the slab
hinge (i.e., flat-slab hinge advance and slab underthrusting). We re-
fer to this mechanism as the forward-propagation mode (Fig. 1A).
Although this mechanism has not yet been demonstrated to operate
in natural settings (16-18, 26), numerical experiments have repli-
cated this behavior, suggesting that forward propagation is a geody-
namically viable process (10, 24, 25). Thus, identifying the most
viable propagation mechanism in natural settings and developing
robust methods for its assessment are crucial for advancing our un-
derstanding of flat-slab dynamics. A formal conceptualization and a
clear distinction of the mechanisms responsible for the propagation
of flat subduction have yet to be established.

Here, we address this issue by integrating calculations of trench
and flat-slab hinge kinematics and flat-slab size across both active
and extinct flat-slab events (Fig. 1B). To achieve this, we analyzed
well-resolved absolute plate motion models (28-33), which were
compared with a global subduction geometry model (34) and space-
time magmatic patterns, providing insights into the extents of both
active and ancient flat slabs. Last, we complement these findings
with two-dimensional (2D) geodynamic modeling of flat-slab prop-
agation, enabling us to evaluate the underlying dynamics of this
enigmatic process.
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Fig. 1. Conceptual model for end-member mechanisms for flat subduction expansion and location of active and ancient flat subduction settings. (A) The back-
ward propagation mode is marked by an oceanward expansion of flat subduction, opposing the migration of arc magmatism and upper-plate compression. In contrast,
forward propagation of flat subduction involves an inland expansion aligned with the migration directions of arc magmatism and upper-plate compression. The depiction
of a stationary sublithospheric slab hinge at the leading edge of the flat slab in the former case is simplified as it is only one of the possibilities. (B) Global map showing
the location of active (5, 14) and ancient (7-11, 13, 14, 24, 35) flat-slab events analyzed in this study. Active and ancient flat slabs are shown in orange and purple labels,
respectively. SW. Jap, Southwest Japan; Alk, Alaska; Mex, Mexico; Col, Colombia; Per, Peru; Ch, Chile; Lar, Laramide; Yan, Yanshanian; Iz, Izanagi; Pun, Puna; Alt, Altiplano;
Pat, Patagonian Nalé; S. Gon, South Gondwana flat slabs. See details in data S1.
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RESULTS

Unraveling flat subduction propagation modes

To better understand the mechanisms of flat subduction propaga-
tion, we performed a global analysis of modern and ancient flat slabs
(Fig. 1B and data S1) (5, 7-10, 13, 14, 24, 35, 36). Similarly to the
global analysis of Gutscher et al. (5), we combined subhorizontal
and low-angle subduction, as both exhibit similar tectonic, mag-
matic, and seismotectonic characteristics show very shallow slab dip
angles (<10°) (14) and differ only in subtle geometric features, such
as the presence of an additional slab kink in the latter (Figs. 2 and 3).

We performed an analysis, shown in Fig. 4 (A to D), that inte-
grates the calculated inland extents of both active and ancient flat
slabs with the dynamics of the underlying mantle (see Materials and
Methods). This integration was enabled by extracting the trench-
perpendicular component of absolute trench motion estimations
from a range of absolute plate motion models [T2019, (28, 32),
V2010 (30), M2015 (31), and D2012 (33, 37)] and considering plate
kinematic models including time-dependent plate margin deforma-
tion (26, 28, 38) (Figs. 1B, 2, and 3 and data S1) (see Materials and
Methods). The magnitudes of absolute trench motion in both active
and ancient flat-slab settings are determined along the flat-slab seg-
ments, from their onset age to the present state and from initiation
to the time of maximum inland extent, respectively [data S1 (see
Materials and Methods)]. Given that, at the onset of flat subduction,
the slab hinge aligns with the position of the trench, by estimating
the inland extent of the flat slab, the total migration of the slab hinge
relative to the trench can be determined (Fig. 1A). From this assess-
ment, it is, therefore, possible to determine the motion of the flat-
slab hinge relative to the mantle. Introducing the migration of the
slab hinge from the onset of the flat slab as a key component in the
analysis allows us to gain a more comprehensive understanding of
its dynamics.

Active flat subduction extents are determined directly from cur-
rent geometries in high-resolution subduction zone models (Fig. 2
and fig. S1) (see Materials and Methods) (34). For ancient flat sub-
duction events, the dimension of flat slabs is inferred from time-
space arc migration diagrams, which serve as a reliable proxy for
potential past flat-slab extents (3, 4, 6-9, 13-15, 24, 35, 36) with arc
magmatism closely tracking the leading edge of the progressing
flat slab (Figs. 1A and 3 and data S1; see Materials and Methods)
(10, 39). This approach has been used since pioneering studies to
estimate the potential extents of flat slabs (3) and is supported by
recent high-resolution numerical models examining magmatic ac-
tivity evolution and sources in both small-scale (39) and large-scale
flat subduction (Fig. 3) (10). For ease of analysis, we excluded upper-
plate shortening in most cases. Compression reduces the distance
between the trench and the arc in time-space diagrams, thereby in-
fluencing paleo-flat-slab extent calculations. As a result, the esti-
mates presented here represent minimum and, thus, conservative
values for our analysis. (Fig. 3). Where data availability permitted,
forearc shortening and subduction erosion corrections were incor-
porated into the calculations (see details in Materials and Methods).
The extents of flat slabs in ancient cases are determined using two
approaches following the geometries observed in active flat subduc-
tion settings: one corresponding to kinked (subhorizontal subduc-
tion) geometry and the other to non-kinked (low-angle subduction)
geometry, yielding two potential values for each case (denoted as
approaches A and B in Fig. 3) (data S1). These values were then in-
corporated, together with active flat-slab data, into two distinct
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statistical analyses presented in Figs. 4 and 5. The estimated extents
of flat slabs for most of the ancient cases analyzed here are consistent
with previous studies, which incorporated additional geological cri-
teria such as the maximum distance of intraplate or broken foreland
deformation, dynamic subsidence relocation (7, 8, 10, 11, 13, 14,
24, 35), or the removal of upper-plate mantle lithosphere [e.g., (9)].
Consequently, if backward (or forward) propagation dominates the
expansion of the flat slab, the statistical analysis should reveal a cor-
relation between trench retreat (or flat-slab hinge motion) and the
extent of the flat slabs.

Figures 4 (A to D) and 5 (A to D) present the kinematic frame-
work and the global analysis of the flat-slab database. Statistical
analysis of trench motion reveals that, regardless of the reference
frame and the assumed approach to measure the potential extents of
ancient cases, flat-slab trenches in a flat-slab subduction setting tend
to retreat on average, as indicated by positive values (Fig. 4, A and
C). The correlation analysis between trench migration and flat-slab
extent indicates a negligible relationship, suggesting that, in general,
trench retreat does not significantly influence the extent of flat slabs
[coefficient of determination (R?) = 0.00 to 0.0-9, P > 0.05; Fig. 4, A
and C, and fig. S2]. To further elucidate this, we explored the role of
the flat-slab hinge motion in the propagation of the flat slab (Fig. 4,
B and D). The flat-slab hinge motion was calculated by subtracting
the flat-slab inland extent from the trench motion (negative values
imply flat-slab hinge advance) (see details in data S1). The analysis
considering a kinked geometry for ancient flat slabs extents indicates
that there is a positive relationship between the absolute flat-slab
hinge motion and the flat-slab extent, which becomes more evident
and significant in certain reference frames [V2010 (30) and M2015
(31)] (Fig. 4B). This significance is further accentuated and general-
ized to all reference frames in the analysis considering a non-kinked
geometry for ancient flat slabs (Fig. 4D). Notably, this general obser-
vation remains significant even when only the highest-resolution
active flat-slab settings are considered (R* = 0.83 to 0.69, P < 0.05;
fig. S2). Furthermore, our analyses demonstrate that on average flat-
slab hinges tend to advance during the development of flat subduc-
tion (Fig. 5, A and C).

We further analyzed the percentage contribution (%) of slab
hinge advance (H) to flat-slab extent (F) across different reference
frames, expressed as [H/F| X 100, revealing two distinct behaviors
(Fig. 5, B and D). K-means clustering was applied to the percentage
contribution of flat-slab hinge-advance parameter across the differ-
ent reference frames (Fig. 5, B and D, and data S1). K-means is a
clustering algorithm that partitions a set of data points into K clus-
ters, where each data point belongs to the cluster with the nearest
mean, minimizing the variance within each cluster. This analysis
identified two distinct clusters representing extreme end-members.
The first cluster, associated with a backward propagation mode, has
a mean contribution of 14.1% of hinge advance to flat-slab propaga-
tion (SD, 24.8%). These values are consistent across both methods
used to measure ancient flat slabs (Fig. 5, B and D). The second clus-
ter, linked to a forward propagation mode, shows mean contribu-
tions of 80.6% (83.3%) with SDs of 17% (15%) for the datasets that
include kinked (non-kinked) ancient flat-slab extents (Fig. 5, B and
D, and data S1).

The predominant clustering of flat slabs associated with domi-
nant forward propagation mode includes the active flat-slab sub-
duction in Colombia, Peru, Chile, and Alaska, as well as the ancient
Yanshanian [~185 to 140 million years (Myr)] (10, 11), Izanagi
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Fig. 2. Comparison between present and reconstructed absolute trench position at the time of active flat-slab initiation and analysis of flat-slab extents.
(A) Plate reconstructions to obtain absolute trench motion since the onset of each active flat slab. (B) Analysis of flat-slab extents from the Slab 2.0 model (34). This analy-
sis was complemented with an inspection of a compilation of regional seismological surveys (see fig. S1). My, moment magnitude.
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Fig. 4. Statistical analysis of the absolute trench and flat-slab hinge motion versus flat subduction extents for active and ancient cases. Correlation analysis be-
tween (A) determined absolute trench and (B) flat-slab hinge motion versus flat-slab extents derived from plate kinematic models (28, 29, 37, 38) with different mantle
reference frames (30-33). Both (A) and (B) consider ancient flat-slab extents determined assuming a kinked flat-slab geometry. (C and D) Equal to (A) and (B), respectively,
but assuming a non-kinked flat-slab geometry in the determination of flat-slab extent for ancient cases (see details in data S1). The diagrams display a bootstrapped linear
regression model and associated 95% error margins, derived from 1000 bootstrap samples. Uncertainty in the extent of flat slab is incorporated through Monte Carlo
sampling, considering error distributions with a SD. Please also note that, due to limitations inherent in certain reference frames, certain flat slabs may lack absolute trench
motion data (see further explanation in Materials and Methods).
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Fig. 5. Histogram of absolute flat-slab hinge motion distribution and calculated contributions of flat-slab hinge advance to flat-slab extents. (A) Histogram dis-
playing the distribution of absolute flat-slab hinge motions grouped according to the reference frame, showcasing the tendency for hinge-advancing. (B) Calculated
contributions of absolute flat-slab hinge advance to flat-slab extents. The error bars represent the SD of the calculated values across the different reference frames. Both
(A) and (B) consider ancient flat-slab extents determined assuming a kinked flat-slab geometry. The color of the bars denotes the results of K-means clustering applied to
the percentage contribution of the flat-slab hinge parameter across the different reference frames. (C and D) Equal to (A) and (B), respectively, but assuming a non-kinked
flat-slab geometry in the determination of flat-slab extent for ancient cases (see details in data S1). Reference frames are as follows: T2019 (28, 32); V2010 (30); M2015 (31);
and D2012, a combination of (37) and (33). SW Japan, Southwest Japan.
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(~100 to 65 Myr) (9, 13, 36), Altiplano (~50 to 25 Myr), Puna (~30
to 15 Myr) (7), and the South Gondwana flat slab (~220 to 195 Myr)
(22, 35) (Fig. 5, B and D). Meanwhile, the smaller subset associated
with dominant backward propagation includes the active flat sub-
duction zones in Mexico and Southwest Japan, as well as the ancient
Western US Laramide flat slab (~90 to 50 Myr) and the Patagonian
Nalé flat slab in South America (~120 to 65 Myr) (Fig. 5, B and D).
Furthermore, our analysis reveals that most of large-scale flat slabs
are ancient, a trend that, with a few exceptions, corresponds to lon-
ger times of flat-slab development (fig. S3). Last, space-time dia-
grams of ancient flat slabs reveal that their development typically
occurs in less than 40 Myr (Fig. 3).

DISCUSSION
Dominant flat subduction propagation mechanism:
Backward or forward mode?
The analysis of the relationships between the inland extent of flat
slabs and both absolute trench and flat-slab hinge motion offers key
insights into the predominant mechanism driving flat-slab propaga-
tion in nature. This study has revealed that the extent of flat slabs can
be explained by two end-member models of flat-slab propagation
(Figs. 1A, 4, and 5 and fig. S2). However, our results highlight a dom-
inant trend toward the expansion of flat slabs driven by forward prop-
agation (Fig. 5, C and D). This finding holds even when considering
only active cases, as evidenced by a statistically significant relation-
ship between flat-slab extent and flat-slab hinge advance (fig. S2). Av-
erage contributions of 70 to 75% of forward propagation are observed
in four of the six active flat subduction settings (Fig. 5, B and D).
These results suggest that, in most of the cases of active and ancient
flat slabs analyzed, the lower plate played an active role in propagating
flat subduction, contrary to the prevailing notion (Fig. 1A) [e.g., (16-
19, 26)]. We do not discard a minor contribution of slab angle rota-
tion, limited only to the initiation of flat subduction (16, 18, 24, 25).
Independent evidence supporting the forward propagation of
flat slabs is observed in Alaska and central Chile. In Alaska, geologi-
cal and geodetic investigations reveal that the Wrangell block within
the upper plate moves in tandem with the underlying flat slab, trac-
ing the motion along the large-scale right-lateral Denali fault [e.g.,
(40)]. In South America, recent regional seismic tomography has
revealed a detached slab in the upper mantle beneath the Chilean
flat slab, interpreted as a precursor to flat subduction, subsequently
overridden by the flat slab (41). This unequivocally indicates a for-
ward propagation mode in this active flat slab. Notably, these results
also provide further insights into the mechanism of backward prop-
agation. We note that, while the amount of forced trench retreat is
similar to the flat-slab length of the Laramide flat slab, effectively
meeting the conceptual model by Schepers et al. (26), in the Patago-
nian Nalé flat slab, the former largely exceeds the latter (Fig. 4, A and
C). This observation implies that, in certain cases, the flat-slab hinge
can undergo rollback during the backward propagation of the flat
slab, albeit at a slower rate than the imposed trench retreat, thereby
facilitating effective flattening of the lower plate (Fig. 1A). Notewor-
thy, the forward- and backward-propagation modes show a distinct
evolution in flat-slab kinematics concerning tectonic and magmatic
patterns. In the forward-propagation mode, flat subduction expan-
sion aligns with the migration of the magmatic arc and deformation,
as conventionally understood. In contrast, in the backward propaga-
tion mode, these trends are opposed (Fig. 1A).
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Driving mechanism behind forward propagating

flat subduction

Experimental and conceptual studies suggest that flat-slab forma-
tion can result from the upper-plate overthrusting buoyant oceanic
lithosphere, often associated with thickened oceanic crust, such as
seamount chains or oceanic plateaus (16-19), or from hydrodynam-
ic suction in the mantle wedge (25, 42), which may be enhanced by
cratonic roots or a cold upper plate (20, 43). Our findings suggest a
shift in focus toward lower-plate properties and kinematics in ex-
plaining flat subduction. Underthrusting, rather than overthrusting,
better accounts for most of the analyzed cases (Figs. 4 and 5).

Exploring the formation and longevity of flat slabs goes beyond
the scope of this study. However, it is important to highlight this as
one facet of the broader issue. As noted by van Hunen et al. (44), the
expansion of flat subduction cannot be fully explained by ridge push
force or slab pull acting on the flat-slab hinge. Instead, these forces
may be counterbalanced by the trenchward motion of the overriding
plate (Fig. 1A). While this mechanism explains backward-propagating
flat slabs, the forward propagation modes, dominant along active
margins according to our kinematic analysis, require an alternative
explanation. Recent studies aiming to elucidate the primary forces
driving plate tectonics recognized that both slab pull at subduction
zones and convection-induced mantle drag play an important role in
the process [e.g., (45, 46)]. Concerning mantle drag, numerical mod-
els indicate that mantle flow beneath the subducting plate can induce
flat subduction (<10°) (47). However, a major limitation of these
models is that only small-scale flat slabs are developed, highlighting
the need to assess the origin of large-scale flat-slab propagation, as
observed in the geological records examined in this study. Alterna-
tively, this external force could be attributed to slab pull from nearby
subduction zones [e.g., (46)]. Numerical models consistently repli-
cate this external force by imposing variable plate convergence that
supplement the spontaneous emergence of slab pull in experiments
[e.g., (25, 48)].

To assess the relative importance of average ambient mantle flow
versus plate convergence in driving the forward propagation of a
preexisting flat slab, we conduct a suite of simple 2D thermome-
chanical experiments in which a buoyant anomaly (e.g., an oceanic
plateau or aseismic ridge) has already established a flat subduction
configuration (16, 18) (see Materials and Methods and fig. S4 for
details in the model setup; see also Fig. 6). Although these models
are deliberately simplified and do not capture 3D complexities such
as slab curvature or along-strike buoyancy variations, nor do they
seek to resolve the ultimate driving mechanisms of flat subduction;
they provide a valuable first-order geodynamic framework to inves-
tigate forward propagation in flat subduction. Building on and com-
plementing earlier numerical studies [e.g., (10, 11, 16-21, 24, 25,47)],
these experiments allow us to move beyond identifying propa-
gation mechanisms, the primary focus of this study, toward ex-
ploring the competing roles of mantle flow and convergence as
underlying driving forces, thereby contextualizing our kinematic
observations.

Our results indicate that, while mantle flow can drive flat subduc-
tion (47), it is limited by timescales. Even at fast rates (5 cm/year),
the upper bound beneath the Pacific Ocean (45), it would take more
than 50 Myr to form a large-scale flat slab (Fig. 6A), exceeding the
<40-Myr time frame inferred from geological records (Fig. 3). We
did not test mantle flow opposing the subduction direction, as it is
known to hinder slab shallowing (43). The experiment considering a
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Fig. 6. 2D geodynamic experiments of flat subduction testing the influence of mantle flow, imposed plate convergence, and slab pull on flat-slab forward
propagation. All models begin with an initial phase of imposed convergence (6 cm/year) to initiate subduction and generate a flat-slab geometry over the first 10 Myr.
In the second phase, the models diverge: (A) Fast mantle flow (5 cm/year) from 200-km depth downward, combined with reduced convergence (2 cm/year), to test the
effect of mantle drag under low convergence conditions. (B) An average Phanerozoic convergence rate without background mantle flow. (C) Both mantle flow and con-
vergence were set to zero, isolating the influence of slab pull driven by negative buoyancy. Parameter choices are described in detail in Materials and Methods and
tables S1 and S2. Center and bottom panels show density model distribution and melt fraction computed at the selected time steps for each model.

convergence rate of 4 cm/year, consistent with average Phanerozoic
plate speeds (49) and typically imposed in numerical models as an
effect of neighboring slab pull in numerical models [e.g., (48)], re-
produces observed propagation within realistic timescales (Fig. 6B).
Following an initial subduction stage, propagation halts without im-
posed mantle drag and convergence (Fig. 6C). While not exhaustive,
these findings support the hypothesis that imposed plate conver-
gence, likely driven by adjacent slab pull [e.g., (25, 48)], is the pri-
mary driver of forward-propagating flat slabs.

In summary, our results demonstrate that flat-slab propagation
is governed by distinct end-member processes, with forward propa-
gation, driven primarily by lower-plate underthrusting and bol-
stered by convergence imposed by the pull of an adjacent slab,
emerging as the dominant mode. While upper-plate-driven cases
occur, our analyses suggest that they are less common than previ-
ously thought.

With substantial advances in geological and geochronological
datasets from regions linked to past active margins and the grow-
ing recognition of ancient flat slabs, this study offers a timely and
robust framework for deciphering flat-slab propagation mecha-
nisms. By introducing a method grounded in geological and
kinematic data, it also lays the foundation for more accurate,
region-specific models of flat subduction dynamics. Last, as seis-
mologists continue to acquire higher-resolution geophysical data
to refine slab geometries or identify additional active flat slabs,
this framework will support deeper insights into the processes
driving flat subduction.
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MATERIALS AND METHODS

For our analysis, we curated a selection of active and ancient flat-slab
cases. In identifying active occurrences, we relied on the pioneering
compilation by Gutscher et al. (5). From this compilation, we spe-
cifically selected cases with strong support from recent seismological
and geological data sources (23, 41, 50-52). Notably, regions such as
New Guinea and Ecuador were excluded because of ongoing debates
regarding the subduction angles, whether steep or flat, and the lack
of geological constraints on the initiation of flat-slab conditions in
these areas, which hampers our kinematic analysis (34, 53). Further-
more, the Costa Rica and Vancouver subduction zones (5), if they
indeed exhibit flat-slab characteristics, were deemed too incipient
and limited in lateral extent (<200 to 180 km) to warrant inclusion
in our analysis. Potential flat subduction in the Caribbean was
excluded because of insufficient geophysical constraints on plate
geometry and the timing of flat-slab initiation [see discussion by
Gonzalez et al. (54)]. The Bucaramanga flat slab in northern Colombia
(5) remains included in our analysis, despite ongoing debates over
the interaction between the Nazca and Caribbean subducting plates
(54). This decision is based on the consensus regarding its existence
and formation, dating back to ~9 Myr. This consensus is supported
by the spatiotemporal evolution of magmatic arcs, records of upper-
plate deformation (14, 55), and recent plate kinematic reconstruc-
tions incorporating regional seismic tomography constraints (54).
Consequently, our analysis focuses on active flat-slab settings in
Alaska, Mexico, southwest Japan, Bucaramanga, Peru, and Chile, all
of which are well resolved in the Slab2 subduction geometry model
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and regional geophysical surveys (Fig. 1B and fig. S1) (23, 41, 50-
52). Ages of flat-slab onset, based on arc and deformation inland
migration (7-11, 13, 14, 22, 24, 35, 56-59), are provided in data S1.

For our analysis of ancient flat subduction cases, we extended
our study back only to the Mesozoic era, a period during which plate
reconstruction models and mantle reference frames still provide
relatively reliable spatial information over time for plate margins
(60) (see the following subsection for details on our reference frame
choices). We incorporated two Cenozoic cases linked to the Alti-
plano (50 to 25 Myr) and Puna (30 to 18 Myr) flat slabs (7, 14). Ad-
ditionally, we included five Mesozoic cases encompassing the
Laramide (90 to 50 Myr) (3, 24), Yanshanian of East Asia (185 to
140 Myr) (10, 11), Izanagi (100 to 65 Myr) (9, 13, 36), South Gondwana
(220 to 195 Myr) (22, 35), and the Patagonian Nalé flat slab (120 to
65 Myr) (8) (see details in table S1) (Figs. 1B and 3). We excluded
the Early Triassic flat subduction episode of South China from our
analysis (12), due to still unreliable constraints on the spatial loca-
tion of the South China block and its associated plate margin
over time (37, 60), which hampers a proper estimation of absolute
trench motion.

Flat-slab extents in active settings are obtained directly from the
Slab2 subduction zone geometry model (34) and a compilation of
regional seismic tomography and/or receiver function data available
at the flat-slab locations (Fig. 2 and fig. S1). For this analysis, we con-
sidered two scenarios on the basis of the observed slab morphology
in cross sections from the Slab2 geometry model (34) and a compila-
tion of regional seismic tomography and/or receiver function data at
flat-slab locations (Fig. 2 and fig. S1) (23, 41, 50-52, 61). One sce-
nario corresponds to low-angle subduction (i.e., non-kinked flat-
slab geometry) and is exemplified by the Alaska and Southwest Japan
flat slabs, where the slab maintains a shallow angle of <10° or less
from the slab hinge near the trench, extending inland for hundreds
of kilometers to the sublithospheric slab hinge, where it reenters the
mantle (Fig. 2 and fig. S1) (5, 40, 57, 62). Hence, for this case, we
considered the distance from the trench to the slab hinge, where the
maximum flat-slab extent is observed. The other scenario involves
subhorizontal subduction (i.e., kinked flat-slab geometry), which
occurs in cases with an additional slab kink between the slab hinge
near the trench and the deeper slab hinge, where the slab penetrates
further into the mantle. In this instance, the extent of the flat slab was
determined by measuring the distance from the point where the flat
or shallow portion of the slab begins to the distal slab hinge, where
the slab reenters the mantle (Fig. 2 and fig. S1). Despite these differ-
ences, both geometries are often collectively referred to as flat-slab
subduction, as they produce similar tectonic, magmatic, and seis-
motectonic consequences (5) and share a very low angle often less
than 10°. The geometric variations arise from the configuration of
the upper plate, rather than any specific property of the shallow-
dipping lower plate. In the case of the Mexican flat slab, measuring
directly from the Slab2 subduction zone geometry model has some
limitations, as it only provides information on the remaining flat-
slab segment. Previous studies have documented trenchward con-
traction of this flat-slab hinge after it reached its maximum inland
expansion during the Neogene (56), suggesting that the flat slab was
originally larger than the one observed today.

In ancient flat-slab settings, we used the distance between the re-
constructed trench and the furthest inland migration of the magmatic
arc, as recorded in space-time diagrams, to evaluate the potential ex-
tent of the flat slab before its cessation [e.g., (3, 4)] (Fig. 3 and table S1).

Giannietal., Sci. Adv. 11, eadv8872 (2025) 11 July 2025

Arc positions are influenced by various kinematic and tectonic factors;
however, a detailed analysis of the geodynamic processes controlling
the time-space evolution of arcs indicates that migrations exceeding
250 km are only explained by changes in subduction geometry (4). In
this approach, the extents of flat slabs were determined by considering
the two possibilities observed in active flat slabs (i.e., kinked and non-
kinked flat subduction). For kinked flat subduction, which involves an
additional kink near the premigration magmatic arc location, we mea-
sured the distance between the arc position before inland migration
and the maximum inland location of the magmatic arc (Fig. 3). For
non-kinked flat subduction, we directly measured the distance be-
tween the reconstructed paleo-trench position and the maximum in-
land location of the magmatic arc (Fig. 3). In this way, we obtained two
potential paleo-flat-slab extents, which were subsequently included,
along with active flat-slab data, in two separate statistical analyzes
in Figs. 4 and 5. Through this approach, we also determine the time to
maximum inland arc migration, which we interpret as the time re-
quired for full flat-slab development. This metric is then used to assess
absolute trench migration in ancient flat slabs for statistical analyses.

Notably, this approach to determining ancient flat-slab extents is
valid primarily for cases where magmatic lulls associated with flat-
slab development follow stages of arc migration, although this is not
always the case. For instance, the active Peruvian flat slab and its
corresponding magmatic arc gap developed without a notable arc
migration (21). Similarly, for the Late Cretaceous Izanagi flat slab
(13, 36), which is included in our analysis, a notable arc gap oc-
curred, and the extent of the flat slab was determined on the basis of
the extent of lithospheric mantle removal during flat subduction,
which was reproduced in 3D numerical models (9).

Therefore, for the specific case of the Izanagi flat-slab episode, we
directly use the inferred extent of this flat slab based on previous
findings and numerical models presented by Liu et al. (9) (Fig. 3). We
also propose a smaller potential Izanagi flat-slab extent, considering
a kinked flat subduction geometry, using a conservative trench-to-
arc value of 200 km derived from observations of current settings
and the analysis of space-time arc evolution. This value was added to
the previous determination of the flat-slab extent to account for the
possibility of a shorter flat subduction segment resulting from a
kinked flat subduction geometry.

For the specific case of the South Gondwana flat slab (22, 35),
when the migration of magmatic arcs ceases, hindering the tracking
of the leading edge of the flat slab, we adopt a conservative approach
by considering the extent of the flat slab and estimates of trench mo-
tion before arc shutoff. Despite this simplification, valuable insights
into the underlying mechanisms driving the enlargement of flat
slabs are still attainable. It is important to note that the estimated
flat-slab extents for most ancient cases analyzed here align with
those of previous studies, which used additional geological criteria,
such as the maximum distance of intraplate/broken foreland defor-
mation and dynamic subsidence relocation (7-11, 13, 14, 24, 35, 63).
We provide the obtained values for the two potential ancient flat-
slab extents for each case in data S1.

To construct and analyze time-space magmatic evolution dia-
grams for ancient flat-slab cases (3), we used several previously
compiled geochronological datasets (Fig. 3). For the Altiplano,
Puna, and South Gondwana flat slabs, we used the Andean geochro-
nological database of igneous rocks compiled by Pilger and hosted
by GEOROC (https://data.goettingen-research-online.de/dataset.
xhtml?persistentld=doi:10.25625/NGG0Q7). For the Laramide and
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Yanshanian flat slabs, we used data from the Western US (www.
navdat.org) and East Asia, respectively, based on (10). In the case of
the Patagonian Nalé flat slab, we compiled a new dataset, which is
provided in data S2.

Consistent with many previous studies (3, 10, 12, 24, 55), we used
this information to construct time-space magmatic evolution dia-
grams to assess the extent of ancient flat slabs considering the maxi-
mum inland extent of magmatic activity. To simplify the analysis, we
generally excluded upper-plate shortening, which would, otherwise,
reduce the distance between magmatic arc igneous records. As a re-
sult, the paleo-flat-slab extent calculations represent minimum esti-
mates only (Fig. 3). As in most cases, we did not consider forearc
shortening and potential subduction erosion in our space-time dia-
grams; hence, the paleo-flat-slab extent calculations represent only
minimum values (Fig. 3). The Cenozoic Andean flat slabs are excep-
tions, where subduction erosion and forearc shortening are impor-
tant and relatively well quantified (64, 65). To account for these
processes, we first calculated the time since the demise of flat slab to
the present day, along with average subduction erosion rates of 1.5 km/
Myr for the study area (64). We then incorporated a maximum
forearc shortening of 44 km, recently estimated by Habel et al. (65),
resulting in net corrections of arc-trench distances of 81.5 and 71 km
for the Altiplano and Puna flat slabs, respectively.

Plate kinematic reconstructions and selection of

reference frames

To better understand how flat slabs enlarge within a kinematic frame-
work, we integrated our global database with the dynamics of the un-
derlying mantle. This approach allows us to establish relationships
between the length of the flat slab, trench migration, and the motion of
the flat-slab hinge. We used PyGPlates, an open-source Python library,
to interact with plate tectonic reconstruction models (www.gplates.org).

Describing the movement of tectonic plates over geological time
requires considering both their relative and absolute motions. While
relative plate motions have been resolved with high precision over
the past few decades [e.g., (29)], their description relative to the un-
derlying mantle depends on the absolute plate motion model. This
variation arises because different methodologies and absolute refer-
ence frames have been used to describe plate and plate boundary
motion [e.g., (30-33, 66, 67)].

To quantify the normal component of absolute trench migration
and the motion of the flat-slab hinge, we explored several absolute
plate motion models and assessed the uncertainty in our observa-
tions. We used the relative plate motion model of Seton et al. (29) as
the baseline. For critical regions, such as the South American plate
margin, which has undergone important modifications and hosts
most of our analyzed flat-slab occurrences, we incorporated the
evolving plate margin model from Schepers et al. (26).

For the Bucaramanga flat slab in northern South America, we
considered the high-resolution plate margin deformation model de-
veloped by Montes et al. (38). In the case of the Alaska flat slab, we
observed a difference in trench location on the North American
plate between its current position and that shown in the models by
Seton ef al. (29) and Miiller ef al. (28). Although this disparity does
not affect the absolute magnitude of trench motion, it does affect the
reconstructed position of the trench at the onset of flat-slab subduc-
tion. Also, we included the plate kinematic model by Miiller et al.
(28), which provides time-dependent plate margin deformation for
several active margins.

Giannietal., Sci. Adv. 11, eadv8872 (2025) 11 July 2025

In our evaluation of absolute plate motion models, we considered
mantle reference frames, which are based on different approaches
and assumptions and provide information on paleo-latitudes and
longitudes (Figs. 4 and 5). Traditional methods for defining absolute
plate motion rely on hot-spot tracks that display clear age progres-
sions, representing plate motions over mantle plumes ascending
from the deep mantle. Hot spots used to constrain absolute plate
motion models can be considered either fixed or mobile [e.g., (68)].
Maher et al. (31) (hereafter, M2015) established an absolute plate
motion model relative to Africa by using hot-spot tracks within the
Indian and Atlantic Oceans. This methodology assumed the relative
stability of hot spots within the Indo-Atlantic region from 82 Myr to
the present day. This assumption is considered suitable for the study
of active and ancient flat slabs in North, Central, and South America,
based on the finding by O’Neill et al. (67) that predictions from both
moving and fixed hot-spot reference frames are not significantly dif-
ferent within their uncertainties since 80 Myr. Efforts to reconcile
absolute plate motions with hot-spot movement have led to the de-
velopment of global moving hot-spot models (68). These models
aim to reconcile the age-progressive volcanic trails across the Indian,
Atlantic, and Pacific Ocean basins. Hence, we included the global
moving hot-spot reference frame proposed by Doubrovine et al. (33)
after 120 Myr, and, before that, a paleomagnetic reference frame ad-
justed for True Polar Wander by Steinberger and Torsvik (66), inte-
grated into the Paleozoic plate kinematic model of Matthews et al.
(37). The rationale for this choice is to obtain absolute trench motion
estimates from at least three different reference frames for the
Triassic-Jurassic South Gondwana and Yanshanian flat-slab events.
For practicality, we present these results jointly as D2012 in Figs. 4
and 5 and data S1.

We also used the slab-fitted reference frame introduced by van
der Meer et al. (30), which connects surface plate motions to sub-
ducted slab remnants. This frame is built upon the paleomagnetic
framework provided by Torsvik et al. (69) and incorporates con-
straints on paleolongitude derived from subducted slab remnants
mapped using seismic tomography. Additionally, we used the refer-
ence frame proposed by Tetley et al. (32), hereafter referred to as
T2019, which is integrated into the plate kinematic model devel-
oped by Miiller et al. (28). This reference frame incorporates age-
progressive hot-spot tracks, subduction zone migration, and rates of
net lithospheric rotation within an optimization framework called
tectonic rules-based plate-motion model optimization. It is impor-
tant to note that the extent of analysis varied across cases because of
the limitations inherent in certain reference frames. For instance,
hot spot-related reference frames cannot extend beyond the Late
Early Cretaceous [up to 83 Myr for fixed hot spots (31) and 120 Myr
for moving hot spots (33)]. As a result, for some absolute reference
frames, certain flat slabs may lack absolute trench motion data.

For active flat slabs, trench-perpendicular absolute trench mo-
tion magnitudes were assessed from the onset of flat-slab develop-
ment, as reported in the literature (see data S1), to the present day. A
specific case is the active Mexican flat slab, whose flat-slab hinge has
been retreating since 7 Myr due to flat-slab destabilization (56).
Therefore, for this case, trench motion was evaluated from the onset
of development at 20 to 7 Myr (56). For ancient flat slabs, this pa-
rameter was evaluated from the time of initial arc migration to the
point of maximum inland arc location, representing the full devel-
opment of the flat slab (Fig. 2) (4). We present the calculated values
for absolute trench motion and flat-slab hinge motion as averages
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derived from measurements at three locations: the center and both
extremities of the ancient and active flat slabs. These values are pro-
vided in data SI. Last, our results, indicating a major component of
forward propagation in the Peru and Chile flat slabs, differ from the
previous conclusions by Schepers et al. (26). This discrepancy arises
from the incorporation of the updated global subduction model
Slab2 (34), supported by higher-resolution regional subduction ge-
ometry models (see fig. S1). Our study integrates regional seismic
tomography to refine the locations of active flat slabs and uses a
broader analysis of absolute trench motion, using multiple absolute
plate motion models.

Numerical modeling of flat subduction

To evaluate the potential driving forces behind the forward propa-
gation of flat subduction, we develop 2D thermomecanichal sub-
duction models. These geodynamic models are specifically designed
to investigate mantle flow and plate convergence (as imposed by
neighboring active subduction [e.g., (48)] as the two potential driv-
ers of forward propagation of flat subduction while balancing com-
putational feasibility and physical realism. The equations governing
the conservation of mass, momentum, and energy are solved for an
incompressible, viscoplastic fluid within a 2D Cartesian domain. We
use the finite element, particle-in-cell code Underworld2 (70-72) to
carry out these computations. This code uses a continuum mechan-
ics approximation, a widely applied method to describe geological
and geophysical processes and to solve the conservation equations
of momentum, mass, and energy
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where uis the velocity, the V* = % (V + VT) is the symmetrized gra-
dient operator, T the temperature, p the pressure, 1) is the dynamic
viscosity, p is the density, g is the gravitational acceleration vector, C,
is the isobaric heat capacity, k is the thermal conductivity, and fis a
heat source term accounting for the radiogenic heating, adiabatic
heating and shear heating.

We use a viscoplastic rheology that depends on nonlinear tem-
perature and strain rate. The viscous deformation of rocks is com-
puted using a power-law equation, where dislocation and diffusion
creep are characterized by a generic stress-strain rate relationship
for each mechanism
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where d is the average grain-size, ¢ is the deviatoric stress second
invariant, A is the pre-exponential factor, p is the shear modulus, b
is the length of the Burgers vector (i.e., a measure of lattice distor-
tion), n is the stress exponent, m is the grain-size exponent, E is the
activation energy, V is the activation volume, and R is the gas con-
stant. Viscosity in the model is constrained between 10'° and 10**
Pa-s. Maximum strain rates in the model reach ~10™"* s, yielding
viscosities greater than 10" Pa-s. Table S1 describes the dimensional
values used in this study.
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We have implemented a melt function to account for the thermal
and mechanical effects of partial melting (M). This is consistent with
magmatic activity in this specific geodynamic setting and simulates
the relative decoupling between the plates that facilitates the lateral
growth of flat subduction. However, this function does not account
for melt extraction processes. Thus, the code is restricted to partially
melted regions in which the melt remains in situ. The mechanical
effect of partial melting is represented by a viscosity reduction in the
lower crust within a melt range of 0.15 to 0.3. Melting modifies the
existing viscous rheology, calculated as

M, =14 Mok
int — Lf_ Uf (5)
nm =1 X [1+Mint+nf X (I_Mint)] (6)

where 1, is the effective viscosity after melting, 1) is the viscous rhe-
ology, and M;y denotes a normalized linear interpolation of the per-
centage of the melt fraction (Mg) between the upper limit (Ur =
30%) and lower limit (L¢ = 15%) of the melt fraction range, and ¢
is the melt viscous softening factor. As the melt fraction increases
from 15 to 30%, the viscosity decreases by two orders of magni-
tude (73). The melt fraction (M) is a function of temperature and is
calculated as

[T—(T,+T) x 0.5
(Tl_Ts)

@)

ss T

(®)

Here, T represents the super-solidus temperature, T denotes
the solidus temperature, and Tj is the liquidus temperature. Both T}
and Tj are temperature and pressure dependent and defined by qua-
dratic polynomials

M=0.5+T,+ (T2 —0.25) x(0.4256+2.988 x Tj;)

T, = a, + b,P + c,P* 9)

Tl=a1+blP+ClP2

where a, b, and c are constants and are defined in table S2.

Plastic failure is governed by a pressure-dependent Drucker-
Prager yield criterion. The brittle properties of materials evolve with
strain, such that both cohesion and the friction coefficient de-
crease linearly with accumulated plastic strain. In our simulations,
the yield stress decreases linearly to a maximum of 20% of its ini-
tial value (or to 2 MPa) when the accumulated strain reaches 0.5 for
all materials.

The initial model setup geometry is illustrated in fig. S4, and the
material properties and model parameters are specified in table S2.
The model domain is 2D, measuring 6000 km in width and 660 km in
depth. The 2D assumption is used as a first-order approximation of
the complex geodynamic processes under investigation. While a fully
3D spherical model would provide additional insights, the computa-
tional costis higher, and previous studies [e.g., (10,11, 16,17,20,21,25)]
have shown that 2D models can effectively capture the primary phys-
ics of flat subduction.

The model uses a free-slip condition on the top boundary (u, =
0) and free-outflow conditions at the bottom. Our models focus on

(10)

120f 16

G20z ‘T AINC Uo B10°90UB 105" MMM//:ST1Y WOJ | PSpe0 |UMOQ



SCIENCE ADVANCES | RESEARCH ARTICLE

upper-mantle and lithospheric processes; hence, the lower mantle
is excluded to simplify computations and to focus on the primary
mechanisms driving flat-slab subduction. A uniform grid is used,
consisting of 256 X 128 nodal points. Initially, the configuration rep-
resents an oceanic lithosphere with a 45° dipping weak zone within
the mantle lithosphere at x = 2000 km where subduction is initi-
ated and including a relatively buoyant domain of 3100 kg m™> of
500 X 90 km simulating an oceanic plateau (fig. S4). The inclusion of
this feature intended to facilitate flat subduction [e.g., (16, 17, 25)],
which is then propagated by either mantle flow or imposed conver-
gence in our experiments (see details in the following paragraph).
This approach aligns with our primary objective of assessing the
relative influence of these two factors on the forward propagation of
flat slabs. Following the approach of Beaumont et al. (74), we adopt
a set of laboratory-derived rheological parameters. The continental
upper crust exhibit a wet quartzite rheology (75), while the conti-
nental lower crust follows a dry Maryland diabase rheology (76).
The oceanic crust and oceanic mantle lithosphere are characterized
by the rheology of wet olivine (77). The weak zone also has a wet
olivine rheology with a low friction coefficient, while the continen-
tal mantle lithosphere adopts a dry olivine rheology. Water content
is introduced for the oceanic crust and weak zone rheology to facili-
tate the onset of subduction. Additionally, a 30-km “sticky air” layer
with low viscosity (10" Pa s) and density (1 kg m™) is included to
minimize shear stresses at the surface and create a pseudo free sur-
face. A constant temperature (T = 0°C) is imposed at the top bound-
ary with no heat flux across the side walls. Initially, the internal
temperature distribution follows a geothermal gradient of 13°C
km™" until reaching a temperature of 1300°C at the lithosphere-
asthenosphere boundary (LAB) at a depth of 100 km (fig. S4). Below
the base of the LAB, temperatures are interpolated linearly between
1300° and 1573°C.

Our modeling approach consists of three main experiments,
each beginning with an initial phase that imposes a convergence
rate of 6 cm/year to initiate subduction and establish a flat-slab ge-
ometry. This setup allows us to test the roles of mantle flow, conver-
gence, and slab pull in flat-slab forward propagation (Fig. 6). During
this first phase, convergence is applied across the lithosphere from
the left boundary for the first 10 Myr. In the second phase, the mod-
els diverge. In model A (Fig. 6A), we assess the effect of fast mantle
flow (5 cm/year), consistent with Pacific Ocean estimates (45),
combined with reduced convergence (2 cm/year). Mantle flow is
applied from 200-km depth to the model base, enabling mantle
drag under low convergence conditions. An outflow matching
the imposed inflow is set at the lower right corner to minimize
boundary effects and ensure a physically consistent velocity field.
This configuration represents background mantle flow (47), with
the outflow placed far from the region of interest to avoid artificial
interference. Because all flat slabs analyzed, both active and ancient,
are or were located within the Pacific Ring of Fire, testing flow rates
beyond existing estimates (45) would be inconsistent with geody-
namic constraints and of limited value for comparison. In model B
(Fig. 6B), we impose an average Phanerozoic plate convergence rate
without mantle flow. Our use of average convergence values derived
from global plate tectonic speed-limit analyses (49) already repro-
duces realistic propagation rates, making further parameter testing
unnecessary (Fig. 6C). In model C (Fig. 6C), both mantle flow and
convergence are set to zero to isolate the effect of slab pull driven by
negative buoyancy.

Giannietal., Sci. Adv. 11, eadv8872 (2025) 11 July 2025
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