
Journal of Non-Crystalline Solids 338–340 (2004) 322–325

www.elsevier.com/locate/jnoncrysol
Determination of the density of defect states by thermally
stimulated conductivity studied from numerical simulations

J.A. Schmidt *, R.R. Koropecki, R. Arce, A. Dussan, R.H. Buitrago

INTEC (CONICET – UNL), G€uemes 3450, 3000 Santa Fe, Argentina

Available online 1 April 2004

Abstract

Starting from the multiple trapping rate equations that define the non-equilibrium concentrations of electrons and holes in

extended states, the thermally stimulated conductivity (TSC) experiment is examined. A system of non-linear coupled differential

equations is solved to get the temporal evolution of the occupation functions and the carrier concentrations during the initial

isothermal waiting time and the subsequent heating at a constant rate. The simulated TSC spectra reproduce the reported

dependence of the measured spectra on the heating rate and the starting temperature. An approximate expression to obtain the DOS

distribution in the upper half of the band gap from TSC spectra is deduced. The application of this expression to simulated TSC

curves provides an accurate reconstruction of the introduced DOS. The TSC method compares favourably to the modulated

photoconductivity experiments, both from the quality of the DOS reconstruction and the experimental simplicity of the method.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the thermally stimulated conductivity (TSC) tech-
nique a sample is cooled down to a temperature T0,
illuminated for a time till, and after a delay period td,
heated in the dark at a constant rate b. The experimental

simplicity of the technique has made it an appealing

choice to measure the density of trap states in semi-

conductors. Assuming quasi-equilibrium conditions and

considering that electron emission is the relevant process

that rules the TSC, a simple expression yielding the DOS
from a TSC spectrum can be easily obtained [1]. How-

ever, doubts have arisen about the underlying processes

that give rise to the TSC [2], while recent simulations

have thrown doubt about the possibility to correlate a

TSC curve to the DOS structure [3].

Simmons et al. [4] provided the first consistent theory

of the TSC in a system having a continuous trap dis-

tribution, assuming thermal equilibrium and neglecting
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recombination. Fritzsche and Ibaraki [5] developed a

theory of the TSC taking recombination into account,

but neglecting retrapping. Gu et al. [6] were the first to
base their analysis on the multiple trapping model,

taking into account thermal emission, trapping and

recombination processes. However, they approximated

the occupation functions by Fermi functions and they

restricted their analysis to electrons only. Baranovskii

et al. [7] extended the theoretical model to low temper-

atures, including transport via hopping of carriers

through the localised band-tail states. More recently,
Sma€ıl et al. [3] solved for the first time the complete set

of differential equations, taking into account all the

relevant transitions both for electrons and holes. These

authors, however, restricted their analysis to midgap

defects having a delta-like distribution. Based on

numerical calculations, they concluded that it is difficult

to correlate a TSC curve to the DOS structure.

In this work we present numerical simulations of
light-induced TSC and steady-state photoconductivity

experiments, which are combined to obtain the DOS in

the upper half of the band gap. An expression that

provides the DOS from TSC spectra is deduced and

tested through simulations.
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2. Simulation details

The DOS used as a starting point for our simulations

consists of exponential band tails of monovalent states,

and defect states with Gaussian distributions, consid-

ered to be either monovalent or amphoteric. In this later

case, we consider dangling bond states with three pos-

sible charge states, Dþ;D0 and D�, and a positive cor-

relation energy U .
After illumination, the concentration of excess carri-

ers in extended states arises from a balance between

thermal emission, capture and recombination. The rate

equations governing the concentration of electrons nðtÞ
and holes pðtÞ in the extended states, and the occupation

functions f , fþ; f 0 and f� (for monovalent, positively

charged, neutral and negatively charged defects,

respectively) are the following:
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where t is the time variable, Ev and Ec are the energies at

the top of the valence band and the bottom of the

conduction band, respectively, DM is the density of

monovalent defects, DDB is the density of dangling

bonds, e represents the thermal emission coefficient, and

c the capture coefficient; subscripts (n or p) indicate that
the coefficient is for electrons or holes, and superscripts

ðþ; 0;�Þ indicate that the coefficient is for positively

charged, neutral or negatively charged DB (no super-

script indicates that the coefficient is for monovalent

traps). The time and/or energy dependence of the func-

tions is not indicated for the sake of clarity.

By using numerical methods we solve the set of non-

linear differential equations to get nðtÞ and pðtÞ (or,
equivalently, nðT Þ and pðT Þ since temperature depends

linearly on time, T ðtÞ ¼ T0 þ bt). The TSC spectrum is

obtained from

rTSCðT Þ ¼ ½qlnnðT Þ þ qlppðT Þ� � rdkðT Þ; ð2Þ
where q is the electronic charge, and ln; lp are the
electron and hole mobilities in extended states, respec-

tively. The dark conductivity as a function of tempera-

ture, rdkðT Þ, is calculated independently by solving the

charge neutrality equation for each temperature. The

initial decay of the conductivity during the waiting time

td is also calculated from the same rate equations.
3. Results and discussion

Due to length limitations we will restrict our analysis

to the case of monovalent defects and to samples where

electrons dominate the conductivity. Setting DDB � 0 in

Eq. (1), and dropping the superscript for the monova-

lent defects, we have

onðT Þ
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enfDdE � nðT Þ
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From the exact solutions nðT Þ and pðT Þ we have checked
the quasi-equilibrium conditions, on

ot ffi 0, op
ot ffi 0. Thus,

from Eq. (3) we can write

nðT Þ ¼
Z Ec

Ev

enfDdE
�Z Ec

Ev

cnð1� f ÞDdE: ð5Þ

The function enðE; T Þ � f ðE; T Þ is a peaked function

with a sharp maximum at an energy EmðT Þ. This energy
is independent on the DOS, and varies linearly with

temperature. At each temperature, we have numerically

found the energy for which the function is maximum.

The examination of a large number of cases led us to the

following dependence:

Ec � EmðT Þ ¼ C1ðT0Þ � ksT � ln½C2ðT0Þm=b� � C3ðT0Þ;
ð6Þ

where kB is Boltzmann’s constant, m is the attempt-to-

escape frequency, and the coefficients Ci depend on the

initial temperature T0 as: C1ðT0Þ ¼ 0:9762� 7:429�
10�5T0, C2ðT0Þ ¼ 15:58þ 0:3379T0, C3ðT0Þ ¼ 0:00773þ
8:873� 10�5T0. These expressions have been obtained in

the range 30 K < T0 < 140 K. In Eq. (6), energies are
expressed in eV, m in s�1 and b in K/s.

The sharply peaked function enðE; T Þ � f ðE; T Þ can

be replaced by a d-like function centered at Em, with a

weighting factor W ðT Þ. On the other hand, the factorR Ec

Ev
cnð1� f ÞDdE

h i�1

, which represents the density of

unoccupied capture centres, can be associated to the

electron lifetime, sn [8]. Thus, we finally obtain

nðT Þ ¼ sn �
Z Ec

Ev

W ðT ÞdðE � EmÞDðEÞdE

¼ sn � W ðT Þ � DðEmÞ:
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Fig. 1. Simulated TSC spectra for different heating rates (b). The shift
of the low temperature peak and its change in height as a function of b
can be observed in detail in the inset.
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Fig. 2. Reconstruction of the introduced DOS from the simulated TSC

spectra of Fig. 1. Different symbols correspond to different heating

rates and starting temperatures T0 as indicated in the inset.
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For the function W ðT Þ we have found W ðT Þ ¼
b½0:97kB lnðmT=bÞ � 7:33� 10�5�. If electrons dominate

the conductivity, the DOS at the peak energy EmðT Þ is

given by

DðEmÞ ¼
rTSCðT Þ

qlnsnW ðT Þ ; ð7Þ

where rTSCðT Þ can be measured in the TSC experiment,

and the ln � sn product can be obtained from the steady

state photoconductivity as already described by Zhu and

Fritzsche [9].

By using this formula we have reconstructed the DOS

characterised by the parameters listed in Table 1. These
parameters are quite typical for a–Si:H, except for the

attempt-to-escape frequency which was taken as m ¼ 5�
109 s�1 to reproduce the typically measured temperature

at which rTSCðT Þ drops to zero. Different values for the

attempt-to-escape frequency of a–Si:H have been re-

ported in the literature [1,5,9]. We have performed cal-

culations for a starting temperature 20 K6 T0 6 100 K,

a heating rate 0:025 K=s6 b6 0:075 K=s, and an illu-
mination generation rate G ¼ 3:2� 1019 cm�3 s�1. The

waiting period in dark before heating was td ¼ 300 s in

all cases. The simulated TSC curves can be seen in Fig.

1. The general shape of experimental spectra is well

reproduced, with a low temperature peak located around

90 K and a high temperature peak around 300 K.

The dependence of the TSC spectra on the heating

rate b is a stringent test for the models that describe the
TSC. In Fig. 1 we present a set of simulated spectra for

T0 ¼ 80 K and different values of b. As it can be seen in

the inset of Fig. 1, the peak moves to higher tempera-

tures and increases in height, in agreement with mea-

surements from Baranovskii et al. [7] and Misra et al.

[10]. Fig. 2 shows the DOS reconstructions performed

from this set of TSC spectra. As it can be seen, the

reconstructions agree within each other, and reproduce
quite accurately the introduced DOS.
Table 1

Parameters used in the numerical simulations

Parameter Value

Ev (energy at the valence band top) 0

Ec (energy at the conduction band bottom) 1.8 eV

NðEcÞ ¼ NðEvÞ (DOS at the band edges) 1021 cm�3 eV�1

Evt (valence band tail characteristic energy) 56 meV

Ect (conduction band tail characteristic energy) 28 meV

DB (total density of defects, acceptors +

donors)

2· 1016 cm�3

Cd (centre of the Gaussian distribution,

donors)

0.85 eV

Ca (centre of the Gaussian distribution,

acceptors)

1.25 eV

wd (width of the Gaussian distributions) 0.2 eV

m (attempt-to-escape frequency) 5· 109 s�1

ln (free electron mobility) 10 cm2 V�1 s�1

lp (free hole mobility) 1 cm2 V�1 s�1
Another test for a model that attempts to describe the

TSC is to perform experiments at different starting
temperatures T0. Baranovskii et al. [7], and Zhou and

Elliot [2] have found that there is a certain starting

temperature T �
0 below which the position of the low-

temperature TSC peak, Tm, does not change. Depending

on the heating rate and the sample, this temperature T �
m

lies between 60 and 110 K. It has been suggested [7] that

this behaviour, characteristic of the low temperature

portion of the TSC spectra, may be explained in terms of
conduction by hopping. As it can be seen in Fig. 3, this

behaviour is reproduced by the rate equations that we

are using although we do not include in our model

hopping conductivity. The temperature T �
0 seems to be

around 60 K in this case. In Fig. 2 we have already

presented the DOS reconstruction from the TSC curve

starting at T0 ¼ 20 K. As it can be observed, the DOS

can now be reconstructed over a wider energy range.
The curve agrees perfectly well with those obtained at
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Fig. 3. Low temperature behaviour of the TSC spectra for different

starting temperatures T0 as indicated in the inset.
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the starting temperature T0 ¼ 80 K, while it reproduces

the introduced DOS quite accurately. A slight energy

shift in the conduction band tail can be observed, but

the slope is accurate within 6%. Thus, the simple for-

mula given in Eq. (7) provides an accurate reconstruc-

tion of the DOS, provided the correct values of the

initial temperature T0 and the heating rate b are intro-

duced in the expressions for EmðT Þ and W ðT Þ.
It has been shown in previous works that the mod-

ulated photoconductivity (MPC) methods can be used

to reproduce the DOS in the upper half of the band gap

[11,12]. Starting from the same DOS distribution pre-

sented in Fig. 2, we have simulated the application of the

MPC methods to reconstruct the DOS. The conven-

tional MPC (c-MPC) technique has been simulated with

a dc generation rate Gdc ¼ 1015 cm�3 s�1, while the
recombination regime MPC (RRMPC) has been simu-

lated with Gdc ¼ 3:2� 1019 cm�3 s�1. In both cases we

have taken the ac component to be Gac ¼ Gdc=20. The
1.0 1.2 1.4 1.6 1.8

1016

1017

1018

1019

1020

1021

  Introduced DOS
  c-MPC
  RRMPC
  TSC

D
O

S 
(c

m
-3
eV

 -1
)

[E - Ev ] (eV)

Fig. 4. Comparison of the DOS reconstructions obtained form simu-

lated experiments of TSC and modulated photoconductivity in the

trapping regime (c-MPC) and the recombination regime (RRMPC).
comparison between the three methods is presented in
Fig. 4. As it can be seen, the TSC reconstruction is more

accurate in this case, and the DOS can be obtained over

a wider energy range. From the experimental point of

view, the three methods require to perform measure-

ments as a function of temperature, but TSC has the

advantage that it is not needed to use ac illumination,

and only dc magnitudes are measured.
4. Conclusion

A consistent numerical calculation of TSC spectra

taking into account all the relevant capture and emission

processes for electrons and holes is presented. Starting

from a realistic DOS distribution, we simulate the TSC

spectra and we apply the same procedure that is used

experimentally to reconstruct the defect density. Con-
trary to what it was concluded in some previous works,

our simulations reveal that the TSC method provides a

simple an accurate method to obtain the DOS distri-

bution in the upper half of the gap of intrinsic a–Si:H.

The TSC experiment compares favourably with the

modulated photoconductivity experiments, both from

the quality of the DOS reconstruction and from the

experimental simplicity of the method.
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