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Abstract
Background: Programmed death ligand-1 (PD-L1) expression is a well-known predic-
tive biomarker of response to immune checkpoint blockade in non-small cell lung
cancer (NSCLC). However, there is limited evidence of the relationship between PD-
L1 expression, clinicopathological features, and their association with major driver
mutations in NSCLC patients in Latin America.
Methods: This retrospective study included patients from Argentina with advanced
NSCLC, and centralized evaluation of PD-L1 expression concurrently with genomic
alterations in the driver genes EGFR, ALK, ROS1, BRAF, and/or KRAS G12C in FFPE
tissue samples.
Results: A total of 10 441 patients with advanced NSCLC were analyzed. Adenocarci-
noma was the most frequent histological subtype (71.1%). PD-L1 expression was cate-
gorized as PD-L1 negative (45.1%), PD-L1 positive low-expression 1%–49% (32.3%),
and PD-L1 positive high-expression ≥50% (22.6%). Notably, current smokers and
males were more likely to have tumors with PD-L1 tumor proportion score (TPS)
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≥50% and ≥ 80% expression, respectively (p < 0.001 and p = 0.013). Tumors with
non-adenocarcinoma histology had a significantly higher median PD-L1 expression
(p < 0.001). Additionally, PD-L1 in distant nodes was more likely ≥50% (OR 1.60
[95% CI: 1.14–2.25, p < 0.01]). In the multivariate analysis, EGFR-positive tumors
were more commonly associated with PD-L1 low expression (OR 0.62 [95% CI: 0.51–
0.75], p < 0.01), while ALK-positive tumors had a significant risk of being PD-L1 posi-
tive (OR 1.81 [95% CI: 1.30–2.52], p < 0.01).
Conclusions: PD-L1 expression was associated with well-defined clinicopathological
and genomic features. These findings provide a comprehensive view of the expression
of PD-L1 in patients with advanced NSCLC in a large Latin American cohort.
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programmed death-ligand 1 (PD-L1), non-small cell lung cancer (NSCLC), immunohistochemistry (IHC),
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INTRODUCTION

Treatment with immune checkpoint inhibitors (ICIs)
directed against the PD-1/PD-L1 axis has revolutionized
cancer treatment, especially achieving substantial success in
the management of patients with advanced non-small cell
lung cancer (NSCLC).1 The expression of PD-L1, measured
by immunohistochemistry as the tumor proportion score
(TPS), is defined as the percent of PD-L1-positive tumor
cells in the tumor tissue. PD-L1 expression is the primary
clinically essential predictive biomarker for anti-PD-1/PD-
L1 treatment efficacy in NSCLC. Scientific evidence has
shown that high PD-L1 expression levels are associated with
improved survival in patients with advanced NSCLC treated
with immunotherapy.2–5 However, PD-L1 expression is
incomplete and imperfect as a stand-alone biomarker since
only a subgroup of patients has long-term clinical benefit
and survival when treated with immune checkpoint
inhibitors.6

In some tumor models, PD-L1 expression can be stimu-
lated by tumor extrinsic signals such as interferon-gamma,
or tumor intrinsic signals such as activation of the mamma-
lian target of rapamycin (mTOR), and mitogen-activated
protein kinase (MAPK) signaling pathways.7–9 However, the
main factors associated with its expression at baseline are
not fully understood.

It is well known that NSCLC is a heterogeneous disease.
Nonsquamous tumors in particular are characterized by
subsets of driver genomic alterations capable of being drug-
gable by tyrosine-kinase inhibitors, including EGFR, KRAS,
BRAF, MET, and ERBB2 mutations or ALK, ROS1, RET, and
NTRK genomic rearrangements.10 Critically, the intricate
interplay between genomic alterations and PD-L1 expres-
sion in NSCLC is currently under investigation. Recent
reports suggest that activating genomic alterations in KRAS,
EGFR, and ALK, as well as loss of PTEN, possess the poten-
tial to biologically influence PD-L1 expression in
NSCLC.8,11–13 Nevertheless, the association between these
factors has only been examined in a limited number of stud-
ies, leading to a gap in understanding. Furthermore, incon-
sistencies have been observed in certain meta-analyses that

have attempted to evaluate this relationship. These varia-
tions in findings may be attributed to the heterogeneity
among the included studies, which employed different anti-
bodies and utilized varying cutoff levels for defining PD-L1
expression.14–16

Interestingly, there is clinical evidence that suggests
potential variations in PD-L1 expression and the effective-
ness of immune checkpoint inhibitors based on
ethnicity.17–19 However, validating this hypothesis has
proven challenging as most studies investigating the clinico-
pathological features of NSCLC and PD-L1 expression have
primarily focused on patients from North America, Europe,
and Asia, while Latin American and African populations
have been notably underrepresented.20,21

Given that there is a significant interest in a better
understanding of the role of immunotherapy in oncogenic
driven-NSCLC, it becomes crucial to comprehensively assess
the factors linked to PD-L1 expression. This understanding
could provide valuable insights into the mechanisms under-
lying primary response or resistance to immunotherapy.
Thus, our study aimed to explore the potential association
between PD-L1 expression and major driver gene alter-
ations, including EGFR, KRAS, BRAF, ALK, and ROS1, as
well as clinicopathological features. This investigation was
conducted on a large cohort of patients with advanced
NSCLC from a Latin American country.

METHODS

Study population

This retrospective study included consecutive patients with
advanced NSCLC, and effective evaluation of PD-L1 expres-
sion concurrently with analysis of EGFR, ALK, ROS1, BRAF,
and/or KRAS mutations from available formalin-fixed
paraffin-embedded (FFPE) samples. Patients were selected
from February 2018 to September 2021 from the institu-
tional databases of Biomarkers Inc., which centrally ana-
lyzed lung cancer tissue samples from multiple hospitals and
cancer centers in Argentina. Data, including basic
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demographic as well as pathological characteristics, were
collected from the same database based on the reports pro-
vided by clinicians.

PD-L1 assay

PD-L1 immunohistochemistry (IHC) testing was performed
using the PD-L1 clone 22C3, and the pharmDx kit, and
Dako Automated Link 48 platform (Dako). PD-L1 expres-
sion measured as TPS was calculated as the percentage of
positive cells in at least 100 viable tumor cells with complete
or partial membrane staining assessed by four experienced
pathologists (LL, MB, MAB, and GGR).22 In instances of
discrepancy, a consensus meeting involving a fifth senior
pathologist was convened to reach an agreement, and the
kappa coefficient was used. A PD-L1 TPS <1% was defined
as negative, and a PD-L1 TPS ≥1% was considered positive.
Additionally, PD-L1 positive samples were stratified as low
PD-L1 expression (PD-L1 TPS 1%–49%) and high PD-L1
expression (PD-L1 TPS ≥50%).

Driver mutation analyses

The assessment of EGFR, BRAF, and KRAS p.G12C genomic
alterations was performed by extracting genomic DNA from
FFPE tumor tissue using a QIAMP mini DNA kit (Qiagen)
at the QIAcube instrument (Qiagen), according to the man-
ufacturer’s instructions. EGFR mutations were detected
using the AmoyDX EGFR 29 mutations detection kit
(AmoyDx) at the Rotor-Gene Q instrument (Qiagen), and
EGFR mutation analysis kit (Entrogen) at Cobas z480
instrument (Roche).23,24 Both kits are designed for real-time
PCR assays for the qualitative detection of mutations of the
EGFR gene (LRG_304t1) (Supplementary Methods). BRAF
mutations were assessed using BRAF codon 600 mutation
analysis real-time PCR kit (Entrogen) of exon
15 (Supplementary Methods).25 KRAS p.G12C mutation
was tested by AmoyDX KRAS mutation detection kit, real-
time PCR Kit (AmoyDx) at the Cobas z480 instrument
(Roche).26 ALK fusion testing was performed with a fully
automated IHC assay using a D5F3 clone (Ventana Roche).
D5F3 was additionally assessed using the OptiView
enhanced detection and amplification system. ALK-positive
cases were interpreted using Ventana ALK (D5F3) CDx
Assay (Roche).27 ROS1 fusion testing was performed in
ALK-negative cases. ROS1 fusion was analyzed by IHC
(D4D6 clone, Cell Signaling Technology) and confirmed by
FISH (ZytoLight SPEC ROS1 Dual Color Break Apart
Probe) (Supplementary Methods).28,29

Statistical analysis

Categorical variables are summarized using frequency and
percentage, while continuous variables are described by

their median, standard deviation, or interquartile range
(IQR). Associations with qualitative variables were
assessed using the Chi-square or Fisher’s exact test, and
for quantitative variables, analysis of variance (ANOVA)
or the Kruskal-Wallis test was employed. Pairwise com-
parisons between groups were conducted using the Wil-
coxon test, and p-values were adjusted using the Holm
method. The multivariate analysis of PD-L1 expression
utilized a logistic regression model, and the results are
reported as adjusted odds ratios (OR). All statistical ana-
lyses were performed using R software (version 4.3.0).
Two-tailed tests and p-values <0.05 were used to deter-
mine statistical significance.

RESULTS

Patient clinicopathological characteristics

A total of 10 441 patients with advanced NSCLC were
included for analysis (Figure 1). Among the total popula-
tion, PD-1 was successfully evaluated in 8977 (86%) cases.
Patient characteristics are summarized in Table 1.
The majority of patients were male (5176 patients, 58%),
and the median age at diagnosis was 66 years (SD 10.5).
Lung adenocarcinoma was the most frequent histological
type (6388, 71.1%). Among patients with available data, dis-
tribution according to smoking status were for never
smokers, former and current smokers 325 (21.6%)
541 (35.9%), a 641 (42.5%), respectively. Of note, this cohort
included predominantly biopsies from thoracic sites (lung
primary tumor [5764 patients, 64.2%], and metastases [1675
patients, 18.7%]).

PD-L1 expression and clinical features

PD-L1 expression was categorized as PD-L1 negative
(4051, 45.1%), low-expression 1%–49% (2895, 32.3%), and
high-expression ≥50% (2031, 22.6%) (Figure 2a). Consid-
ering the subgroup of tumors with high PD-L1 expression,
those with PD-L1 TPS 50–80 (15.2%) were more common
than >80 (7.3%) (Table S1). Although no difference was
observed in median PD-L1 expression according to smok-
ing status and gender, current smokers and male patients
more likely had tumors with PD-L1 TPS ≥50% and ≥ 80%
expression, respectively (p < 0.001 and p = 0.013).
Tumors with non-adenocarcinoma histology had a signifi-
cantly higher median PD-L1 expression (p < 0.0001)
(Figure 3). Additionally, the multivariate analysis showed
that samples taken from metastatic lesions had a signifi-
cantly lower risk of being PD-L1 positive and PD-
L1 ≥ 50% expression (OR 0.71 [95% CI: 0.52–0.79],
p < 0.01, and OR 0.79 [95% CI: 0.59–0.99], p = 0.03,
respectively) (Table 2). Contrary, the score of PD-L1 TPS
in distant nodes was more likely ≥50% (OR 1.60 [95% CI:
1.14–2.25, p < 0.01]).

RUIZ ET AL. 897
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Association between driver gene mutations and
PD-L1 expression

Among patients with evaluable tests for the five molecular
alterations tested, EGFR mutation was the most common
alteration (17.7%), followed by KRAS p.G12C (14.5%),
BRAF mutation (5.1% [p.V600E 3.6%]), ALK fusion (3.6%),
and ROS1 fusion (1.2%) (Figure 1). The frequency of con-
comitant alteration according to the tested cases was EGFR
+ ALK in 12 patients (0.15%), KRAS p.G12C + EGFR in
nine (0.52%) patients, KRAS p.G12C + ALK in two
(0.11%), and KRAS p.G12C + BRAF p.V600E in one
(0.11%) case (Figure 4). Remarkably, a total of 135 (9.3%)
non-adenocarcinoma tumors harbored EGFR mutations,
including 10 with squamous cell carcinoma, two with mixed
histology, and 123 with carcinoma not otherwise specified,
that were tested given the clinical indication.

The distribution of PD-L1 expression and driver muta-
tion status is summarized in Figure 2b. In the multivariate
logistic regression analysis, EGFR mutated tumors were
more commonly PD-L1 low (OR 0.62 [95% CI: 0.51–0.75],
p < 0.01), and the median TPS was 1% (IQR 0–15)
(Table 2). On the contrary, ALK translocated tumors had a
significant risk of being PD-L1 positive (OR 1.81 [95% CI:
1.30–2.52], p < 0.01), and the median TPS for ALK tumors
was 5% (IQR 0–50).

Tumors with KRAS, BRAF, and ROS1 genomic alter-
ations were excluded from the multivariate analysis due to
the limited number of cases with available data. However, a
univariate association between PD-L1 expression and KRAS
status was found since KRAS-mutated tumors were more
likely PD-L1-high than PD-L1 low (19.9% vs. 12.3%,
p = 0.003). Contrarily, no statistical associations were found

between ROS1 or BRAF and PD-L1 status (p = 0.052 and
p = 0.240, respectively).

DISCUSSION

The administration of immune checkpoint inhibitors target-
ing anti-PD-1 or PD-L1 has demonstrated enhanced sur-
vival outcomes in individuals with metastatic NSCLC.
However, it is important to note that treatment benefits
have only been observed in a specific subgroup of patients,
and the identification of predictive factors for immunother-
apy response remains under intensive research.4 Although
imperfect, PD-L1 expression is the only biomarker currently
utilized in clinical practice to guide treatment decisions
regarding immunotherapy in advanced NSCLC. Nonethe-
less, the expression of PD-L1 in NSCLC exhibits consider-
able variability, and a comprehensive understanding of the
factors influencing its expression is yet to be achieved.

Numerous studies have investigated the association
between PD-L1 expression and clinicopathological features
in NSCLC. Several meta-analyses, involving substantial
patient cohorts ranging from 7541 to 11 444 individuals,
have encountered methodological limitations such as the
inclusion of heterogeneous NSCLC populations (excluding
patients from Africa and Latin America), and the utilization
of various antibodies, staining techniques, and threshold
values for defining PD-L1 expression.14–16 To the best of
our knowledge, our study is unique and represents the larg-
est single-region real-world cohort of a centralized PD-L1
analysis in advanced NSCLC.

In our study, the distribution of PD-L1 expression in
NSCLC was aligned with previous findings of PD-L1

Consent, enrolled and assessed
for eligibility
n=10,441

Total EGFR
eligible cohort
n=8,207 (79%)

Total ALK
eligible cohort
n=8,282 (79%)

Total ROS-1
eligible cohort
n=2,409 (23%)

Total KRAS G12C
eligible cohort
n=1,742 (16.7%)

Total BRAF
eligible cohort
n=848 (8.1%)

EGFR Posi�ve
n=1,454 (17.7%)

ALK Posi�ve
n=300 (3.6%)

ROS-1 Posi�ve
n=27 (1.2%)

BRAF Posi�ve
n=43 (5.1%)

KRAS G12C Posi�ve
n=253 (14.5%)

Excluded*
n=2,234

(21%)

Excluded*
n=2,159

(21%)

Excluded*
n=8,032

(77%)

Excluded*
n=8,699
(83.3%)

Excluded*
n=9,593
(91.9%)

F I G U R E 1 Flow chart of included patients and biomarker analysis. *Patients excluded represented samples nontested or not evaluable.
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T A B L E 1 Patient characteristics and driver alterations according to PD-L1 expression.

Characteristics no, (%)

Overall PD-L1 negative PD-L1 1–49% PD-L1 ≥ 50%

p-valueN = 8977 N = 4051 N = 2895 N = 2031

Sex 0.21

Female 3801 (42%) 1700 (42%) 1263 (44%) 838 (41%)

Male 5176 (58%) 2351 (58%) 1632 (56%) 1193 (59%)

Age 0.14

Mean (SD)-year 66 (10.5) 66 (10.7) 66 (10.4) 65 (10.1)

Histological types <0.001

Adenocarcinoma 6388 (71.1%) 3051 (75.3%) 2032 (70.1%) 1305 (64.2%)

Squamous 1173 (13.2%) 444 (11%) 429 (14.8%) 300 (15%)

Large cell 8 (0.09%) 2 (0.05%) 3 (0.1%) 3 (0.1%)

Adenosquamous 29 (0.33%) 11 (0.3%) 9 (0.3%) 9 (0.4%)

NSCLC NOS 1287 (14.3%) 493 (12.1%) 405 (14%) 389 (19.1%)

Not available 92 (1.02%) 50 (0.55%) 17 (0.19%) 25 (0.27%)

Biopsy site <0.001

Primary tumor 5764 (64.2%) 2693 (66.5%) 1831 (63.2%) 1240 (61.1%)

Metastasis 1675 (18.7%) 780 (19.3%) 512 (17.7%) 383 (18.9%)

Regional nodes 1180 (13.1%) 457 (11.3%) 438 (15.1%) 285 (14.0%)

Distant nodes 358 (4.0%) 121 (3.0%) 114 (3.9%) 123 (6.1%)

Smoking statusa <0.001

Nonsmoker 325 (21.6%) 140 (22.2%) 131 (25.0%) 54 (15.3%)

Former smoker 541 (35.9%) 210 (33.3%) 201 (38.4%) 130 (36.8%)

Current smoker 641 (42.5%) 280 (44.4%) 192 (36.6%) 169 (47.9%)

Not available 7470 (83,2%) 3421 (84.5%) 2371 (81.9%) 1678 (82.6%)

EGFRa <0.001

Negative 5800 (82.5%) 2559 (81.0%) 1847 (80.7%) 1394 (88.0%)

Positive 1232 (17.5%) 599 (19.0%) 443 (19.3%) 190 (12.0%)

Not tested 1945 (21.7%) 893 (22.0%) 605 (20.9%) 447 (22.0%)

ALKa <0.001

Negative 7001 (96.3%) 3246 (97.3%) 2218 (95.3%) 1537 (95.5%)

Positive 270 (3.7%) 89 (2.7%) 109 (4.7%) 72 (4.5%)

Not tested 1706 (19%) 716 (17.7%) 568 (19.6%) 433 (20.8%)

BRAFa 0.24

Negative 749 (95.1%) 410 (96.2%) 320 (93.6%) 19 (95.0%)

Positive 39 (4.9%) 16 (3.8%) 22 (6.4%) 1 (5.0%)

Not tested 8189 (91.2%) 3625 (89.5%) 2553 (88.2%) 2011 (99.0%)

ROS1a 0.052

Negative 2084 (98.7%) 944 (99.4%) 641 (98.3%) 499 (98.0%)

Positive 27 (1.3%) 6 (0.6%) 11 (1.7%) 10 (2.0%)

Not tested 6866 (76,5%) 3101 (76.6%) 2243 (77.5%) 1522 (74.9%)

KRAS_G12Ca 0.003

Negative 1376 (85.5%) 584 (86.5%) 494 (87.7%) 298 (80.1%)

Positive 234 (14.5%) 91 (13.5%) 69 (12.3%) 74 (19.9%)

Not tested 7367 (82,1%) 3376 (83.3%) 2332 (80,6%) 1659 (81.7%)

Note: χ 2-test, One-way ANOVA, and Fisher’s exact test. p-value was calculated for patients with available data.
Abbreviations: ANOVA, analysis of variance; NSCLC NOS, non-small cell lung not otherwise specified; PD-L1, programmed death ligand-1; SD, standard deviation.
aPercentages were calculated considering the available data and molecular test performed. Nonsmoker was defined as those who have never smoked, or who have smoked less than
100 cigarettes in their lifetime.
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positivity ranging from 20% to 70% utilizing the same anti-
body clone.30–33 Remarkably, the predominant subgroup
observed was the PD-L1 negative category. In phase III trials
investigating untreated advanced NSCLCs, the prevalence of
PD-L1 TPS negative expression was reported to be between
30.8% and 39.5% using various PD-L1 antibodies.34–37 Nota-
bly, in line with our findings, although not entirely vali-
dated, certain studies have reported a positive correlation
between elevated PD-L1 expression and non-
adenocarcinoma histology.38,39

Based on our findings, patients who were current
smokers exhibited a higher likelihood of having elevated
PD-L1 expression. Consistent with this observation, previ-
ous studies have reported similar results, corroborating our
findings.40 Notably, tobacco smoking is commonly linked to
T cell exhaustion and the upregulation of PD-1, which ulti-
mately contributes to immune evasion.41,42 Lung cancer
cases in smokers have been noted to exhibit a substantial
load of neoantigens, heightened immunogenicity, and upre-
gulation of PD-L1.43 This data is of great significance as sev-
eral studies have consistently demonstrated that advanced
NSCLC patients who are current smokers and exhibit posi-
tive PD-L1 expression are more inclined to respond favor-
ably to anti-PD-1 monotherapy in comparison to
individuals who have never smoked.44–47

In our study, a remarkably high PD-L1 expression
(≥80%) was notably more prevalent among males than
females, potentially attributable to the higher incidence of
cigarette smoking in males. While this explanation appears
to be the most plausible, the relationship between sex and
PD-L1 expression remains inadequately elucidated. Notably,
a meta-analysis conducted by Zhang et al. revealed that PD-
L1 expression was elevated in males, pooling the results
from 11 444 patients.16 Opposite, no significant correlation
between positive PD-L1 expression and gender was found in
a pooled analysis including 3128 cases performed by Yang et
el.15 Conversely, the correlation between PD-L1 expression
and gender could potentially be influenced by sex hormones,
as emerging evidence suggests that these hormones have the
capacity to regulate numerous immune-related genes,
including those involved in the PD-1/PD-L1 pathway.48,49

The validation of the association between elevated PD-L1
expression and male patients holds significant clinical rele-
vance, as multiple phase III studies investigating first-line
immune checkpoint inhibitors in advanced NSCLC have
demonstrated that anti-PD-1/anti-PD-L1 monotherapy
exhibits greater efficacy in men compared to women.50

Nonhomogenous PD-L1 expression between primary
tumor and metastatic sites has previously been reported.51,52

The multivariate analysis of our study showed that tissue

PD-L1 <1%
45.1%

PD-L1 1-49%
32.3%

PD-L1 ≥50%
22.6%

Distribu�on of PD-L1 TPS

EGFR
19%

KRAS G12C
13.5%

ALK
2.7%

BRAF
3.8%ROS1

0.6%

Nega�ve
test*
60.4%

PD-L1 <1%

EGFR
12%

KRAS G12C
19.9%

ALK
4.5%

BRAF
5%

ROS1
2%

Nega�ve
test*
56.6%

PD-L1 ≥50%

(a) (b)

EGFR
19.3%

KRAS G12C
12.3%

ALK
4.7%

BRAF
6.4%

ROS1
1.7%

Nega�ve
test*
55.6%

PD-L1 1-49%

F I G U R E 2 Frequency of
programmed death ligand-1 (PD-L1)
expression in the total population (a).
Frequency of driver oncogene
alterations (EGFR, KRAS G12C, BRAF,
ALK, and ROS1) according to the
expression of PD-L1 (b). *Negative
tests represent tumors without EGFR,
KRAS G12C, BRAF, ALK, and ROS1
alterations. Only tumors with available
test analysis were included in these
graphs.
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samples from distant nodes were more likely to have high
PD-L1 expression than those from the primary tumor and
regional lymph nodes. Given it was not tested in paired pri-
mary and metastatic samples, it is not possible to have
strong methodological conclusions. However, it reinforces
that PD-L1 expression in lung cancer could be heteroge-
neous and dynamic, hence the reliability and feasibility of
the PD-L1 expression on a single biopsy specimen, as a ref-
erence for immuno-oncology treatment, remains
controversial.53,54

In this new era of genomic characterization of NSCLC, a
deeper understanding of the molecular factors associated
with PD-L1 expression can help elucidate mechanisms of
primary response and resistance to immunotherapy. In this
context, evidence has characterized that EGFR-mutated
tumors have a lower tumor mutation burden (TMB), but
the association with PD-L1 expression remains unclear.38,55–
59 Evans et al. analyzed the PD-L1 expression among 10 005
patients with NSCLC in the UK and found that classical
EGFR mutations were associated with lower rates of PD-L1
expression, and nonclassical EGFR mutations were

associated with higher rates.60 Contrarily, a meta-analysis
conducted by Zhang et al., including 47 studies and 11 444
patients, showed that high PD-L1 expression was associated
with EGFR mutations.16 In another meta-analysis performed
by Li et al., analyzing 50 studies and 11 383 patients, the
pooled results revealed that PD-L1 expression was related to
EGFR wild-type tumors.40 Taking advantage of our large
homogenous cohort, the multivariate analysis demonstrated
that EGFR-mutated tumors more likely had low PD-L1
expression with a very low median TPS.

Likewise, preclinical studies have demonstrated that
ALK translocation and its downstream signaling pathways
can drive PD-L1 expression.13,61 However, the association
between positive PD-L1 expression and ALK status has not
been yet validated in clinical studies with contradictory find-
ings.16,40,62–64 Our results suggest that ALK-positive tumors
have a significantly higher risk of PD-L1 positive expression.

Our study revealed that KRAS p.G12C-mutant tumors
were more likely to have a high PD-L1 expression in the
univariate analysis. Studies on cell lines revealed that KRAS-
mutated NSCLC can be regulated by MAPK and partially by

F I G U R E 3 Association of programmed death ligand-1 (PD-L1) expression in tumor cells (TPS) with clinicopathological characteristics. Statistical
significance: ****p < 0.0001.
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STAT3 signaling pathways.9,65,66 As a consequence, similar
to our findings, several studies and meta-analyses confirmed
the positive correlation between PD-L1 expression and
KRAS mutation in NSCLC.38,40,67,68

Finally, the analysis of uncommon driver mutations is
usually limited by patient numbers. A small number of stud-
ies have revealed that BRAF mutation, particularly p.V600E,
is associated with a high level of PD-L1 expression.68,69 Con-
cerning ROS1 fusion, no association was found in our study
in line with previous reports.59,70

Our results should be analyzed with caution considering
study limitations. First, the retrospective nature of our anal-
ysis resulted in incomplete data for some patients. Second,
PD-1 was unsuccessfully evaluated in 14% of cases as a
result of poor tissue quantity and quality. The unsuccessful
evaluation of PD-L1 expression was estimated at around
10% in the real-world setting and 5% in clinical tri-
als.34,37,71,72 Third, analysis of uncommon driver alterations
was usually limited by the low number of patients. In our
cohort, not all cases were tested for the entire mutational
profile (EGFR, KRAS, ALK, ROS1, and BRAF) which might
have affected the multivariate analysis. The main reason for
this discrepancy was the heterogeneous biomarker testing
reimbursement for each case. Fourth, given that PD-L1
expression in NSCLC could be heterogeneous and dynamic,
the association between a potentially changing variable (PD-
L1 expression), with a constant variable (the mutational pro-
file), might limit the reliability, and reproducibility of the
results. However, our study had an advantage over other
studies since all the samples were processed and read in the
same institution with a consistent antibody, technique, and
experienced pathologists.

In conclusion, this is the largest and most homogeneous
study analyzing PD-L1 expression and its association with
clinicopathological and genomic alterations in a Latin
American cohort. In summary, we found that males and
current smokers, as well as tumors with non-
adenocarcinoma histology, KRAS mutations, and tissue

Co-alterations profile 
KRAS EGFR KRAS KRAS 

EGFR ALK ALK BRAF 

No. of cases 9 12 2 1 

Frequency 0.52% 0.15% 0.11% 0.11% 

0.0%

0.2%

0.4%

0.6%

A
lte

ra
tio

ns
fr

eq
ue

nc
y

(%
)

F I G U R E 4 Frequency of cases harboring concomitant alteration.

T A B L E 2 Impact of driver alterations status on the PD-L1 expression.

PD-L1 + (N = 4864) PD-L1 ≥ 50% (N = 4864)

OR, 95% CI p-value OR, 95% CI p-value

Age 1.00 (1.00–1.01) 0.20 1.00 (0.99–1.00) 0.37

Histological types

Adenocarcinoma - -

Adenosquamous 1.24 (0.47–3.28) 0.70 1.46 (0.51–4.17) 0.48

Squamous 1.38 (0.94–2.00) 0.10 1.17 (0.76–1.80) 0.46

Large cell 2.33 (0.45–12.1) 0.30 2.67 (0.59–12.0) 0.20

NSCLC NOS 1.43 (1.21–1.70) <0.01 1.49 (1.24–1.79) <0.01

Biopsy site

Regional nodes - -

Primary tumor 0.67 (0.57–0.80) <0.01 0.83 (0.68–1.01) 0.06

Metastasis 0.71 (0.52–0.79) <0.01 0.79 (0.59–0.99) 0.03

Distant nodes 1.22 (0.87–1.70) 0.20 1.60 (1.14–2.25) <0.01

EGFR

Negative - -

Positive 0.91 (0.78–1.06) 0.20 0.62 (0.51–0.75) <0.01

ALK

Negative - -

Positive 1.81 (1.30–2.52) <0.01 1.11 (0.78–1.57) 0.57

Note: Multivariate logistic regression. Multivariate logistic regression model; data presented by adjusted odds ratio. KRAS, BRAF, and ROS1 analyses were excluded given the low
number of cases with complete data.
Abbreviations: CI, confidence interval; NOS, not otherwise specified; OR, odds ratio; PD-L1, programmed death ligand 1.

902 RUIZ ET AL.

 17597714, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1759-7714.15244 by T

est, W
iley O

nline L
ibrary on [31/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



samples from distant nodes, were associated with high PD-
L1 expression. In contrast, tumors with EGFR mutations
were more likely to have low PD-L1 expression. This study,
together with the current evidence, is ultimately intended to
understand the potential associations between PD-L1
expression with clinicopathological relevance and genomic
alterations.
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