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Abstract: This paper shows an extension of the well-known process re-

action curve method to empirically determine reduced-complexity mod-

els aimed to the design and tuning of feedback controllers for non-

stationary batch processes. The basic idea is to isolate the dynamics as-

sociated to the manipulated variable from the main time-variable behav-

ior that characterizes the operation, by taking the time evolution of a 

previous run as reference. One or more input-perturbed evolutions can 

then be compared to the previous dynamic pattern yielding referential 

reaction curves. This modeling approach cancels out most of the non-

stationary behavior, allows capturing the dominant manipulated-variable 

dynamics and the use of available tuning rules for integrating systems. 

The effectiveness of this procedure is illustrated by using a nonlinear 

model of a bioreactor that simulates the production of Xanthan gum.  
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INTRODUCTION 

Process control specialists have dedicated more time to the analysis, design and tuning 

of controllers for processes operating under stationary mode than for non-stationary processes 

like batch processes. Traditional methods for adjusting classic controllers like PI and PID 

assume they will be dedicated to disturbance rejection from a stationary state, or to setpoint 

changes if the process must go from one stationary state to another. This is the type of control 

task mostly expected when Ziegler-Nichols (1949), Cohen and Coon (1953), or more closely, 

when Rivera et al. (1986) or Chien and Fruehauf (1990) tuning rules are adopted. Traditional 

texts for teaching process control like Stephanopoulos (1984) and Seborg, et al. (1989) em-

phasize on dynamics of stationary processes. The references to modeling and control of batch 

processes or transient operations are sporadic or quite scarce. In this regard, it is frequent to 

find references to programmable logic controllers (PLC), or to the proportional control as the 

principal resource during start-up or shut-down �until the operation is close to the desired 

condition.� Hence, there is a need for determining practical tuning guidelines for industrial PI 

or PID controllers, not only for immediate commissioning but also to provide a reference per-

formance when more sophisticated control systems are analyzed.  

If a tuning technique is to be applied to any process encountered in practice, a method is 

required for obtaining numerical parameters that sufficiently describe the particular process to 

which the tuning technique is to be applied. Perhaps one of the easiest tests to perform on a 

typical stationary process is to determine the process reaction curve, i.e., the open-loop re-

sponse of the process to a step change in the controller output. This test continues to be very 

popular since not only many engineers are very familiar with it, but also because the method 

is particularly appealing when the dynamics of the main process including measuring sensor 

and final control element are poorly known. Of the methods available for setting controllers, 

those based on the process reaction curve have a tremendous advantage over others because 

of the simplicity and the easy with which the necessary experimental data can be obtained. 

This work proposes to extend the use of the process reaction curve and the application 

of some tuning rules, originally developed for �dynamics valid in the neighborhood of sta-

tionary operating points,� to operations �in the neighborhood of a reference transient evolu-

tion� like those occurring in chemical batch reactors. This extension is done by referencing 

the output response curve to the non-linear evolution the system follows during a standard or 

nominal run. The proposal tries to keep the simplicity expected by practitioners from model-



  

ing methods dedicated to designing and tuning plant controllers. In this article the application 

case is the temperature control of a batch bioreactor for the production of Xanthan gum, but it 

is perceptible that the procedure is applicable to numerous batch processes. The example is 

appropriated because it is desired not only to keep regulatory control, but also a reactor tem-

perature profile has to be maintained in order to reach the maximum product concentration at 

the end of the operation.  

In the next section, the fundaments of the proposed methodology are presented through 

the analysis of a general nonlinear representation of the dynamic system. After that, this arti-

cle describes the application example and the tracking control objective. It explains the adap-

tation of the auxiliary cooling/heating system, and the control setup required to achieve the 

desired tracking. The open-loop input trajectories used to model the dynamics associated to 

the manipulated variable are discussed, as well as available tuning rules for adjusting feed-

back controllers based on integrator-plus-time-delay process models. The remainder of this 

article is devoted to show the results obtained by simulating the closed-loop system during 

the set-point tracking routine. The nonlinear model used to simulate the bioreactor is pre-

sented in Appendix A, and a complementary linear analysis is presented in Appendix B that 

partially justifies the results obtained in this application. The finally section presents the 

conclusions of this work.  

REFERENTIAL PROCESS REACTION CURVE  

The outstanding feature of batch or semi-batch processes is that the operation starts at a 

given time instant, follows a sort of recipe, and stops when a given condition is reached. The 

operating condition changes during all this time, frequently following non-linear characteris-

tics that are hard to model. This type of behavior is very common during the operation of 

batch reactors or bioreactors in many pharmaceutical, biotechnological, chemical or food in-

dustries. 

Process engineers have frequently derived fundamental models for these batch proc-

esses, mostly for process design or simulation purposes. Since they never reach a stationary 

state and a continuous dynamic evolution is instead observed, it is not possible to apply the 

typical open-loop test to obtain the reaction curve that shows the effect of the manipulated 

variable on the process output. Consequently, the simple linear modeling approach for control 



  

design and tuning, available for stationary processes, have not been a common resource in 

these cases. 

It is intuitively acceptable that, in general terms, the dynamic characteristics mentioned 

before can be represented by  
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In a SISO system, y(t) is a single output variable, u(t) the control variable, and the di-

mension of the state vector x(t) allows to think in terms of a generic order n. Note that the 

way in which (1) represents the relationship with u(t) is quite consistent with most real 

chemical processes where actual manipulated variables are flowrates variables appearing as 

factors in convective nonlinear terms. 

Let us assume, that as part of the batch recipe, an specific u(t) = ur(t) input trajectory is 

available all along the operative time interval [ 0, tf ], i.e., a sequence of manipulated-variable 

changes are scheduled in order to approximately follow a desired convenient trajectory during 

the operation. This sort of open-loop tracking is frequently implemented using time-

programmable controllers to approach an acceptable time evolution that can be described by  
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Notice that the control input in Eqn. (1) can be adopted such that u(t) = ur(t) +∆u(t), 

where ∆u(t) is a known step change introduced at a given time t ∈  [ 0, tf ]. Then, the dynamic 

effect of u(t) can be isolated from the general system dynamics by observing the relative time 

evolution of the concerning variables. In other words, from the manipulated-variable view-

point, the system response is determined by  
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where ∆x(t) = x(t)-xr(t), ∆f(x,xr,t) = f(x,t)-f(xr,t) and ∆g(x,xr) = g(x)-g(xr). Observe that xr(t) 

and ur(t) in (3), are predetermined time functions, i.e., they are not time variables capable to 

react to process changes or disturbances occurring during the testing run.  



  

When working with batch processes, it is frequent that every state variable represents a 

real physical variable like temperature or concentration; this means that in many regular SISO 

control problems h{x(t)} is a very simple function providing some simplicity to (3). There are 

also no doubts that (3) can be rewritten in other convenient ways if a theoretical type of de-

velopment is intended. However, the interest here is to show an application-oriented type of 

result by simple inspection of the response ∆y(t) rather than an strict theoretical approach.  

In a batch reactor for instance, most of the variables of interest evolve due to an internal 

force-function term included in f(x,t). This internal force basically comes up from a source of 

free energy that remains with variable intensity during the whole operation and repeats itself 

from one run to the next one, with only minor changes due to many hardly controllable 

causes; this is basically what happens when the reactor temperature rises due to the released 

heat of reaction. Hence, it is expected here that even if this force function is the most impor-

tant term in f(x,t), the difference ∆f(x,xr,t) cancels out most of it. In addition, a significant can-

cellation of nonlinearities occurs in ∆g(x,xr) leaving only residual dynamics associated to the 

change ∆u(t). 

The claim in presenting this approach is that the above referential evolution for batch 

systems gives the same type of information than the process-reaction curve for stationary 

processes and leads to reduced-complexity models for designing and tuning feedback control-

lers. Besides, due to the non-self-regulating nature of most batch systems, it should not be a 

surprise to find out that the dominant dynamic corresponds to an integrating behavior. 

APPLICATION EXAMPLE 

In the majority of the model-based control schemes used in the chemical process indus-

try, reduced complexity models are generated to capture the most dominant dynamic of the 

process. Since a plant is generally of relatively high order, identification for controller design 

and tuning purposes means also a model reduction exercise. The temperature control of a 

batch bioreactor does not escape to this characteristic. 

In the following, the referential output response of a nonlinear simulator of a batch bio-

reactor for Xanthan gum production is determined as described in the previous section. The 

kinetics expressions describing the dynamic evolutions of biomass (X), product (P) and sub-

strate (S) are presented in Appendix A, as well as the two main energy balances; one for the 

matter in the reactor and the other for the cooling/heating service utility in the jacket. Previ-



  

ous investigations have determined that the optimal operation of this bioreactor follows a par-

ticular temperature profile in order to achieve maximum amount of product in a convenient 

time interval (Dondo, 2000). 

Temperature Control Setup 

Hence, the main objective for the control system is to track the temperature profile 

shown in solid line in Figure 1, since this allows reaching maximum product concentration 

after operating about thirty-five hours. Figure 1 also shows the natural temperature evolution 

when no cooling service is used all along the 35-hours run. When comparing these profiles, a 

conclusion is that not only cooling is necessary but also - since the reactor temperature rises 

slowly - a heating stage should be allowed. Hence, the reactor jacket is connected such to 

receive water at 15 or 80 degrees centigrade. The input of one or the other service is handled 

by a two-way valve, while the flowrate is regulated by a control valve like shown in Figure 2. 

In order to fit in this constrained setup, two PI controllers with anti wind-up devices are used; 

they work alternately depending on which type of control action is necessary: cooling or heat-

ing. The controller selection is made by comparing the error (difference between the set point 

and the reactor temperature) with a threshold (taken 0.1 in this case) that avoids switching 

controllers continuously. When the error changes sign, its absolute value must be larger than 

the threshold to change the control loop.  

The described setup, which belongs to the category of flexible-structure control sys-

tems, confers the physical possibility to achieve the desired tracking. However, it must be 

emphasized here that this is a secondary issue in this paper; the main concern is the appropri-

ate tuning of the feedback controllers in order to track the desired temperature profile. 

Referential Process Modeling 

As described before, the method basically consists on using a standard or nominal time 

evolution as reference dynamic to determine by contrast the effect of changing the manipu-

lated variable (the water flowrate in this example) on the controlled one (the reactor tempera-

ture). For instance, the open-loop temperature profile for wa = 0 shown in Figure 1 can be 

taken as reference trajectory, and the perturbed response can be the divergent response result-

ing from a single-step input change at any selected time instant. 



  

However, let us assume that a sequence of manipulated-variable movements like the 

one shown in Figure 3a is typically executed when running the process with the purpose of 

maintaining the reactor temperature (in Figure 3b) close to the most favorable set-point pro-

file. Then, let us take this input-output time evolution as the reference trajectory, i.e., as ur(t) 

and Tr(t) in equation (2) respectively. 

The use of the proposed open-loop response in Figure 3b is supported by the following 

reasons: i) the closer the output-reference trajectory is to the desired one, the smaller the 

model mismatch should be, and ii) both, the reference and the perturbed trajectories, should 

also be safe and economically acceptable runs. These arguments lead also to define time-

integral compensated input trajectories when dealing with integrating systems. Figures 4a and 

4b exemplifies the concept, where the arrows indicates the changes made to the input-

reference trajectory ur(t) to obtain the input-perturbed u(t). Note that the perturbed trajectory 

u(t) is designed such that the difference of accumulated energy is finally compensated. 

Figure 5a shows the net input changes ∆u(t), and Figure 5b shows the referential proc-

ess reaction curves or referential temperature evolutions determined by the difference be-

tween the perturbed responses T(t) and the reference Tr(t), i.e., assuming no other disturbance 

has occurred. This difference is the output response ∆y(t) of the referential dynamic system in 

Eqn. (3) to the input changes in Figure 5a. Each referential responses ∆y(t) allows to deter-

mine the slope and the delay from the reaction to the first step change as indicated in Figure 

6; these yield representative parameters values of the integrator/dead time process model 

( )
dT s
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p

K e
G s

s

−

="  .      (4) 

This way, the responses in Figure 5b allows to find Kp = -0.012 oC/(kg/h) and Td = 0.17 

h for the cold water, and Kp = 0.042 oC/(kg/h) and Td = 0.14 h for the hot water respectively. 

Although this is a quite simple result, it is consistent not only with the fact that the process 

reaction curve method has always been a practical model-reduction technique, but also with 

the naturally expected dynamic associated to a manipulated flowrate variable in a batch sys-

tem. Appendix B exposes the main assumptions that, from the fundamental model, are neces-

sary to accept (4) as an approximate transfer function for tuning purposes. 

Controller Tuning 



  

No too many references can be given that deal with tuning industrial PI or PID control-

lers for integrating plants. First, it is fair to mention that Seborg et al. (1989) remarks that the 

process reaction curve method can be used for both self-regulating and non-self-regulating 

systems. Hence, once the normalized slope S* and the time delay θ is determined from the 

curve, the Ziegler and Nichols (1942) tuning relations can be used for P, PI and PID control-

lers. In particular, for PI controllers:  Kc = 0.9/(θ S*) and TI = 3.33θ . Note that Kp = S* and Td 

= θ  in this article.  

Alternatively, Chien and Fruehauf (1990) propose tuning rules for PI and PID control-

lers using the IMC parameterization for several transfer functions representing process dy-

namics, in particular for time-constant dominant processes the authors suggest to approximate 

the model with an integrator plus time delay. This way, the controller designed based on this 

model maintains the controlled variable near the initial response operating region. 

Besides, Tyreus y Luyben (1992) use classical frequency response methods to propose 

an specific tuning rule to adjust the PI controller when the response of the process looks al-

most like the response of a pure integrator. The method basically yields the best settings 

achievable for a given degree of closed-loop damping, in particular for a maximum log 

modulus of +2 dB the following relations are determined: Kc = 0.487/(Kp Td) and TI = 8.75Td. 

More closely, Luyben (1996) extends the previous work with PI control to include the 

tuning of PID controllers; this three-mode alternative provides tighter control but requires the 

signals to be almost noise free.  

In this work, the settings given by Ziegler-Nichols are used for the feedback controllers 

of Figure 2. Although there are no changes in the jacket capacity, in the heat-exchange area or 

the actuator dynamics, the difference between controller settings comes up through the refer-

ential process reaction curves reveling different dynamic effects of the inlet-water tempera-

ture. Hence, the following parameter values for the PI controllers are determined: Kc = -441.2 

kg/h oC and TI = 0.56 h; and Kc = 153.0 kg/h oC, and TI = 0.46 h for cooling and heating du-

ties respectively.  

Closed Loop Simulation 

The control system sketched in Figure 2 is simulated using PI controllers adjusted as 

indicated above. To accomplish the simulation the bioreactor is represented by the nonlinear 

model detailed in Appendix A, taken as initial temperature conditions T(0) = Ta(0) = 28.5 oC, 



  

i.e., the service fluid in the jacket and the material in the reactor are at thermal equilibrium. 

All the control steps occurring along the simulated closed-loop batch evolution can be ob-

served in Figures 7a to 7c; in particular Figure 7b shows the effective cooling and heating 

periods since crossing points between jacket and reactor temperature are clearly determined. 

Since 28.5 oC is 0.2 oC lower than what is required by the desired profile, the first control 

action is a short heating for about 15 to 20 minutes. This is followed by a cooling period that 

lasts until the hour 24 approximately, when an important transition has to be done to obtain 

maximum gum production. At this point, the change to a reactor temperature close to 33 oC 

requires an important heating action that is interrupted only when the desired temperature is 

reached. From this point in ahead, cooling is again necessary to compensate the heat of reac-

tion. 

The robustness of this tuning approach in exposed in Figure 8a that compares the 

closed-loop reactor temperature evolution in Figure 7a with the closed-loop evolution ob-

tained when the inlet hot water is 70 oC instead of 80 oC from the beginning of the run. In 

addition, a step change from 15 oC to 20 oC is made in the cold water entering at t = 15 h. In 

fact, the major differences between theses runs are better observed by comparing the water 

flowrate variations in Figure 8b with those in Figure 7c. 

Furthermore, it is worth to mention that the overshoot observed after abruptly raising 

the reactor temperature is mainly due to the reset windup in the PI controller handling the 

cooling water. This undesirable effect is eliminated by using an antireset windup configura-

tion that temporarily halts the integral action (Riggs, 2001). Figure 9 shows the results of run-

ning under similar conditions to those corresponding to Figures 7a, but using antireset windup 

in both controllers.  

Finally, since occasionally the desired output profile might be modified due to operative 

reasons or to online optimization, the sensitivity to changes in the profile of Figure 1 was also 

evaluated. Figure 10 shows the response obtained by arbitrarily maintaining the setpoint in 

28.5 oC along the first 5 h, and then including two step changes to 29.5 oC and back to 28.5 
oC at the time instants 5 and 15 h respectively. After about 23 h, the setpoint trajectory is 

similar to the original one. 

Several questions remain to be answered in regard to the effectiveness of the proposed 

procedure. This paper discusses the main concepts from a practical point of view only, leav-

ing additional analysis and evaluations for a future work. Topics like the effect of noise or 



  

disturbances in the collected data, the sensitive to different input-reference sequences or the 

importance of online adaptation are significant issues that should be evaluated in several 

batch-process systems besides the bioreactor used in this work.  

CONCLUSIONS 

This paper proposes a referential process reaction curve method to identify dominant 

dynamics relating manipulated variables with outputs variables characterized by a permanent 

transition, as typically occurs in batch process systems. Following the same philosophy sup-

porting the traditional reaction curve method for stationary processes, this extension allows to 

determine reduced complexity models valid in the neighborhood of a reference evolution in 

processes that never reach a steady state. This way, the approach provides a simple modeling 

procedure for the systematic tuning of industrial PI or PID controllers that was still missing 

when facing control problems in transient processes or batch process operations. 

The proposed method was tested with a nonlinear simulator of a batch bioreactor where 

the control problem consists on tracking a predetermined temperature profile. The balance 

between the method simplicity and the performance obtained suggests the usefulness of the 

referential process reaction curve, for not only immediate implementations in low-level con-

trollers like exposed in this paper or as part of a hierarchical optimizing structure; it also pro-

vides a reference performance when more sophisticated control systems are analyzed. 
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APPENDIX A  
 
Nonlinear Model of the Xanthan-Gum Production 
 

The following are the fundamental relationships used for describing the Xanthan-gum 

production. The model uses the �logistic equation� for representing the biomass (X) kinetics, 

the �Luedeking-Piret equations� for the product (P), and the total substrate (S)  
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In this equations, cµ1, cµ2, Tminµ, Tmaxµ, ca1, ca2, Tmina, Tmaxa, ab, eb, are constant kinetic parame-

ters. KATP is the maintenance coefficient, P/O the oxidation level, kS the Monod coefficient, 

Scat represents the main substrate catabolism, YI/J stands for a stoichiometric yield of compo-

nent I on component J, and ATP stands for adenosine 5-triphosfate. A more detailed explana-

tion of this model can be found in Dondo (2000), and Shu and Yang (1990, 1991). The simu-

lations presented in this paper use the parameter values shown in Table 1. 

Energy Balances.  

The reactor energy balance is given by 

. .r r r a
dTm cp H Q
dt

= ∆ − ,      (A5) 



  

where mr is the mass in the reactor, cpr is the heat capacity of the material in the reactor, T 

stands for the reactor temperature, ∆Hr is the heat of reaction, Qa = UA.∆Tm is the energy 

given to the cooling fluid, ∆Tm = T - Ta is the overall temperature difference to the jacket 

fluid, and UA is the global heat transfer coefficient times the exchange area. The heat of reac-

tion is described based on the oxygen consumption QO2 (g O2 /h L ) as 

2 2
2

1( , ) ( , )r cat O cat O
O

H P S Q P S V
PM

λ∆ = ⋅ ⋅ ⋅ ,    (A6) 

where λo2 represents the released energy (kJ/mol O2), V stands for the reactor volume (L) and 

PMo2 the oxygen molecular weight (g O2/mol O2). Besides, the energy balance for the cooling 

water can be written as follows: 

    ( )oa
a a a a a a m

dTm cp w cp T T UA T
dt

= − + ⋅∆ ,    (A7) 

where Ta
o is the inlet temperature, Ta stands for the outlet temperature, ma is the mass of water 

in the jacket, wa is the mass flow rate, and cpa: the water heat capacity. 

 
APPENDIX B 
 

This appendix is aimed to highlight several hypothesis or simplifications indirectly as-

sumed when the referential reaction curve is used to approach a referential linear model, and 

to provide few considerations to improve the reliability of the representation. The analysis is 

based on the Xanthan gum bioreactor presented in Appendix A. Although the kinetics expres-

sions describing the dynamic evolutions of biomass (X), product (P) and substrate (S) should 

be included to consider the complete model, for the benefit of simplicity and because tem-

perature tracking control is only pursued, let us take merely those relationships arising from 

the energy balances. In other words, let us assume the expression (1) is given by  
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where x1 = T is the reactor temperature, x2 = Ta and u = wa are the jacket-side fluid tempera-

ture and flowrate respectively. Notice also that ∆Tm is approached here by T(t)-Ta(t) and since 

state variables P and Scat are not included, ∆Hr is assumed to be time dependent only. 

If the second term in equation (B1) is changed by a first order approximation to sepa-

rate the effects of wa and Ta, the referential process reaction (3) takes the linear form 
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where the heat-of-reaction term cancels out assuming it repeat itself from one run to the next 

one. The elements of matrix A are 
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matrix B = [ 0  b2 ]T, and C = [ 1  0 ] where 
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In these expressions,  aw and aT  stand for reference values used in the linear approxi-

mation of the second term. Applying Laplace transforms and rearranging, the following ex-

pression for the process reaction is obtained:  
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It is apparent that the most important assumption included to arrive at (B3) is that the 

exothermic heat generation is independent of the state-variable path. Hence, an extra term 

associated to expected inaccuracies in the above transfer function must be accepted. It can 

also be assumed that this mismatch increases proportionally to the amplitude of the deviation 

∆wa . This reasoning allows us to rewrite (B3) as 

( ) ( ) ( ) ( )p p aT s G s G s w s ∆ = + ∆ ∆ 
" " ,        (B4) 



  

where ( )pG s"  is the transfer function approximated by the referential process reaction curve. 

The expression (B4) suggests also that a set of experiments using different perturbed paths 

can help to determine limits to the model uncertainty.  

According to (B3), ( )pG s"  should be a second order transfer function, occasionally with 

a time delay included. However, if one of the two time constants is very large compared to 

the other one, the observed response might look as coming from an integral-plus-delay dy-

namic, particularly for relatively short times. This is the case for this bioreactor since under 

conditions determined by Tables 1 and 2, and for  aw  = 10 kg/h and aT  = 16-17 oC, one time 

constant is about 106 h while the other one is around 0.17 h. 



  

 

 
 
 
 
 

Table 1. Nonlinear model parameters 

Variable Value Variable Value 

cµ1  0.0405  h-1 oC-1 eb  -9580  oC-1 
cµ2  0.26  oC-1 X1  1.58  g/L 

Tminµ  11.69 oC X2  2.02  g/L 

Tmaxµ  35.17 oC T0  29.0  oC 
ca1  0.209  oC-1 KATP  0.7  h-1 
ca2  0.486  oC-1 P/O  1.3 
Tmina  20.44 oC kS  1.8  g/L 

Tmaxa  32.75 oC YX/ATP  10.5   g/g 
ab  1.61e+13  h-1 Y0

ATP  10.9  mol/mol 
YP/S  0.917  g/g YNADH2/P  3.58  mol/mol 
YX/S  1.78    g/g PMgum  906    g/mol 

 
 
 



  

 
 
 
 
 

Table 2. Main parameters of the bioreactor 

Variable Value 

mr   1000    kg       
cpr  3.55    kJ/ kg oC     
V  1000   L 
ma  210    kg       
cpa  4.18    kJ/ kg oC     
UA  4000    kJ/ hr oC    
Ta

o  15 - 80   oC          
λo2 451.44   kJ/mol 

 
 



  

Figure Captions 
 
 

Figure 1. The solid line shows the desired temperature evolution; the dashed line is the 
temperature evolution for null water flowrate in the jacket. 

Figure 2. Switching PI control system adopted for the bioreactor temperature-tracking 
problem. 

Figure 3a. Nominal input profile: the solid line shows the programmed sequence of cool-
ing-water flowrates; the dashed line shows the use of hot water. 

Figure 3b. Solid line: temperature profile obtained with the open-loop program shown in 
Figure 3a; the desired profile is shown in dashed line. 

Figure 4a. The arrows show two compensating changes made in the cooling-water 
flowrate.  

Figure 4b. The arrows show two compensating changes made in the heating-water 
flowrate.  

Figure 5a. Net input changes in the referential process system. 

Figure 5b. Referential process reaction curves obtained from the referential changes in Fig-
ure 5a. 

Figure 6. Typical referential process reaction curve and estimation of parameters. 

Figure 7a. Closed-loop tracking response obtained with the PI controllers adjusted using 
the referential process models and Ziegler-Nichols settings.  

Figure 7b. The solid line is the water temperature in the jacket; the dashed line is the reac-
tor temperature. 

Figure 7c. Control actions corresponding to the evolutions in Figures 7a and 7b. The solid 
line represents the cold-water flowrate, the dashed line is the hot-water flowrate.   

Figure 8a. The solid line shows the controlled temperature when a +5 oC load change at t = 
15 h is made in the cooling water, and the hot water is at 70 oC. The dashed line is the previ-
ous response in Figure 7a. 

Figure 8b. Control actions corresponding to the closed-loop response in Figure 8a. 

Figure 9. Closed-loop response obtained using anti-windup protection in both PI control-
lers. 

Figure 10. Controlled temperature following an arbitrary setpoint trajectory. 

 


