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Abstract
Background and Aims: Cyclooxygenase-2 (COX-2) is involved in different liver dis-
eases, but little is known about the significance of COX-2 in cholestatic injury. This 
study was designed to elucidate the role of COX-2 expression in hepatocytes during 
the pathogenesis of obstructive cholestasis.
Methods: We used genetically modified mice constitutively expressing human COX-2 
in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were 
either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) 
for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and 
its derived prostaglandins in liver function, and the synthesis and excretion of bile 
acids (BA) in response to cholestatic liver injury.
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1  |  INTRODUC TION

Cholestatic liver diseases are defined by an alteration of bile flow 
and are characterized by toxic retention of bile acids (BA) and other 
pathological features, including bile duct proliferation, proinflamma-
tory processes, cell death, oxidative stress, and fibrosis, culminating 
in liver failure.1 However, the liver has the remarkable capacity of 
generating an adaptive response to minimize the damage. To de-
crease toxicity, hepatocytes reduce the BA uptake and synthesis, 
transforming them into fewer toxic forms of BA, which facilitates 
urinary elimination.2 Currently, there is no specific treatment for 
cholestatic diseases due to poor knowledge of their pathogenesis.3 
Cholestasis-like features can be induced in rodents via surgical liga-
tion of the common bile duct (BDL),3 which results in similar changes 
to those found in human cholestasis.4

The classic BA synthesis is initiated from cholesterol by 
CYP7A1 (cholesterol 7α-hydroxylase). In humans, cholic acid (CA) 
and chenodeoxycholic acid (CDCA) are the primary BA synthe-
sized in the liver.5 In mice, the majority of CDCA is metabolized 
by CYP2C70 to α-muricholic acid (αMCA) which is epimerized to 
βMCA. Moreover, CYP2C70 also converts ursodeoxycholic acid 
to βMCA.6 A higher degree of hydrophilicity of the BA pool al-
lows enhanced renal clearance.7 After BDL, the levels of polyhy-
droxy-BA are markedly elevated, like several efflux pumps as a 
liver strategy for detoxification.8

Cyclooxygenases (COX-1, COX-2) are key actors in the biosyn-
thesis of prostanoids. Through the use of a genetically modified 
mouse model with a constitutive expression of human COX-2 in 
hepatocytes (hCOX-2-Tg), we have demonstrated that this COX-2 
expression protects against liver injury in several models,9–15 sup-
porting a protective role of COX-2 as a physiologic response against 
liver damage.

COX-2's effects on cholestasis have been controversial. 
Selective COX-2 inhibitor meloxicam reduces hepatic damage 

caused by BDL in rats.16 However, similar short-term use of ce-
lecoxib, another selective COX-2 inhibitor, is associated with pro-
longed cholestasis in humans.17 Moreover, it has recently been 
reported that prostaglandin E2 (PGE2) receptor EP4 deficiency 
leads to alterations in BA synthesis and plasma cholesterol levels18 
by modulation of CYP7A1.19 Also, it was reported that BA induce 
COX-2 in a cholangiocarcinoma cell line20 and that it can inhibit 
15-hydroxyprostaglandin dehydrogenase in colonocytes, leading 
to higher levels of PGE2.21 Apoptosis is a direct consequence of in-
trahepatic BA accumulation-derived injury,22 and oxidative stress 
is involved in this type of cell death during cholestasis. In this re-
gard, c-Jun N-terminal kinase (JNK) is a key factor in hepatic cell 
death derived from obstructive cholestasis.23 Additionally, COX-2 
expression and PGE2 production confer cytoprotection through 
a decrease in pro-apoptotic proteins and the proinflammatory 
response,10,11,24 as well as through the regulation of the antioxi-
dant response.11,14 All these data prompt us to elucidate the role 
of COX-2 in cholestasis using hCOX-2-Tg mice.9 Our results sug-
gest that COX-2 plays a hepatoprotective role against cholestatic 

Results: After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and in-
flammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associ-
ated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg 
mice displayed a differential metabolic pattern of BA synthesis that led to an improved 
clearance after BDL-induced accumulation. In addition, an enhanced response to the 
BDL-induced oxidative stress and hepatic apoptosis was observed. In  vitro experi-
ments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective 
role of prostaglandin E2 against BA toxicity.
Conclusions: Taken together, our data indicate that constitutive expression of COX-2 
in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation 
and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a 
defensive response against cholestasis-derived BA accumulation and injury.

K E Y W O R D S
BDL, bile acids, cholestasis, COX-2, liver, PGE2

Key points

•	 hCOX-2 trasngenic mice have attenuated hepatic injury 
after bile duct ligation.

•	 Continuous liver prostaglandin E2 production plays a 
protective role against cholestatic injury.

•	 Cyclooxygenase-2 (COX-2) enhances anti-inflammatory, 
anti-oxidant and anti-apoptotic responses.

•	 COX-2 expression attenuates injury by modulating bile 
acids homeostasis.

•	 Pharmacological induction of COX-2 can attenuate 
cholestatic injury.
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    |  3BREA et al.

injury by modulating inflammatory and anti-oxidative responses, 
cell death, BA synthesis and metabolism.

2  |  MATERIAL S AND METHODS

2.1  |  Chemicals

The antibodies were obtained from Abcam (Cambridge, UK), 
Cayman (Ann Arbor, USA), Cell Signaling Technology (Danvers, 
USA), Santa Cruz Biotechnology (Dallas, USA), Calbiochem/Merck 
Millipore (Billerica, USA), and Enzo Life Sciences (Farmingdale, USA). 
Reagents used for Western Blot (WB) were purchased from Bio-Rad 
(Hercules, USA).

2.2  |  Animal experimentation

Six to eight-week-old male hCOX-2-Tg and Wt sibling mice with 
mixed genetic backgrounds (B6D2JRccHsd) were used.9 Only 
male mice were used in procedures to avoid hormonal modulation 
of endogenous prostaglandin levels. Mice were kept in cycles of 
12 h of light/dark in temperature (22°C) and humidity-controlled 
rooms, fed standard chow diet ad libitum, and with free access to 
drinking water. To induce cholestasis, animals were subjected to 
bile duct ligation (BDL) as described previously.25 After surgery, 
all mice were given a therapeutic dose of around 60 mg/kg/day 
of acetaminophen (APAP) (Merck-Sigma Aldrich, St. Louis, USA) 
mixed in the drinking water as postoperative analgesia until eu-
thanasia. At this dose, no modulation of COX-2 expression has 
been observed in rodents.26 We chose two-time points post-BDL 
and corresponding sham-operated controls to study the effect of 
COX-2 expression. The selected time frames were 2 and 5 days, to 
evaluate its effect on acute inflammatory damage and peak of re-
generation, respectively. Our prior research has shown that COX-2 
has a cytoprotective effect in both scenarios.12,14,27 Two or five 
days after BDL, mice were euthanized. Blood was collected from 
cardiac puncture and processed for biochemical parameters. The 
liver was immediately frozen in liquid nitrogen and stored at −80°C 
or fixed with 4% paraformaldehyde (PFA) for subsequent analy-
sis. Animal experimentation was conducted in compliance with 
FELASA guidelines, European Community Law (2010/63/UE), and 
Spanish Law (RD 53/2013). The Ethics Committee of the Bioethics 
Commission of the CSIC, Spain approved the research.

2.3  |  Immunohistochemistry

Paraffin-embedded mice liver biopsy sections (5 μm), fixed in 4% 
PFA overnight at 4°C, were stained with haematoxylin and eosin, 
and then evaluated by a single blinded hepatohistologist (M.E.F.). For 
immunofluorescence, liver samples were also transferred to 10%, 
20%, and 30% sucrose in PBS at 4°C until tissue sunk and embedded 

in OCT. Cryosections (5 μm) were stained with anti-lymphocyte 
antigen 6 complex locus G (Ly6G)/6C or multidrug resistance pro-
tein 3 (MRP3)/ABCC3 antibodies (Table  S1). Then, they were in-
cubated with goat anti-rat Alexa Fluor 546 (A11081, Invitrogen 
(Thermofisher Scientific, USA); 1/200) or donkey anti-rabbit Alexa 
Fluor 647 secondary antibody (A31573, Invitrogen; 1/200), respec-
tively, and counterstained with DAPI (D1306, Invitrogen; 1/1000). 
Random fields (3 per mouse) were collected using a Leica PCS-SP5 
confocal microscope and positively stained cells were analysed using 
ImageJ software (NIH).

2.4  |  Biochemical blood and hepatic assays

The levels of total bilirubin, total cholesterol, ALT (alanine ami-
notransferase), and AST (aspartate aminotransferase) were meas-
ured in plasma, and total BA in urine, using specific colorimetric 
kits according to the manufacturer's instructions (BioSystems, 
Barcelona, Spain).

In addition, we performed a more exhaustive analysis of the 
different types of BA (total, primary, secondary, conjugated, non-
conjugated and hydrophilic, α-, β-, and ω-muricholic acid) in plasma 
and liver tissue from Wt and hCOX-2-Tg mice. Samples were analysed 
at the Analytical Unit of the Instituto de Investigación Sanitaria La Fe 
(Valencia, Spain) using a UPLC-MRM-MS method validated accord-
ing to FDA guidelines that allow the determination of 31 different 
BA.28 All metabolomic data have been openly deposited in DIGITAL.
CSIC (Casado, Marta; 2022; “Total data_BA [dataset]”; DIGITAL.
CSIC; 10.20350/digitalCSIC/14755).

2.5  |  Culture of hepatocyte cell lines

We used immortalized neonatal hepatocyte cell lines with (NCL-C) 
or without (NCL-V) human COX-2 expression.11,29 Cells were main-
tained in DMEM complete medium supplemented with 10% fetal 
bovine serum (FBS), in a 5% CO2 humidified atmosphere, at 37°C. 
For the experiments, cells were seeded in 6-well plates (400 000 
cells/well) or 96-well plates (10 000 cells/well), the FBS was with-
drawn and, 2–5 h later, they were treated with chenodeoxycholic 
acid (CDCA 10, 100 or 250 μM prepared in EtOH) for 3 h (protein 
assay) or 24 h (MTT assay). In the protein assays, NCL-C cells were 
pre-treated with 5 μM (5,5-dimethyl-3(3-fluorophenyl)-4-(4-meth
ylsulfonyl)phenyl-2(5H)-furanone) (DFU) for 4 h prior to FBS with-
drawal, continuing the treatment for 90 min before the addition of 
250 μM CDCA.

2.6  |  MTT (thiazol blue tetrazolium blue) assay

NCL-V and NCL-C cells were seeded in 96-well plates (10 000 cells/
well). After adding CDCA for 24 h, cells were washed with PBS and 
100 μL of complete medium were added. After incubation, 20 μL of 
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MTT solution (2 mg/mL) was added to the cells, which were then 
incubated for 3 h at 37°C in the dark. Finally, 100 μL of DMSO were 
added, and the absorbance was measured at 570 and 630 nm.

2.7  |  RNA extraction and quantitative polymerase 
chain reaction analysis

Total RNA from liver samples was extracted using TRIzol reagent 
(Thermofisher Scientific) according to the manufacturer's instruc-
tions. RNA (250 ng) was reverse transcribed with the High Capacity 
cDNA Reverse Transcription Kit. Quantitative PCR (qPCR) was 
performed using 5 or 50 ng of cDNA, Power SYBR Green Master 
Mix, and specific primers (Table  S2). Amplification was conducted 
in a 7900HT Fast-Real Time PCR System (Life Technologies/
Thermofisher). The PCR cycles included an initial denaturation for 
10 min at 95°C, followed by 40 cycles of 15 s at 95°C and 1 min at 
60°C. A dissociation curve was performed to confirm the specificity 
of the PCR products, consisting of 15 s at 95°C, 15 s at 60°C, and 
15 s at 95°C. Data analysis is based on the 2−ΔΔCt method with nor-
malization of the raw data to the housekeeping gene hypoxanthine 
phosphoribosyl transferase 1 (Hprt1). Each sample was analysed in 
triplicate.

2.8  |  Homogenization and preparation of tissue 
extracts and western blotting

Liver tissue and NCL cells were homogenized in ice-cold lysis buffer 
containing .5% CHAPS, 10 mM Tris–HCl; pH 7.5, 1 mM MgCl2, 1 mM 
EDTA, 10% glycerol and protease and phosphatase inhibitors (5726, 
P0044, P8340, Merck-Sigma Aldrich) and cleared by centrifuga-
tion. Protein determination was performed by the Bradford dye 
method. Cytosolic and nuclear extracts were prepared as previously 
described.12

Protein extracts (14–30 μg) were boiled with Laemmli buffer and 
then separated by 8%–12% SDS-PAGE. Proteins were transferred 
to a polyvinylidene fluoride membrane (PVDF), blocked using 5% 
non-fat dried milk in PBS, and then incubated with primary antibod-
ies (Table  S1) overnight at 4°C. Then, membranes were incubated 
with the corresponding peroxidase-conjugated secondary anti-
bodies for 1 h at RT. Immunoreactive bands were visualized using 
the ImageQuant LAS 500 (GE Healthcare Bio-Sciences, Uppsala, 
Sweden). The densitometric analysis was carried out with the ImageJ 
software.

2.9  |  Data analysis

Statistical analysis was performed using one-way ANOVA followed 
by Fisher's LSD post hoc test, Kruskal–Wallis or t-Student test, as ap-
propriate. The results were expressed as the mean ± standard error 
(S.E.M.) of at least four-six animals/three independent experiments. 

The software used was InfoStat v2017.1.2, with p < .05 as the level 
of significance.

3  |  RESULTS

3.1  |  Constitutive hepatic COX-2 expression in 
hCOX-2-Tg mice protects against BDL-associated 
cholestatic damage

To investigate the impact of COX-2 expression on BDL-associated 
cholestatic damage, we utilized our previously described transgenic 
hCOX-2-Tg mouse model (Figure  1).12 Wt mice showed extensive 
liver cell necrosis with chromatin condensation, organelle swelling, 
and cell membrane disruption at 2 and 5 days after BDL. This was 
significantly reduced in hCOX-2-Tg mice (as shown in Figure 1A) and 
confirmed by necrosis extent quantification (Figure 1B). According 
to the histological analysis, ALT levels were significantly elevated 
due to BDL intervention. However, in hCOX-2-Tg mice, ALT levels 
were markedly lower after 5 days of BDL (Figure  1C). In addition, 
these animals showed a tendency to decrease the accumulation of 
total bilirubin (Figure 1D). Overall, these data suggest the existence 
of effective cell defence mechanisms in hCOX-2-Tg mice against 
cholestatic damage. Moreover, after BDL, we found no differences 
in liver/body weight ratio between genotypes, or in human COX-2 
protein expression levels in the transgenic mice (Figure S1).

3.2  |  The inflammatory injury induced by BDL 
is attenuated by hepatic constitutive expression of 
COX-2 in mice

Hepatocellular necrosis derived from BDL is accompanied by an in-
tense inflammatory response.30 Figure  2 shows the protective ef-
fect that the constitutive expression of COX-2 exhibits against the 
BDL-elicited inflammatory response. In this regard, Figure  2A de-
tails hepatic mRNA levels of proinflammatory cytokines involved 
in hepatocellular injury, such as tumour necrosis factor α (TNF-α), 
interleukin 6 and interleukin 1β (IL-1β). Constitutive COX-2 expres-
sion seems to attenuate the increase of mRNA levels found 2 days 
post-BDL. Consistently, higher mRNA levels of Adgre1 (encoding for 
F4/80), a macrophage/monocyte surface marker, were found in Wt 
mice 5 days post-BDL compared to hCOX-2-Tg mice.

The nuclear factor-κB (NFκB) signalling pathway is a key compo-
nent in the progression of cholestatic injury.30 We found an import-
ant increase in nuclear p65 localization in Wt BDL mice, suggesting a 
strong NFκB pathway activation, while this effect was suppressed in 
hCOX-2-Tg mice (Figure 2B).

Additionally, at the earlier time point post-BDL (2 days), the im-
munofluorescence and confocal microscopy analysis showed higher 
levels of infiltrating lymphocyte antigen 6 complex locus G-positive 
(Ly6G+) cells (a neutrophil plasma membrane biomarker) in Wt mice 
when compared to hCOX-2-Tg mice (Figure 2C).
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3.3  |  COX-2 expression attenuated hepatic 
cholestatic damage by an enhancement of the 
antioxidant, cell survival, and regenerative response

It is well known that alterations of anti-oxidant defences occur in 
cholestatic liver diseases.30 As shown in Figure 3A, hCOX-2-Tg mice 
showed an enhanced anti-oxidant response against cholestatic dam-
age. In this regard, Western blot analysis shows that at 5 days post-
BDL there is an increased level of protein expression of superoxide 
dismutase 2 (MnSOD) and catalase in hCOX-2-Tg mice livers when 
compared to Wt counterparts.

BA-induced toxicity mechanisms involve not only oxidative 
stress but also endoplasmic reticulum (ER) stress.31 In this regard, 
we found that Ddit3 (encoding for C/EBP homologous protein) was 

significantly affected only in Wt mice 2 days post-BDL, whereas 
Hspa5 (encoding for glucose-regulated protein 78) showed no mod-
ifications (Figure S2).

Protein expression levels of some important mediators of the 
cellular death/proliferation balance were analysed 5 days post-
BDL, which corresponds to the peak of the hepatic regenerative 
response.1 In our model, an attenuated activation of the JNK path-
way (Figure 3B) and a lower level of the BCL-2-associated X protein 
(BAX/BCL-2) ratio (Figure 3C) were found in hCOX-2-Tg mice after 
BDL, suggesting a better anti-apoptotic response in these livers 
against cholestatic injury. In line with this, hCOX-2-Tg mice showed 
an enhanced regenerative and cytoprotective response, evidenced 
by higher activation of the AKT pathway (Figure 3D). It was demon-
strated that treatments that attenuated BDL-associated liver injury 

F I G U R E  1  hCOX-2-Tg mice are 
protected against cholestatic-induced liver 
damage after BDL. (A) Representative 
images of H&E staining performed on 
sections of livers from Wt and hCOX-2-Tg 
mice, after Sham and 2 or 5 days after 
BDL surgery. (B) Necrotic area per field 
(expressed in %) (C) Plasmatic ALT and 
AST levels (expressed in international 
units per litre, U/L) in all experimental 
groups. (D) Total plasmatic cholesterol 
(expressed in mg/dL) and bilirubin levels 
(expressed in μmol/L) from Wt and hCOX-
2-Tg mice, after Sham and 2 or 5 days after 
BDL surgery. Data are represented as the 
mean ± S.E.M. (n = 4–6 mice per group). 
*p < .05 versus Wt Sham; #p < .05 versus 
Wt BDL. BDL, bile duct ligation; H&E, 
hematoxilyn and eosin.
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enhanced hepatocyte proliferation, with upregulation of genes such 
as cyclin D1.32 In our model, at 5 days post-BDL we found a higher 
nuclear level of cyclin D1 in hCOX-2-Tg mice (Figure 3E) suggesting a 
more accelerated tissue regeneration in the livers of these animals. 

These data are consistent with the histological analysis that found 
a considerable increase of mitotic figures only in the hepatic paren-
chyma of hCOX-2-Tg mice (Figure  S3) and suggested effective de-
fence mechanisms.

F I G U R E  2  hCOX-2-Tg mice showed an attenuated inflammatory response after BDL. The data analysed is from Wt and hCOX-2-Tg mice, 
after Sham and 2 or 5 days post-BDL. (A) Liver mRNA expression of Il6 (encoding for IL-6), Il1b (encoding for IL-1β), Tnf (encoding for TNF-α) 
and Adgre1 (encoding for F4/80) was analysed by RT-qPCR. Values have been normalized with Hprt1 mRNA, and expressed as fold increase 
(F.I.) versus Wt Sham (n = 4–6 mice per group). (B) Representative Western blots showing nuclear p65 protein levels in nuclear liver extracts. 
Lamin B levels were used as loading control (n = 4–6 mice per group). The graph depicts densitometric quantifications of the indicated 
protein levels. (C) Representative images of anti-Ly6G/6C staining performed on various liver cryosections. Data are represented as the 
mean ± S.E.M. *p < .05 versus Wt Sham; #p < .05 versus Wt BDL. BDL, bile duct ligation.

F I G U R E  3  hCOX-2-Tg mice showed 
enhanced anti-oxidative, anti-apoptotic 
and proliferative responses against BDL-
induced liver injury. The data analysed is 
from Wt and hCOX-2-Tg mice, after Sham 
and 5 days post-BDL. (A-E) Representative 
Western blots showing MnSOD, Catalase 
(A), P-JNK/JNK (B), BAX, BCL-2 (C), 
P-AKT/AKT (D) and nuclear CYCD1 (E) 
protein levels in liver extracts. Their 
respective total protein, BCL-2, vinculin 
or lamin B levels were used as loading 
control. The graphs depict densitometric 
quantification of the indicated protein 
levels. Data are represented as the 
mean ± S.E.M. (n = 4–6 mice per group) 
*p < .05 versus Wt Sham; #p < .05 versus 
Wt BDL. BDL, bile duct ligation.
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8  |    BREA et al.

3.4  |  COX-2 expression is involved in the 
modulation of the synthesis of different bile acids (BA)

We set out to analyse the effect of the hepatic constitutive ex-
pression of COX-2 on BA synthesis (Figure 4). For this purpose, we 
quantitatively measured plasmatic and hepatic levels of several BA 
by UPLC-MS analysis. Hepatic and plasmatic levels of primary and 
secondary BA found post-BDL were higher compared to sham con-
ditions, confirming the establishment of the model.7 hCOX-2-Tg mice 

showed lower total BA levels in plasma at 5 days post-BDL (Figure 4A), 
and in the hepatic tissue at 2 and 5-days post-BDL (Figure 4B). The 
analysis of the amounts of primary and secondary BA in liver sam-
ples revealed that increased toxic accumulation of BA occurring in 
Wt mice is preponderantly due to increased levels of primary ones 
(Figure 4C). Likewise, we found no differences in the levels of second-
ary BA between Wt and hCOX-2-Tg groups after BDL (Figure 4C). This 
prompted us to analyse Cyp7a1 mRNA and protein levels 5 days after 
BDL. We found increased Cyp7a1 mRNA levels of Wt mice post-BDL 

F I G U R E  4  Total bile acids levels in 
Wt and hCOX-2-Tg mice, after Sham and 
2 or 5 days after BDL surgery. Levels of 
bile acids (BA) quantified by UPLC and 
MS analysis. Plasma (A) and hepatic (B) 
levels of total BA, expressed in nmol/L 
(A) or nmol/kg (B). (C) Total hepatic 
levels of primary, secondary, conjugated 
and non-conjugated BA, expressed in 
nmol/kg. (D) Liver mRNA expression 
of Cyp7a1 was analysed by RT-qPCR. 
Values have been normalized with Hprt1 
mRNA, and expressed as fold increase 
(F.I.) versus Wt Sham. (E) Representative 
Western blots showing CYP7A1 protein 
levels in liver extracts. Vinculin levels 
were used as loading control. The graph 
depicts densitometric quantifications 
of the indicated protein levels. Data are 
represented as the mean ± S.E.M. (n = 4–6 
mice per group). *p < .05 versus Wt Sham; 
#p < .05 versus Wt BDL. BDL, bile duct 
ligation.
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    |  9BREA et al.

(Figure 4D), which explains the increased levels of primary BA by an 
enhanced synthesis from cholesterol. In hCOX-2-Tg animals, this in-
duction was attenuated, helping to maintain the lower hepatic levels 
of toxic BA found in this group. The analysis of CYP7A1 protein levels 
(Figure 4E) confirmed the profile found in the mRNA levels. In line with 
this data, only in Wt livers, mRNA levels of Fxr, Fgfr4 (negative regula-
tors of Cyp7a1), and Bsep (Fxr direct target gene) were diminished after 
BDL, confirming the above-mentioned observations (Figure S4).

3.5  |  The constitutive hepatic expression of COX-2 
promotes the formation of more hydrophilic bile salts

Considering the significance of BA's hydrophilicity in the context 
of obstructive cholestasis, we have examined the content of more 
hydrophilic bile salts (Figure 5). In this regard, we found that hCOX-
2-Tg mice showed a greater amount of more hydrophilic BA (αMCA 
and βMCA) in plasma after BDL (Figure 5A). Likewise, the levels of 
these BA increased significantly in liver samples after BDL in both 
genotypes, but Wt mice showed higher levels after 5 days, contribut-
ing to the high levels of accumulated BA observed in this genotype 
(Figure  5B). In this sense, higher levels of these BA in the plasma 
of hCOX-2-Tg mice post-BDL is consistent with an improved hepatic 
clearance of these BA in this genotype. In line with this, and after 
BDL, we found a decrease of Cyp2a70 mRNA levels (essential in the 
biosynthesis of αMCA, βMCA) only in Wt mice while this drop was 
found attenuated in the livers of hCOX-2-Tg animals (Figure 5C).

3.6  |  Constitutive COX-2 expression enhances the 
induction of the basolateral transporter MRP3 
after BDL

Under cholestatic conditions, the cellular defensive response in-
volves the induction of several ATP-dependent export pumps lo-
cated in the basolateral membrane as MRP3. In our model (Figure 6), 
we found that after 5 days post-BDL, Abcc3 gene expression (en-
coding for MRP3) was induced in both genotypes (Figure 6A), but 
only in hCOX-2-Tg animals, the protein expression was significantly 
increased (Figure  6B). Confocal microscopy analysis (Figure  6C) 
confirmed basolateral membrane localization. In addition, it was ob-
served that transgenic animals had notably higher levels of urinary 
BA as compared to Wt BDL mice (Figure S5). This, along with the in-
crease in MRP3 content in the basolateral membrane, indicates that 
the lower levels of BA found in the plasma and liver of transgenic 
animals after BDL are partly due to improved renal clearance.

3.7  |  COX-2 expression in NCL cells protects from 
damage caused by the accumulation of CDCA

We next investigated whether COX-2 could protect hepatocytes 
from BA toxicity in vitro (Figure 7). We tested the effect of CDCA 

treatment on a neonatal hepatocyte immortalized line express-
ing hCOX-2 (NCL-C) vs control line (NCL-V)11,29 NCL cell lines were 
treated with CDCA at sub-cytotoxic (10 and 100 μM) concentra-
tions. We found that 100 μM CDCA treatment for 24 h reduced the 
viability of NCL-V cells significantly compared to the NCL-C cells 
(Figure  7A). To analyse the pathways involved in this effect, cells 
were treated with cytotoxic concentrations of CDCA (250 μM) for 
3 h. As shown in Figure 7B, the presence of hCOX-2 prevents the 
increase in cleaved caspase 3 and JNK activation observed in NCL-V 
cells after CDCA treatment. Furthermore, when we use a specific 
COX-2 inhibitor, DFU, this protection against apoptosis seems to be 
attenuated. These data suggest that COX-2 expression and activity 
protect hepatocytes from damage caused by CDCA accumulation.

4  |  DISCUSSION

During the cholestatic process, hepatic accumulation of BA inevi-
tably leads to cell death. However, the liver has an extraordinary 
regenerative capacity aimed at restoring parenchymal damage 
and, during a cholestatic injury, several adaptive mechanisms are 
activated in an attempt to attenuate BA accumulation and protect 
hepatocytes from damage. This aim is mainly achieved by modulat-
ing BA synthesis and inducing basolateral export pumps that allow 
urinary excretion as an alternative route of clearance.33 We used our 
hCOX-2-Tg transgenic mouse model with a hepatic-specific COX-2 
constitutive expression to study its role in a cholestatic context. Our 
data reveal that hCOX-2-Tg mice were significantly less susceptible to 
cholestatic injury, as evidenced by reduced ALT levels and necrosis 
grade after BDL.

The inflammatory response bears a main role in the pathogenesis 
of several human diseases, and NF-κB-mediated inflammatory re-
sponse has been associated with several animal models of cholesta-
sis, including BDL.30 The constitutive expression of COX-2 was able 
to attenuate the increase of pro-inflammatory cytokines and NF-κB 
activity. Also, hCOX-2-Tg livers presented lower levels of macrophage 
markers and diminished neutrophil infiltration after BDL, contribut-
ing to ameliorate cholestatic-derived cell damage. These data are in 
line with previous work, where lower levels of inflammatory mark-
ers and reduced hepatic leukocyte recruitment and infiltration were 
found in hCOX-2-Tg mice upon hepatic injury derived from different 
insults.12,14,24

Chronic liver injury that follows BDL is characterized by an in-
crease in the hepatic oxidative damage that has been detected in 
obstructive cholestasis both in rodents and humans.34,35 It has been 
largely demonstrated that anti-oxidant response activation has a 
beneficial role in cholestatic liver injury.36–38 As other authors re-
ported,39 we found a significant decrease in MnSOD and catalase 
expression levels in Wt mice, but conversely, hCOX-2-Tg livers are 
more resistant to BDL-associated oxidative stress, in part, by an in-
creased expression of these enzymes.14

In cholestasis, dead liver cells are usually present in a ne-
crotic form, but it was reported that malfunctioning programmed 
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10  |    BREA et al.

cell death is another hallmark of the disease.40 In this regard, 
neutrophil-derived reactive oxygen species leads to mitochon-
drial dysfunction, activation of MAP kinases and apoptosis.1 We 
proved that COX-2 expression reduces cholestasis-induced liver 
injury by blunting JNK activation. Also, the attenuated BAX/
BCL-2 ratio found in hCOX-2-Tg mice after BDL, agrees with this 
reported effect of COX-2 induction against hepatic insult.9,11,14 
In line with these data, we performed in vitro experiments which 
demonstrated that COX-2 enzymatic activity specifically pre-
vented P-JNK activation and caspase-3 cleavage, pointing out its 
role against BA-induced apoptosis.

On the other hand, it is well known that after BDL, the conse-
quent hepatocellular injury leads to gene activation and the initia-
tion of the regenerative response with a hepatocellular proliferation 
peak 5 days post-surgery.2 COX-2 has a key role in hepatocyte 
proliferation after partial hepatectomy27 or several other types of 
hepatic injuries.9,24 Here, we found that hCOX-2-Tg mice not only 

have an attenuated activation of pro-apoptotic pathways but also 
an enhanced cell survival/proliferation response against cholestatic 
damage. It is known that the AKT pathway is a target of PGs.41 AKT 
phosphorylation is enhanced in hCOX-2-Tg mice liver post-BDL, thus 
indicating a reinforcement of survival pathways as was described 
by us and others in several models of liver damage.10,11,24,41,42 
Additionally, an enhanced proliferative response to BDL is reached 
by COX-2 expression, mainly by inducing cyclin D1 nuclear levels, as 
seen in physiological27 and metabolic liver stress.11

In rodents, there is a paradoxical stimulation of CYP7A1 post-
BDL, and the consequent primary BA synthesis and accumulation.43 
We found that hepatic Cyp7a1 mRNA level and protein expression 
were increased by BDL in Wt mice, and that those levels are signifi-
cantly lower when COX-2 was constitutively expressed. This atten-
uated response was confirmed through the analysis of the negative 
regulators of Cyp7a1 Fxr, Bsep or Fgfr4. Interestingly, this protective 
effect afforded by modulation against BDL-induced expression 

F I G U R E  5  Hydrophilic muricholic 
acids (αMCA and βMCA) plasmatic levels 
are enhanced in hCOX-2-Tg livers 5 days 
post-BDL surgery. The data analysed 
is from Wt and hCOX-2-Tg mice, after 
Sham and 5 days after BDL surgery. 
(A) Concentration of the hydrophilic 
bile acids (BA) αMCA and βMCA in 
plasma (expressed in nmol/L). (B) The 
concentration of αMCA and βMCA in liver 
tissue (expressed in nmol/kg). (C) Liver 
mRNA expression of Cyp2c70 analysed by 
RT-qPCR, values have been normalized 
with Hprt1 mRNA, and expressed as fold 
increase (F.I.) versus Wt Sham. Data are 
represented as the mean ± S.E.M. (n = 4–6 
mice per group) *p < .05 versus Wt Sham; 
#p < .05 versus Wt BDL. BDL, bile duct 
ligation.

 14783231, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/liv.16004 by C

O
N

IC
E

T
 C

onsejo N
acional de Investigaciones, W

iley O
nline L

ibrary on [10/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11BREA et al.

of Cyp7a1 seems to be a common mechanism of other protective 
agents.37

After BDL, and as a compensatory response, BA became 
more hydrophilic in mice livers, mainly because of increased 6β-
hydroxylation catalysed by CYP2A70.7 After BDL, hCOX-2-Tg mice 
showed a less cytotoxic BA pool and a concomitant improvement in 
clearance due to increased hydrophilicity are achieved in the face of 
BDL injury. Interestingly, and in concordance with our data, a previ-
ous report showed that CYP2C70 was decreased in male mice liver 
when treated with ibuprofen, a COX inhibitor,44 suggesting a COX-
2-dependent modulation of this pathway.

During cholestasis, MRP3 expression is markedly increased as 
a protective response against hepatic BA accumulation.33 Indeed, 
we observed a remarkable increase in hepatic tissue levels from 

hCOX-2-Tg animals. As far as we know, this is the first report that 
links COX-2 expression with MRP3 induction and acceleration of 
BA excretion during cholestasis. Accordingly, there is evidence 
that the induction of MRP3 depends on the anti-oxidative re-
sponse,8 and indeed we know that the latter depends on the in-
duction of COX-2 and its derived prostanoids in different models 
of liver damage.14,45

Taken together, our data clearly show that constitutive COX-2 
expression in the hepatocyte attenuates BDL-derived cell injury 
via multiple mechanisms (summarized in Figure  8), as previously 
described in several models of liver insults.10,11,14,24,27 In the pres-
ence of COX-2, there is a protective effect that is afforded in several 
ways: through the production of hepatoprotective prostaglandins,9 
promoting tissue regeneration,46 by regulation of proinflammatory 

F I G U R E  6  Hepatic COX-2 expression 
induces MRP3 protein levels and 
basolateral localization after BDL. The 
data analysed is from Wt and hCOX-2-Tg 
mice, after Sham and 2 or 5 days after 
BDL surgery. (A) Liver mRNA expression 
of Abcc3 (encoding for MRP3) was 
analysed by RT-qPCR. Values have been 
normalized against Hprt1 mRNA, and 
expressed as fold increase (F.I.) versus 
Wt Sham. (B) Representative Western 
blots showing MRP3 protein levels in 
liver extracts. Vinculin levels were used 
as loading control. The graph depicts the 
quantification of the indicated protein 
levels. (C) Representative images of 
anti-MRP3 staining performed on various 
livers cryosections showing basolateral 
localization. Data are represented as the 
mean ± S.E.M. (n = 4–6 mice per group) 
*p < .05 versus Wt Sham; #p < .05 versus 
Wt BDL. BDL, bile duct ligation; COX-2, 
cyclooxygenase-2.
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12  |    BREA et al.

cytokines, which aids in tissue recovery by driving resolution of in-
flammation, and enhancing a pro-survival and anti-oxidant response 
against injury.12,14 Moreover, we showed that hCOX-2-Tg mice have 
a differential metabolism of BA, enhancing hydrophilic BA produc-
tion and hepatic extrusion by induction of basolateral transporters 
expression.

Based on a transgenic approach, we propose that the induction 
of COX-2 expression observed in cholestatic diseases47 or post-
BDL,16 acts as a physiological defensive response. BDL surgery has 
been found to provide protection against damage and induce a va-
riety of factors post-surgery. Studies have shown that BDL inhibits 

TNF-α-induced hepatocyte apoptosis by activating the AKT path-
way48 Additionally, mice who underwent BDL showed considerable 
protection against ischemic liver injury by attenuating neutrophil 
infiltration and NF-κB activation.49 The defence mechanisms acti-
vated through AKT and NFκB pathways in these circumstances are 
similar to those dependent on COX-2 induction.14,24 Our results 
shed new insights into a possible protective mechanism of COX-2 
induction against cholestatic injury. In fact, recently it has been sug-
gested the therapeutic use of TNF-α/IL-1β-licensed human adipose 
tissue-derived stem cells that attenuate cholestatic liver injury by 
upregulating COX-2 expression and PGE2 production.50 Herein, our 

F I G U R E  7  Constitutive COX-2 
expression protects against BA-mediated 
toxicity in immortalized hepatocyte lines. 
(A) Cell viability after BA-treatment was 
assessed by MTT assay. Immortalized 
cell lines NCL-V and NCL-C were treated 
with chenodeoxycholic acid at sub-
cytotoxic concentrations (CDCA 10, 
100 μM prepared in EtOH) for 24 h. 
(B) Apoptotic cell death was measured 
by cleaved caspase-3 levels and JNK 
activation by Western blotting after 3 h 
of CDCA treatment (250 μM). NCL-C cells 
were pre-incubated for 5 h with 5 μM 
of specific COX-2 inhibitor DFU before 
CDCA treatment (NCL-C + DFU). Their 
respective total protein or vinculin levels 
were used as loading control. The graphs 
depict densitometric quantification of 
the indicated protein levels. Data are 
represented as the mean ± S.E.M. (n = 3 
independent experiments). *p < .05 versus 
NCL-V Vehicle; #p < .05 versus NCL-V 
CDCA. BA, bile acids; BDL, bile duct 
ligation; CDCA, chenodeoxycholic acid; 
COX-2, cyclooxygenase-2.
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    |  13BREA et al.

pre-clinical study is expected to provide new targets for cholesta-
sis treatment by inducing COX-2 or using its products. Additionally, 
it will suggest prevention strategies to avoid the frequent use of 
COX-2 inhibitor anti-inflammatory drugs in these patients.
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