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Abstract

In this paper an arbitrary Lagrangian–Eulerian (ALE) formulation has been developed for the simulation of casting

processes. The method is applied both to mould filling simulation, where it can provide accurate free surface

description, and to the study of thermo-mechanical phenomena occurring in the subsequent cooling down of cast parts:

prediction of solute transport and of distortions and stresses. In the first three sections, all governing equations

(constitutive equations, momentum, energy, solute transport) are given. Then the ALE formulation is presented: mesh

updating with evolving free surfaces, using ‘‘conservative’’ normal vectors to enforce mass conservation; treatment of

advection terms, using an original nodal upwind method; definition of Lagrangian and Eulerian–Lagrangian regions.

Finally, examples of applications are given.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction: the ALE formulation in the context of solidification processes

The paper presents two different examples of the use of Arbitrary Lagrangian–Eulerian (ALE) formu-

lation in the context of the casting of metal alloys.

First, ALE can be used for mould filling simulations, which are carried out in order to provide the

downstream thermo-mechanical and microstructural computations of the cooling stage with accurate initial
conditions in terms of temperature and velocity field. Additionally, they can help in understanding the

occurrence of defects such as incomplete filling due to early solidification, convection of inclusions, oxi-

dation associated with turbulence, mould wear, etc. Most mould filling models are of fixed mesh type. This

is of course the most convenient way to approach non-steady state fluid flow since the computation grid can

remain fixed from the beginning to the end of the filling. One of the main issues is then the tracking of the

free surface separating the fluid domain from the rest of the mould cavity. Most codes use the volume of

fluid (VOF) method, see for instance the works of Bourg et al. [1], Barkhudarov et al. [2], Waite and
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Nomenclature

gl volumetric liquid fraction (–)

gs volumetric solid fraction (–)

H � strain hardening coefficient (–)

k partition coefficient (–)
K viscoplastic consistency (Pa sm)

m strain-rate sensitivity index (–)

n strain hardening exponent (–)

P vector of nodal pressures (Pa)

p ¼ �1=3trr pressure (Pa)

s ¼ rþ pI deviatoric stress tensor (Pa)

T stress vector (Pa)

V vector of nodal velocities (m s�1)
v velocity vector (m s�1)

w average solute concentration in the solid–liquid mixture (mass%)

wl average solute concentration in the liquid phase (mass%)

ws average solute concentration in the solid phase (mass%)

X vector of nodal spatial coordinates (m)

bw solutal expansion coefficient (1/%solute)

Detr ¼ qðTLÞ�qðTSÞ
qðTLÞ < 0 shrinkage ratio: relative volume change associated with the total liquid–solid

transition (–)
e solute diffusivity (m2 s�1)
_e strain rate tensor, or symmetric part of the tensor of velocity gradients (s�1)
_eel elastic part of the strain rate tensor (s�1)
_evp viscoplastic part of the strain rate tensor (s�1)
_eth thermal part of the strain rate tensor (s�1)

_eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3_evpij _e

vp
ij

q
von Mises equivalent plastic strain-rate (s�1)

eeq ¼
R t
0
_eeq dt von Mises equivalent plastic strain (–)

l dynamic viscosity of the liquid (Pa s or kgm�1 s�1)
r Cauchy stress tensor (Pa)

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2sijsij

p
von Mises equivalent stress (Pa)

r0 static yield stress (Pa) (plastic threshold: if req < r0, the material is elastic)

r00 initial static yield stress (elasticity limit) (Pa)
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Samonds [3], Codina et al. [4], Lewis et al. [5], Mampey and Xu [6], Zhu and Ohnaka [7], M�edale and Jaeger
[8], and the documentation on Magmasoft and Procast software [9,10]. The VOF method [11] consists in

solving the conservation equation dF =dt ¼ 0 for a variable F ––the volumic fraction of fluid––whose value

is one in filled regions and zero elsewhere. Two fluids are actually considered: the molten alloy and a gas in

the empty regions. This method suffers generally from numerical diffusion in the resolution of the free

surface tracking equation, which is of pure advective type. The precision of the computation is strongly

dependent on the mesh density. This implies that in case of complex flow the user must have a priori a fairly

good idea of the liquid flow in order to capture properly the critical features of the flow. In addition, the

method can hardly handle the discontinuity of the material viscosity at the interface. To prevent this dif-
ficulty, the viscosity value is smoothed around the interface, adding once again some inaccuracy. Since the
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value F ¼ 1=2 is supposed to represent the free surface, it results in a smeared fluid surface. An alternative
to the fixed mesh methods are the methods in which the mesh covers the fluid domain only, as proposed by

Navti and Lewis [12,13], or Gaston and Bellet [14]. Based on updated Lagrangian schemes, they must be

associated with the ALE formulation in order to reduce the number of full remeshing operations. In this

paper, we will give an example of application of such an ALE method to the two-dimensional simulation of

mould filling.

The ALE method is also very useful in the second step of solidification analysis. After mould filling and

during the cooling down and the progressive solidification of a cast part, the remaining liquid pools can be

affected by convection caused by the density gradients. Convection can be initiated at high Rayleigh
numbers, i.e. when the cast parts are large enough. The gradients of density can be caused by gradients of

temperature and alloy elements concentration. When considering a constant density in the source term of

the momentum equation, this thermal and solutal convection phenomena are neglected and liquid pools

remain more or less quasi static along the computation. This approximation is acceptable in the case of

small parts or for larger ones when liquid convection is neglected as a first approach (the temperature

homogenization associated with liquid convection is simply not captured by the simulation). In this case,

the fluid motion is originated by the alloy volumetric contraction during phase change and cooling.

Conversely, when we use a density depending on the local temperature and alloy concentration, convection
effects are accounted for. In this case, and provided that the Rayleigh number be high enough, the velocity

in the liquid regions are significantly higher than those of the solid regions. In both cases, and especially in

the second one, the fluid motion cannot be handled with a classical updated Lagrangian scheme, since it

would lead to mesh degeneracy in the liquid pools. At the same time, a purely Eulerian scheme is not

satisfying, since it cannot provide enough accuracy for the motion of the free surfaces of the solidified

regions of the part: the location of the physical boundary of the part by a front tracking algorithm is

irrelevant when dealing with air gap opening between part and mould for instance. Therefore, the ALE

formulation appears very attractive to solve this kind of problems.
Jaouen and Bellet have implemented and developed the ALE method in the finite element code

THERCAST� dedicated to solidification analysis [15–17]. THERCAST� addresses the three-dimensional

thermo-mechanical analysis of castings during their solidification. The code is developed by CEMEF and

TRANSVALOR and is focused on the calculation of deformations and stresses in the castings (taking into

account possible deformations of moulds) and on the calculation of the macrosegregation of alloying

elements. An equivalent two-dimensional software, named R2SOL, has approximately the same charac-

teristics as THERCAST�, besides the ability to address mould filling analysis.

The outline of the paper will be as follows: The next three sections will present the conservation
equations for momentum, energy and solutes and the finite element resolution which prevail in these two

finite element codes. Then the main issues of ALE implementation in the solidification context will be

discussed. Finally, examples of application will be presented.
2. Mechanical problem: governing equations and finite element resolution

2.1. Constitutive equations for metallic alloys in solidification conditions

A detailed discussion regarding this point can be found in [17]. Here the main ideas of the approach used

by the authors are briefly reminded. The reader is also invited to refer to the nomenclature section for the

notations used, except the most standard ones which will be incorporated into the text.

A metallic alloy in liquid or mushy state is modelled using a pure thermo-viscoplastic law, without any

elastic contribution. Depending on the temperature (or the solid fraction), the model is either purely

Newtonian (pure liquid state) or non-linear viscoplastic (mushy state). Below a critical temperature TC (for
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instance the ‘‘coherency’’ temperature or the solidus temperature), the alloy behaviour is modelled by a
thermo-elastic–viscoplastic constitutive law, which is more representative of solid-like behaviour.
2.1.1. Liquid-like constitutive equations: pure thermo-viscoplastic model

In this case, the compressibility is only due to the thermal contribution (no elasticity). The equations of

the constitutive model can be written as follows:

_e ¼ _evp þ _eth;

_evp ¼ 1

2K
ð
ffiffiffi
3
p

_eeqÞ1�ms;

_eth ¼ a _T þ 1

3
_gsDetr

� �
I :

8>>>><
>>>>:

ð1Þ

In this set of equations, a denotes the thermal linear expansion coefficient, I the identity tensor and _T the

time derivative of temperature. The strain rate tensor is split into a viscoplastic, and a thermal part (1a).

The latter includes thermal expansion and shrinkage due to the liquid–solid phase change (1c). Eq. (1b) is

the classical constitutive equation of a generalized non-Newtonian fluid. It relates the viscoplastic strain

rate to the stress deviator. The limit case of the Newtonian behaviour (liquid state) is obtained for m ¼ 1. In

this case, K is simply the dynamic viscosity of the liquid.
2.1.2. Solid-like constitutive equations: thermo-elastic–viscoplastic model

The model used to represent the solidifying material behaviour below TC is described by the following

equations:

_e ¼ _eel þ _evp þ _eth;

_eel ¼ 1þ m
E

_r� m
E
trð _rÞI ;

_evp ¼
ffiffiffi
3
p

2req

req � r00 � H �eneq
K

ffiffiffi
3
p

� �1=m

s;

_eth ¼ a _T þ 1

3
_gsDetr

� �
I :

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

Here E and m are the usual notations for Young’s modulus and Poisson’s coefficient. For less standard

notations, see the nomenclature section. The strain rate tensor is split in an elastic, a viscoplastic, and a

thermal part (2a). As in the fluid-like model, the latter includes thermal expansion and shrinkage due to

the liquid–solid phase change (2d) or (1c). Eq. (2b) yields the hypoelastic Hooke’s law. Eq. (2c) gives the

relation between the viscoplastic strain rate and the stress deviator, in which r0 ¼ r00 þ H �eneq denotes the

static yield stress below which no viscoplastic deformation occurs (the expression between Macauley

brackets h�i is reduced to zero when negative).

When multidomain calculations are carried out with THERCAST�, the set of equations (2) is used to
model the thermo-elastic–viscoplastic behaviour of mould materials.
2.2. Momentum equation

At any time, the local momentum conservation is expressed by

r � rþ qg � qc ¼ r � s�rp þ qg � qc ¼ 0; ð3Þ
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where q denotes the specific mass (or ‘‘density’’), g the gravity vector and c the acceleration vector. It is

worth noting that gravity and inertia can be neglected in mould components as well as inertia in the

solidified regions of the casting.

2.2.1. Mechanical boundary conditions

The boundary oX1 of the domain X1 occupied by the part can be divided into two main regions (the

extension of contact boundary conditions to the interaction with deformable mould components will be

explained in Section 2.7):

• oX1=mld consists of the boundary regions oX1=j of the part facing the mould components (domains Xj,

jP 2). The unilateral contact condition is applied to these surfaces:

rn � n6 0;

dP 0;

ðrn � nÞd ¼ 0;

8><
>: ð4Þ

where d is the local interface gap width (positive when air gap exists effectively) and n is the local

outward unit normal to the part. The fulfilment of (4) is obtained by means of a penalty condition, which

consists in applying a normal stress vector proportional to the normal velocity difference via a penalty

constant vp (the brackets Æ æ in the following expression denote the positive part):

T ¼ rn ¼ �vphðv� vmldÞ � nin: ð5Þ

The possible tangential friction effects between part and mould are taken into account by a Coulomb

friction model. In this case, the previous stress vector has a tangential component, Ts, given by

Ts ¼ �lf jrnj
1

kv� vmldk
ðv� vmldÞ; ð6Þ

where rn is the normal stress, or contact pressure, and lf the friction coefficient.

• oX1=pre consists of the regions of oX1 not facing the mould, i.e. where an external fluid pressure PextðtÞ is
prescribed. This pressure can be either the atmospheric pressure, on so-called free surfaces, or a pre-
scribed pressure due to the process itself. Consequently, locally, the external stress vector reduces to

an applied normal stress vector on oX1=pre:

T ¼ rn ¼ �PextðtÞn: ð7Þ
2.3. Weak form of mechanical equations

The primitive variables are velocity and pressure. The problem to be solved is then composed of two

equations: The first one is the weak form of the momentum equation, also known as the principle of virtual

power. Since p is kept as a primitive variable, only the deviatoric part of constitutive equations is accounted

for and has to be solved locally in order to determine the deviatoric stress tensor s. Therefore the second

equation consists of the weak form of the volumetric part of the constitutive equations. It expresses the

incompressibility of the plastic deformation. This leads to

8v�
R
X s : _e

� dV �
R
X pr � v� dV �

R
oX T � v�dS �

R
X qg � v� dV þ

R
X qc � v� dV ¼ 0;

8p�
R
X p
�tr_evp dV ¼ 0:

(
ð8Þ

The pressure variable appears as a Lagrange multiplier of the plastic incompressibility constraint. The form

of the term integrated in the second equation will change according to the local state of the alloy (i.e.,
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according to the local temperature). In case of a solid-like constitutive equation (elastic–viscoplastic

behaviour), it will be

tr_evp ¼ tr_e� tr_eel � tr_eth ¼ r � vþ 3ð1� 2mÞ
E

_p � 3a _T � _gsDetr; ð9Þ

whereas in case of a liquid-like constitutive equation (pure viscoplastic behaviour), the elastic contribution

vanishes, yielding

tr_evp ¼ tr_e� tr � eth ¼ r � v� 3a _T � _gsDetr: ð10Þ
Accordingly, the stress deviator s in (8a) will result either from a viscoplastic (possibly Newtonian) law, or

from an elastic–viscoplastic constitutive equation. In the first case, s can be easily deduced from (1). Taking

the deviatoric part of (1a) and (1b), we have

s ¼ 2Kð
ffiffiffi
3
p

_eeqÞm�1devð_eÞ; ð11Þ
which yields the deviatoric stress tensor associated with a given (guessed) velocity field v, whose corre-

sponding strain rate tensor is _e. In the second case (elastic–viscoplastic behaviour), the resolution of (2) is

less immediate. A standard return-mapping algorithm (Euler backward implicit scheme) is used, the details

of which are given in [18], including existence and uniqueness demonstrations.

2.4. Time discretization

Given the configuration occupied by the cast part at time t, the equations to be solved for ðv; pÞt, velocity
and pressure field at time t, can be expressed in the following way (for the sake of clarity, we take the case of

a thermo-elastic–viscoplastic behaviour in the second equation):

8v�
Z
Xt
sðvtÞ : _e� dV �

Z
Xt
ptr � v� dV �

Z
oXt

T t � v� dS �
Z
Xt
qg � v� dV þ

Z
Xt
q
vt � vt�Dt

Dt
� v� dV ¼ 0;

8p�
Z
Xt
p� r � vt þ 3ð1� 2mÞ

E
pt � pt�Dt

Dt
� 3a _T þ _gsDetr

� �
dV ¼ 0:

8>><
>>:

ð12Þ
In this equation, _T and _gs are provided by the thermal resolution. The time derivatives of pressure and

velocity are approximated by implicit Euler backward finite difference schemes on the time increment Dt:

_pt ¼ 1

Dt
ðpt � pt�DtÞ; ct ¼ 1

Dt
ðvt � vt�DtÞ: ð13Þ

After resolution, the configuration updating is defined by

xtþDt ¼ xt þ Dtvt þ Dt2

2
ct ¼ xt þ Dtvmat with vmat ¼

3

2
vt � 1

2
vt�Dt: ð14Þ

Except for mould filling analysis, the material velocities and their time derivative remain rather low.

Therefore the second order acceleration terms in (14) may be neglected. In this case, vmat ¼ vt.
2.5. Finite element discretization and resolution

In the codes THERCAST� and R2SOL, the finite element mesh is composed of linear tetrahedra and

triangles, respectively. The P1+/P1 mini-element, initially proposed by Arnold et al. [19] and Fortin and

Fortin [20], is used (Fig. 1). In an element, the velocity field is mainly linear continuous, but includes a

central correction of ‘‘bubble’’-type in order to satisfy the Brezzi–Babuska condition. This velocity cor-
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Fig. 1. P1+/P1 element.
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rection varies linearly on each of the four subtetrahedra in 3D (respectively, three subtriangles in 2D),

between its value at the centre of the element and zero on all the facets (resp., edges) of the element [17]. The

momentum equation is then projected onto the P1 space and onto the ‘‘bubble’’ space [15–17]. Using the

condensation of the bubble degrees of freedom (which are internal to the element) during the finite element

assembly process, this leads to the resolution of a non-linear equation whose unknowns are the vector V of

nodal velocities, and the vector P of nodal pressures:

RmechðV ;PÞ ¼ 0: ð15Þ
This set of equations is solved by a Newton–Raphson method. At each Newton–Raphson iteration, the

resolution of the set of linearized equations for ðV ;PÞ is performed by a preconditioned iterative solver.

2.6. Concurrent treatment of solid and liquid regions

Such a mini-element formulation provides a perfect compatibility between the treatment of an elastic–
viscoplastic medium and a pure viscoplastic or Newtonian medium. Therefore, it allows to treat simulta-

neously the solidified zones and the liquid or mushy pools of a casting. The unified form of the mechanical

equations can be written in the following way:

8v�
Z
X

sevp

svp

� �
: _e� dV �

Z
X
pr � v� dV �

Z
oX

T � v�dS �
Z
X
qg � v� dV þ

Z
X
qc � v� dV ¼ 0;

8p�
Z
X
p� r � vþ 3 _pð1� 2mÞ=E

0

� �
� 3a _T � _gsDetr

� �
dV ¼ 0:

8>><
>>: ð16Þ

The braces in both equations allow the distinction between the two constitutive models. This choice is done

when assembling each finite element, depending on the temperature at its centre. If the temperature exceeds

the critical temperature TC, then the whole element is considered viscoplastic (lower line in braces),

otherwise it is elastic–viscoplastic (upper line in braces).

2.7. Mechanical coupling algorithm for part-mould and mould–mould interactions

The objective is to model mould deformation and contact interactions occurring either between the cast

part and the mould components or between the mould components themselves. This problem of contact

between several deformable bodies is modelled by means of the penalty approach.
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In practice, along an interface between two domains Xi and Xj, we choose arbitrarily to penalize the
penetration of Xi into Xj, which means that in the resolution of the mechanical equilibrium of Xi, the

following penalty term is added:Z
oXi=j

�vphðv� vðjÞÞ � nin � v�dS; ð17Þ

where vðjÞ is the respective local velocity of the domain Xj, n being the normal at the interface and vp the

penalty coefficient. Accordingly, considering the action–reaction principle, the following normal stress

vector T is applied to the surface of Xj:

T ¼ �vphðvðjÞ � vðiÞÞ � nin ð18Þ

During the simulation of a solidification process, the equilibrium of each domain with respect to its

neighbouring domains is computed. Since the cooling is generally not very rapid, there is no need to solve

simultaneously the equilibrium of all the bodies (this would be obtained by a heavy and costly fix point

procedure or by a global computation including all domains). A staggered scheme is preferred, each domain

being calculated only once per increment.
3. Heat transfer

In THERCAST� software, the heat transfer problem is solved on the different subdomains Xi involved

in a solidification problem, i.e. the solidifying part and the different constitutive components of the casting

mould. In this paper, it is chosen not to describe the multidomain resolution, see [15]. The heat transfer

equation, to be solved on each of the subdomains Xi of the casting problem, possibly including phase
change––in the part––but without any internal heat source, can be written:

q
dH
dt
¼ r � ðkrT Þ; ð19Þ

where the specific enthalpy H is defined by

H ¼
Z T

T0

cpðsÞdsþ ð1� gsÞL ð20Þ

with T0 an arbitrary reference temperature, cp the specific heat and L the specific latent heat of fusion. In the

present study, the solidification path gsðT Þ is considered given. Therefore, the value of the enthalpy can be

calculated for any value of the temperature.

The following conditions on the boundary oXi of the subdomain Xi are considered:

• prescribed outward heat flux:

�krT � n ¼ /imp; ð21Þ

where n denotes the outward normal unit vector and k the thermal conductivity;

• convection:

�krT � n ¼ hcðT � TextÞ; ð22Þ
where Text denotes the external temperature and hc the convection coefficient;

• radiation:

�krT � n ¼ errrðT 4 � T 4
extÞ; ð23Þ



M. Bellet, V.D. Fachinotti / Comput. Methods Appl. Mech. Engrg. 193 (2004) 4355–4381 4363
where er is the emissivity of the material (considered as a grey body), rr the Stefan–Boltzmann constant.

It is to be noticed that Eq. (23) can be cast in the same form as Eq. (22) by linearization. It is then

possible to express a mixed convection–radiation boundary condition:

�krT � n ¼ hcrðT � TextÞ ð24Þ
with

hcr ¼ hc þ errrðT 2 þ T 2
extÞðT þ TextÞ; ð25Þ

• prescribed temperature:

T ¼ Timp; ð26Þ
• exchange with another subdomain Xj:

�krT � n ¼ hij T � T surf
j

� 	
; ð27Þ

where hij is the heat transfer coefficient of the interface between Xi and the facing subdomain Xj, whose

surface temperature is T surf
j .

The standard Galerkin finite element discretization leads to the classical set of non-linear equations:

M _H þ KT ¼ Q ð28Þ
withM the mass matrix, K the conduction matrix, Q the external flux vector, _H the vector of enthalpy rates

at nodes and T the vector of nodal temperatures.

The phase change affecting the part is treated using the technique proposed by Lemmon [21]. Applying

this technique to linear simplex elements (P1 tetrahedra or triangles), an element-wise constant value of the

effective heat capacity is approximated by the following regularization formula:

ceff ¼
oH
oT
� rHðT Þk k

rTk k : ð29Þ

The set of equation (28) then becomes

C _T þ KT ¼ Q ð30Þ
with _T the vector of nodal temperature rates, C the heat capacity matrix. This latter matrix is then tem-
perature dependent within the solidification interval (and possibly outside, due to cp variations). In addi-

tion, matrix K and vector Q may depend on temperature.

A Euler backward implicit scheme is used for the time discretization of this equation, which leads to a set

of non-linear equations to be solved for the values of the temperatures at finite element nodes at the end of

the time increment considered:

RthermðT tþDtÞ ¼ 0: ð31Þ
A Newton–Raphson scheme is used to solve it.
4. Solute conservation

4.1. On the modelling of the mushy region

The modelling of macrosegregation requires a refinement of the previous mechanical model in order

to account for the liquid flow in the mushy region, which is known to have a major influence in the
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redistribution of solute in the whole domain. Such a flow is usually assimilated to that of a fluid through a
porous medium governed by the Darcy’s law. Adopting the same assumptions of most macrosegregation

models, i.e., Newtonian flow and rigid and fixed solid phase, the momentum equation (3) in this region

takes the form [22,23]

r � ðlrvÞ � rp þ qg � l
K
v� q

dv
dt
¼ 0 ð32Þ

resembling the Navier–Stokes equation governing the flow in the fully liquid region, supplemented by the
fourth term defining the drag force arising from the Darcy’s law. Now, v is defined as the average mixture

velocity. The permeability of the solid skeleton is defined by the well-known Carman–Kozeny formula:

K ¼ k22g
3
l

180ð1� glÞ2
: ð33Þ

Another important feature of Eq. (32) concerns the density q, which is assumed to have a constant value
q0 ¼ qðT0;wl

0Þ, except in the gravity term, where it varies according to the Boussinesq’s approximation

q ¼ q0 1


� 3aðT � T0Þ � bcðwl � wl

0Þ
�

ð34Þ

in order to model natural convection induced by thermal and solutal gradients.

Regarding the thermal field, Eq. (19) remains valid in the mushy region.

4.2. Macrosegregation in binary alloys

Let us assume a binary alloy where segregation at the microscopic scale obeys the lever rule. We

have

ws ¼ kwl ð35Þ

with ws and wl being the mass concentration in the solid and liquid phase, both assumed homogeneous over

an elementary representative volume. Considering all the assumptions of this section, the macroscopic

solute conservation equation takes the form [24]:

ow
ot
þ v � rwl �r � ðerwÞ ¼ 0: ð36Þ

Although solute diffusion is usually negligible in metallic alloys, the solute diffusivity e is assumed to have a

positive value (even very small) in order to improve numerical stability.

In THERCAST�, Eq. (36) was first solved in Eulerian coordinates using the Streamline Upwind Petrov–

Galerkin (SUPG) formulation [25]. In this work, following K€ampfer [26], we use a splitting scheme applied

to the advection term:

rwl � rw�rw0 þrwl0; ð37Þ
where the superscript ‘‘0’’ refers to known values of the variables at the previous time step. Invoking (37),

Eq. (36) can be rewritten using the particle (total) derivative of w:

dw
dt
�r � ðerwÞ ¼ Q0; ð38Þ

where

Q0 ¼ v � rðw0 � wl0Þ: ð39Þ
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In such a way, the solute conservation equation becomes self-adjoint (i.e., system matrix is symmetric) and

can be solved in the same way as the energy equation.
5. ALE formulation

The ALE method has been implemented according to a staggered scheme at each time increment. In a

first step the material velocities are calculated by solving (15). In a second step, the mesh velocities, denoted
vmsh, are calculated, which allows us to update the domain occupied by the cast alloy. In the context of

solidification, there are three main problems to address:

• the computation of the mesh velocity field;

• the accounting for the velocity difference vmat � vmsh in energy, solute and momentum equations;

• the determination of the areas of the computational domain that should be treated as Lagrangian and

Eulerian–Lagrangian.

Those three different topics are presented in the next sections.

5.1. Mesh updating

According to (14) and neglecting second order terms, a Lagrangian-type mesh updating scheme would

be defined by

X tþDt ¼ X t þ DtV t; ð40Þ
where X denotes the global vector of nodal coordinates.

In ALE formulation, the displacement of the nodes generally differs from the displacement of the

material particles. For a time increment, we can write the following equation relating the updated position

of nodes and the mesh velocity:

X tþDt ¼ X t þ DtVmsh; ð41Þ
where Vmsh denotes the global vector of mesh velocities at nodes.

Consequently and from a general point of view, the determination of vmsh can be guided by various

considerations: geometrical regularization of the mesh, in order to control the shape factors of the elements,

change of mesh density in certain regions, in order to approach objective local mesh sizes provided by other

criteria, such as error estimation. In this latter case, the mesh motion can result from combined regulari-
zation and adaptivity. In the sequel, we will restrict our presentation to geometrical regularization. We will

distinguish the treatment of internal nodes and of boundary nodes, for which additional constraints on

volume conservation apply.

5.1.1. Regularization of interior nodes

The nodal mesh velocities are calculated in order to minimise the distortion of the updated mesh. This

can be achieved by writing that, after updating, each interior node n should be as close as possible to the

centre of gravity of the polygon joining its neighbouring nodes. Denoting snbðnÞ the set of nodes connected
to node n, and nbðnÞ its cardinal, the problem to be solved can be expressed as follows:

Find the nodal field Vmsh such that

min
Vmsh

X
n

Xn;t

����� þ DtVn
msh �

1

nbðnÞ
X

m2snbðnÞ
ðXm;t þ DtVm

mshÞ
�����
2

: ð42Þ
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This problem is solved by an iterative procedure of Jacobi type. At each iteration m and for each interior

node n, the new estimate of the nodal mesh velocity is calculated in the following way:

V
nðmþ1Þ
msh ¼ 1

Dt
1

nbðnÞ
X

m2snbðnÞ
ðXm;t

"
þ DtVmðmÞ

msh Þ � Xn;t

#
: ð43Þ
5.1.2. Regularization of boundary nodes, constraint on volume conservation

An equivalent expression can be derived for boundary nodes, but the summation in (42) and (43) should

be reduced to the set of neighbouring nodes located on the domain boundary. Moreover, as said previously,

an additional constraint on volume conservation must be fulfilled simultaneously. The flow rate of both the

material velocity field and the mesh velocity field through the mesh boundary must be equal:

vmsh � n ¼ vmat � n ð44Þ
with n the outward unit normal. In order to ensure that Eq. (44) correctly expresses material flux con-

servation, we use in this relation the so-called ‘‘consistent’’ normal vectors defined at boundary nodes, as

suggested by Gray [27] and Engelman et al. [28]. Those vectors are such that any tangential nodal velocity

(i.e., a velocity which is orthogonal to the consistent normal vector) provides a null contribution to the flux

through the discretized surface. In 3D, in the case of linear elements, the consistent 1 normal vector at each

surface node m is defined by the average of the normals of the surrounding facets weighted by their surface:

~nm ¼ 1P
f2sðmÞ S

fnf
��� ���

X
f2sðmÞ

Sfnf ; ð45Þ

where sðmÞ denotes the set of triangular facets f the surface nodem belongs to, Sf being the area of each facet.

The demonstration of (45) has been first proposed by Bellet [29] and is given in Appendix A of the present

paper. In 2D, the same expression holds, Sf denoting the length of the boundary edges the node m belongs to.
The fulfilment of the condition (44) is forced by a penalty technique which is applied locally. Given a

boundary node q, we denote snb=sðqÞ the set of boundary nodes connected to node q, of cardinal nb=sðqÞ. At

iteration m, the new estimate of the velocity of the node is defined by

V
qðmþ1Þ
msh ¼ argMin

V
q
msh

Xq;t

������
8<
: þ DtVq

msh �
1

nb=sðqÞ
X

m2snb=sðqÞ
ðXm;t þ DtVmðmÞ

msh Þ

������
2

þ v
2
ðVq

msh

�
� Vq

matÞ � ~nq
	29=
;; ð46Þ

where the penalty factor v is a large penalty constant. The new estimate V
qðmþ1Þ
msh is easily obtained as the

solution of a set of linear equations.

In three dimensions, the difficulty of the procedure lies essentially on the treatment of nodes which are in

the vicinity of sharp edges and corners of moulds and/or belong to symmetry planes. In this case, the local

penalty method can be applied to enforce (44) for several normal vectors.

The iterative procedure is repeated up to stagnation (i.e., minor relative corrections of the nodal

velocities) and the following updating scheme of nodes is then applied:

X tþDt ¼ X t þ DtV ð1Þmsh: ð47Þ
1 According to their definition, these normal vectors should rather be named ‘‘conservative’’ normals.
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5.2. Treatment of advection terms

Knowing the mesh velocity, it is now necessary to proceed to the updating of nodal fields. Consider first

the temperature field T . Its updating is done by writing for each node:

T tþDt ¼ T t þ omT
ot

Dt; ð48Þ

where omT =ot denotes the time derivative of T with respect to the mesh (the rate of variation of temperature

at a given point of the mesh) which is related to the material derivative by the following expression:

dT
dt
¼ omT

ot
þ ðvmat � vmshÞ � rT : ð49Þ

In the literature, this expression is frequently directly implemented in the weak form of the heat transfer

equation. SUPG techniques are then used, stabilising the advective terms by use of artificial diffusion along

streamlines [25]. Here we proceed in a different way, as initially suggested by Chenot and Bellet [30]. Once

the heat transfer problem has been solved on the time increment, the total (material) time derivative of the

temperature is known at each node. After computation of vmat and vmsh, the updating of the temperature

field can be obtained by writing (48) and (49) at each node, yielding

T tþDt ¼ T t þ Dt
T tþDt
Lag � T t

Dt

 
� ðvmat � vmshÞ � rT

!
¼ T tþDt

Lag � Dtðvmat � vmshÞ � rT ; ð50Þ

where T tþDt
Lag denotes the temperature at the Lagrangian update of the node considered. Referring to Fig. 2,

this expression appears as a first order spatial development of the temperature field around the location

xtþDt
Lag . The determination of the new temperature T tþDt of the node only requires the nodal temperature

gradient. Using an upwind technique, this nodal gradient is computed in the upstream element, according

to the advection velocity vmat � vmsh.
tt
A

∆+x

matmsh vv −

t
A

t xx =

tmsh∆v

tt
B

tt ∆+∆+ = xx
tt

A
−∆x

t
Bx

finite element nodes

particle A

particle B 

mshv

trajectory of 
particle A

trajectory of 
particle B

tv

upwind 
element matv

Fig. 2. ALE formulation: schematic in two dimensions. Updating of the location of a finite element node and subsequent identification

of the upwind element. The materialization of the trajectory of two material particles A and B helps in the interpretation of Eq. (51).
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In case of macrosegregation analysis, the average solute concentration w is transported exactly in the
same way.

In order to express the acceleration terms in the momentum equation, a transport of the material

velocity field is necessary. In (12) and (13), the velocity vt�Dt is the material velocity of the particle at the

previous time level. Hence, after configuration updating, this requires a pure transport of the velocity field.

This is achieved by a similar scheme as (48) and (49), but in which the material derivative is taken equal to

zero:

vtðxtþDtÞ ¼ vtðxtÞ � ½rvtðxtÞ�ðvmatðxtÞ � vmshÞDt: ð51Þ

Referring to Fig. 2, it can be seen once again that (51) is nothing but a first order spatial development of the

material velocity field in the upstream element associated with the nodal position xt.

It should be noted that the calculation of vtðxtþDtÞ could be achieved using, for instance, the method of

characteristics, as suggested by Pironneau [31]. In the two-dimensional mould filling computations pre-
sented in the present paper, an approximating method has been adopted, sometimes named ‘‘pseudo-

Lagrangian’’ (Fig. 3). In this method, an auxiliary Lagrangian update XtþDt
Lag of the configuration is used. It is

defined by (14) or (40). Considering the position xtþDt, the associated element e of XtþDt
Lag and the local

coordinates ðn; gÞ in this element are determined. Therefore, XtþDt
Lag being a material update of Xt, the value

vtðxtþDtÞ is computed by direct interpolation in element e of Xt:

vtðxtþDtÞ ¼ Nnðn; gÞVn;t; ð52Þ
where Nn denotes the interpolation function attached to node n.

5.3. On the accuracy of the transport scheme

The update of any variable as described above has probed to be accurate only if Dt remains small
enough, such that

Dt6Dtmax ¼ max
m

he

Vm
mat � Vm

msh

�� �� ð53Þ

being he the distance from the node m to the opposite side along the direction of Vm
mat � Vm

msh, across the

upwind element.

In THERCAST�, following Jaouen [15], this restriction is circumvented by carrying out the transport

during ½t; t þ Dt� in n substeps ½t; t1�; ½t1; t2�; . . . ; ½tn�1; t þ Dt�, being ti ¼ t þ iDtmax. In practice, n should not

exceed 6 in order to keep a satisfactory accuracy, a condition that is easily satisfied in typical casting

simulations.
(ξ,η)

te,Ω

t+∆tx

e,t+∆t
LagΩ

Fig. 3. Illustration of transport procedure by use of a pseudoLagrangian update and direct interpolation.



Table 1

Maximum values of velocity components for the square cavity test [32,33]

Ra ¼ 103 Ra ¼ 104

De Vahl Davis and Jones Present solution De Vahl Davis and Jones Present solution

maxðvxÞ 3.649 3.634 16.178 16.099

z 0.813 0.811 0.823 0.814

maxðvzÞ 3.697 3.669 19.617 19.413

x 0.178 0.183 0.119 0.108
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This strategy has been validated by means of the well-known benchmark problem of De Vahl Davis and
Jones [32,33] dealing with the natural convection of a Boussinesq fluid contained in a square cavity. A 1-m2

domain is modelled in 3D assuming a thin layer where the wide faces are adiabatic. It is spatially discretized

using an unstructured, fixed, tetrahedral finite element mesh, with an uniform element size of 2.6 cm. Time

step is constant and equal to 0.25 s. Some significant results for the case of Prandtl number equal to 0.71,

and two different Rayleigh numbers are shown in Table 1. While condition (53) is satisfied a priori for

Ra ¼ 103ðDt=Dtmax ¼ 0:63Þ, four substeps were taken ðDt=Dtmax ¼ 3:38Þ in case Ra ¼ 104, preserving a

proper accuracy.

5.4. Lagrangian and Eulerian–Lagrangian zones

Regarding now the global treatment of a casting, the idea consists in defining the solidified regions as

Lagrangian (convected mesh) and the liquid or mushy ones as Eulerian–Lagrangian (regularized mesh

under the constraint (44)). Therefore each node is affected by one of the two formulations, according to the

following rule, as illustrated in Fig. 4:

• Each node belonging at least to one solid-like element (i.e., an element whose constitutive equation has
been chosen elastic–viscoplastic, see Section 2.6) is treated as Lagrangian: its mesh velocity equals its

material velocity.

• All other nodes, which therefore belong to liquid-like elements only, are treated as Eulerian–Lagrangian:

their mesh velocity is calculated as described in Section 5.1.

This ALE formulation prevents the mesh from degenerating when fluid motion occurs in the casting, due

to thermal convection. Also it allows the mesh boundary to follow the evolution of the free surface of the

remaining liquid pool and then to model pipe formation.
isotherm TC

solid-like element

(elastic-viscoplastic)

liquid-like element

(purely viscoplastic, 

or Newtonian)

Eulerian-Lagrangian node

Lagrangian node

Fig. 4. Lagrangian and Eulerian–Lagrangian nodes, as determined by their belonging to solid-like and liquid-like finite elements.

Schematic in two dimensions.
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5.5. Synthetic ALE algorithm

To conclude this section, the chain of the major steps of the developed ALE algorithm is given in box 1.

Box 1: ALE algorithm. Summary of the main procedures carried out during a time increment
xt, vt�Dt, pt�Dt, T t, wt: variables known at the beginning of a new time increment

(1) Resolution of energy conservation (31) T tþDt
Lag

(2) Resolution of solute conservation (38) wtþDt
Lag

(3) Resolution of momentum conservation (15) vt, pt

(4) Lagrangian updating of configuration (14) or (40)

(only if direct interpolation is used in step 7)

xtþDt
Lag

(5) Calculation of mesh velocity field (43) and (46) vmsh

(6) Updating of configuration (47) xtþDt

(7) Transport for particle derivatives, by nodal upwind (50) and

(51) or by direct interpolation (52)

T tþDt, wtþDt, vtðxtþDtÞ

(8) Updating of variables t t þ Dt, xt  xtþDt, vt�Dt  vt,
pt�Dt  pt, T t  T tþDt, wt  wtþDt
6. Applications

6.1. Two-dimensional modelling of mould filling

We briefly present here the results already detailed in [14]. Two-dimensional calculations performed with

the code R2SOL have been compared to experimental results obtained with a water model, in which the

experimental flow can be easily observed through a transparent mould made of plexiglas� with a digital

video recorder. The experimental device is shown on Fig. 5. The square cavity is 320 mm high and its
thickness is 20 mm.
Fig. 5. Water model. Experimental set-up.
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The simulation has been carried out using the 6-node quadratic element P2+/P1 available at that time in
R2SOL, the mechanical solver being of Uzawa type. Also the statistic turbulence model k � e was used

because of high velocities in the runner, the nominal Reynolds number being about 20,000 (for further

details on these points, see [14,34]).

Fig. 6 shows a typical comparison between the computed and observed evolution of the free surface.

Taking into account the fact that some characteristics of the experimental flow can be attributed to three-

dimensional effects, such as wetting of the jet on lateral walls for instance, the agreement is very good.
Fig. 6. Water model. Comparison between experimental flow and turbulent finite element computation: (a) t ¼ 0:12 s; (b) t ¼ 0:44 s;

(c) t ¼ 0:84 s; (d) t ¼ 1:36 s; (e) t ¼ 2:28 s; (f) t ¼ 3:28 s; (g) t ¼ 4:52 s; (h) t ¼ 5:00 s; (i) t ¼ 5:92 s; (j) t ¼ 7:60 s; (k) t ¼ 12:40 s.
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6.2. A pure Eulerian calculation: macrosegregation in a square cavity

Let us consider a square cavity of 10· 10 cm2 area, full of 0.2 wt%-C steel, initially liquid at 1523 �C. The
cavity is cooled by convection to the environment through the vertical walls. Invoking symmetry conditions,

just a half of the cavity is modelled. Mechanical and thermal boundary conditions are shown in Fig. 7.

Material data and other execution parameters are listed in Table 2. For the 3D analysis using THERCAST�, a

1-mm-thick slice delimited by adiabatic walls is considered. The mesh used for the analysis, composed of 8911

linear tetrahedral elements (3112 nodes), is shown on the right of Fig. 7. Regarding time integration, a constant
Fig. 7. Thermal conditions for the macrosegregation test problem and 3D finite element mesh.

Table 2

Material and other physical data for the macrosegregation test

Thermal conductivity 30 Wm�1 K�1

Specific heat 500 J kg�1 K�1

Latent heat of fusion 3.09· 105 J kg�1

Melt temperature 1538 �C
Liquidus line slope )80 K (wt%C)�1

Partition coefficient 0.18

Thermal expansion coefficient 2.95· 10�5 K�1

Solutal expansion coefficient 1.42· 10�2 (wt%C)�1

Reference temperature 1523 �C
Reference concentration in liquid 0.2 wt%C

Reference density 7060 kgm�3

Dynamic viscosity 4.2 · 10�3 Pa s

Secondary dendrite arm spacing 10�4 m

Heat convection coefficient (h) 100 Wm�2 K�1

External temperature (Text) 20 �C



Fig. 8. Macrosegregation patterns at 1000 s, computed by SOLID and THERCAST�.
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time step of 0.1 s has been used. Results are compared to those of the 2D finite volume code SOLID, developed

by Combeau et al. [35] and already validated, using the same time step and a structured uniform mesh.

Macrosegregation patterns in the cavity once it is totally solidified (t ¼ 1000 s) are plotted in Fig. 8. Both
SOLID and THERCAST� solution are in good agreement. The extreme values of positive and negative

segregation (i.e., w > 0:2% and w < 0:2%, respectively) predicted by THERCAST� are higher than those of

SOLID. Let us note that similar differences between SOLID finite volume approach and a 2D finite element

code have been previously reported by Ahmad et al. [36].
6.3. Three-dimensional modelling of the solidification of a large casting

The part studied here is an element of very large electro-magnets: Each magnet is composed of two
identical parts, whose shape is illustrated in Fig. 9. These parts are very specific by their weight (125 tons

each), their dimensions (2.5 · 7.0 · 1.0 m) and the steel grade (carbon-free steel, whose chemical composi-

tion is close to pure iron). They are cast in sand moulds.

A full thermo-mechanical computation has been done in order to precisely determine the shape of the

primary shrinkage defect in the riser. Using symmetry conditions, only half of the casting has been cal-

culated. As shown in Fig. 9, the configuration includes seven subdomains: the cast part and six components

of the mould. The part has approximately 120,000 tetrahedral elements and the mould subdomains 373,000.

In a first approach, only the deformations affecting the part have been calculated. The part cools down in
the mould during approximately 127 h. Then the mould is removed, which is associated in the simulation

with a global change of the thermo-mechanical boundary conditions. The same heat transfer coefficient is

then applied to the entire surface of the part, to model heat transfer with surrounding air by convection,

except on the lower surface which is in contact with the basement of the mould. The heat exchange through

this interface is defined by a higher heat exchange coefficient. The complete cooling of the part has been

simulated, until a maximum temperature of about 50 �C has been reached.

In Fig. 10, the shape of the pipe is shown for process times 2, 8, 16 and 32 h. The last region to solidify

(after 36 h) is located at the bottom of the v-shape of the pipe shrinkage, which has almost reached its final



Fig. 9. Geometry of the cast part (dimensions in mm) and finite element mesh of the casting and of the six different subdomains of the

mould.
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shape at this time. This figure illustrates well the capacity of ALE formulation. The mesh follows the

evolution of the free surface of the alloy because of the flux condition (44), while the free surface remains

perfectly horizontal, which is a consequence of the clear distinction between liquid-type and solid-type

constitutive equations. In the other regions, the mesh is regularized. Twenty complete remeshings have been
needed in order to avoid mesh degeneracy along the pipe surface.

The final shape of the pipe calculated by the simulation is given in Fig. 11a. There is a reasonably good

agreement with the v-shape experimentally measured (Fig. 11b). The predicted maximum depth is 1.48 m

versus 1.43 m measured, which is excellent. However the precise shape of the pipe is not obtained, and

complementary studies are needed, especially regarding the sensibility of the results to the mesh size, and to

the material parameters: transition temperature between liquid and solid-type constitutive equations, values

of rheological parameters.

6.4. An example of simulation combining solid deformation and liquid convection

The solidification of a 3.3 tons steel ingot is studied. The axisymmetric geometry is shown in Fig. 12 and

the simulation has been carried out with the two-dimensional software R2SOL. The configuration includes



Fig. 10. Computation of the pipe formation. Isovalues of the liquid fraction.

Fig. 11. Comparison of calculated (a) and measured (b) shapes of the pipe. The section plane is the longitudinal mid plane of the part.
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five subdomains: the cast ingot (height 1.830 m, maximum radius 0.331 m) and four mould components.
The part has approximately 4800 triangular elements (mesh size range: 2.5–30 mm). In a first approach, the



Fig. 12. Illustration of the advancement of the solidification of the ingot: (a) initial configuration and finite element meshes; (b)

velocity field at 1 min (max velocity 34.7 mms�1); (c) velocity field and isoliquid fraction (from red or dark grey¼ 1 to blue or light

grey¼ 0) at 10 min (max velocity 5.6 mms�1); (d) velocity field and isoliquid fraction at 30 min (max velocity 5.4 mms�1); (e) velocity

vectors and liquid-like (blue or light grey) and solid-like (red or dark grey) elements at 1 h (max velocity 9.7 mms�1); (f) velocity

vectors, liquid-like and solid-like elements, and isolines of liquid fraction (8 lines between 0.2 and 0.8, maximum 0.98) at 2 h 30 min

(max velocity 0.55 mms�1). (For the interpretation of references in colour in this figure legend, the reader is referred to the web version

of this article.)
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mould has been considered as non-deformable. A thermo-mechanical simulation of the solidification and
cooling down process has been carried out. The advancement of the solidification process is illustrated by

Fig. 12, in which the concurrent fluid flow, due to thermal convection, and solid deformation, due to

solidification and thermal shrinkage can be seen. The change in the free surface level can be seen, as well as

the formation of air gaps between the ingot and the mould components. In Fig. 13, details are given in the

top region of the ingot. The formation of vertical and radial air gaps is shown. Regarding free surface, it

can be seen on Fig. 13c that it is almost flat, because of an efficient thermal protection which minimizes the

thermal gradients in the riser. The gap formation phenomena affecting the bottom of the ingot are shown in

Fig. 14. In this figure, the solid-type elements have been coloured in order to illustrate the ALE strategies
described in Sections 2 and 5.
7. Conclusion

The proposed ALE method is based upon regularization algorithms, in order to determine the appro-

priate mesh velocity for both interior and boundary nodes. Special attention has been paid to free surface

evolution, for which the use of conservative normal vectors permits mass conservation. The regularization
algorithms are associated with a nodal upwind technique for the discretization of advection terms in the



Fig. 13. Formation of the gap at the shoulder of the ingot: (a) isotemperatures (915 �C in the ingot corner), isolines of liquid fraction

(min¼ 0 in the corner; 8 lines with a spacing of 0.11, max¼ 1), and velocity vectors (maximum 2.5 mms�1 in this region) after 8 min;

(b) isotemperatures (800 �C in the corner) at 2 h 30 min; (c) configuration at the end of solidification (3 h 16 min).

Fig. 14. Air gap formation due to solidification shrinkage at the bottom of the ingot. Solid-type elements are in red or dark grey.

Velocity vectors are shown as well as isolines of liquid fraction (8 lines, spacing 0.11; min¼ 0, max¼ 1): (a) 3 min, (b) 30 min and (c) 2 h

30 min. (For the interpretation of references in colour in this figure legend, the reader is referred to the web version of this article.)
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conservation equations. In this paper, we have illustrated the application of this ALE method to mould
filling, solute transport and thermo-mechanical calculations.
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• In mould filling two-dimensional simulations, it has been shown that the proposed ALE method offers a

significant advantage regarding the determination of the motion of free surfaces, by comparison with

more classical Eulerian finite element methods, based on fixed meshes and VOF formulations. However,

the three-dimensional extension of such a technique is not straightforward, especially because of the tre-

mendous complexity of the three-dimensional remeshing procedures that would be needed in the zones

of flow merging. In the authors’ opinion, a future three-dimensional extension should rather be based

upon the combination of mesh regularization and VOF formulation, which should lead to significant

improvements in front tracking, in comparison with existing Eulerian codes.
• In solidification analysis, the essential merit of the proposed method is to make possible a concurrent

analysis of the deformation of solidified zones and of the fluid flow present in liquid regions. Therefore,

it is now possible in a single numerical simulation to account for complex physical phenomena that can

be possibly coupled, such as air gap formation associated with part distortion, heat transfer, thermal

convection and free surface evolution. In a near future, the coupling of mesh regularization with mesh

adaptivity, in order to refine the mushy zone, will increase the accuracy of macrosegregation and

thermo-mechanical calculations.
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Appendix A. Definition of conservative normal vectors

The objective of this Appendix A is to define a set of proper nodal normal vectors, starting from the

discretized form of the incompressibility condition. We use then the same reasoning as Gray [27] and

Engelman et al. [28], but extended to three dimensions. In the case of linear spatial interpolation, this will

allow us to give a precise expression of conservative nodal normal vectors.
Given X ¼ [Xe a finite element discretization, a global expression of incompressibility isZ

X
r � vdV ¼ 0: ðA:1Þ

Injection of the spatial interpolation of the velocity field v in (A.1) yieldsZ
X

oNm

oxi
V m
i dV ¼ V m

i

Z
X

oNm

oxi
dV ¼ 0; ðA:2Þ

where Nm denotes the interpolation function attached to node m, and V m
i is the component i of the nodal

velocity at node m (i ¼ 1; 3). Using the gradient theorem, we obtain

V m
i

Z
oX

Nmni dS ¼ 0: ðA:3Þ

The summation in (A.3) is then restricted to the nodes m belonging to the boundary oX of X. The integrals
of (A.2) and (A.3) are in fact computed by summation of integrals on the elements Xe the node m belongs

to. Then (A.3) can be cast in the form
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X
boundary nodesm

Vm � Am ¼ 0: ðA:4Þ

Following the reasoning of Engelman et al., the conservative normal vectors should be such that any

tangential nodal velocity (i.e., a velocity which is orthogonal to the conservative normal vector) should not

contribute to the external flux (A.1). Therefore, we should have

for any boundary node m; Vm
tg � A

m ¼ 0; ðA:5Þ

where Vm
tg is the tangential velocity vector considered at node m. This means that for each boundary node m,

the conservative nodal normal vector ~nm should have the same direction as Am. Its expression is then given

by

~nm ¼ 1

Amk kA
m ðA:6Þ

with

Am
i ¼

Z
oX

Nmni dS: ðA:7Þ

In the specific case of a linear discretization, (A.7) reduces to

Am
i ¼

X
e2sðmÞ

1

3
nei S

e; ðA:8Þ

where sðmÞ denotes the set of triangular facets surrounding node m, ne is the normal vector to facet e and

1/3 is the value of the interpolation function attached to the node m at the centre of each surrounding facet.

Finally, the conservative normal vector at node m is the average of the normals of the surrounding facets

weighted by their surface:

~nm ¼ 1P
e2sðmÞ n

eSe
��� ���

X
e2sðmÞ

neSe: ðA:9Þ
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