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a b s t r a c t

In this paper we develop and analyze a unified approximation of the velocity–pressure
pair for the Stokes–Darcy coupled problem in a plane domain. It is well known that, stable
finite element approximations for the Stokes problem may not be appropriate for Darcy
problem and for the coupling of fluid flow (modeled by the Stokes equations) with porous
media flow (modeled by the Darcy equation), and therefore, different spaces are commonly
used for the discretizations of the Darcy and the Stokes problems. In this work we
proposed a modification of the Darcy problem which allows us to apply the classical Mini-
element to the whole coupled Stokes–Darcy problem. The proposed method is probably
one of the cheapest method for continuous approximation of the coupled system, has
optimal accuracy with respect to solution regularity, and has simple and straightforward
implementations. Numerical experiments are also presented, which confirm the excellent
stability and accuracy of our method.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The development of efficient numerical methods to approximate the solution to the Stokes problem [1–9] to the Darcy
problem [3,10–12] and, in particular, to the coupling of the fluid flow (modeled by the Stokes equation) with porous
media flow (modeled by the Darcy equation), with the appropriate Beavers–Joseph–Saffman interface conditions, has been
increasing in the last years (see [13–17] and the references therein) due to its importance in hydrology, biofluid dynamics
and indeed in many different problems involving filtration (see, for example, [18]).

It is well known that the discretization of the velocity and the pressure, for both Stokes and Darcy problems and the
coupled of them, has to be made in a compatible way in order to avoid instabilities. Since, usually, stable elements for
the free fluid flow cannot been successfully applied to the porous medium flow, most of the finite element formulations
developed for the Stokes–Darcy coupled problem are based on appropriate combinations of stable elements for the Stokes
equations with stable elements for the Darcy equations. There are a lot of papers considering different finite element spaces
in each flow region (see, for example, [13,14] and the references therein). In contrast to this, other articles use the same
finite element spaces in both regions by, in general, introducing some penalizing terms. For example, in [17], a unified
finite element has been formulated by using the Crouzeix–Raviart nonconforming element for the approximation of the
velocity and piecewise constant functions for the approximation of the pressure in both region and adding penalizing
terms corresponding to the jumps over the edges of the piecewise velocities, while in [16] the authors propose the same
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Fig. 1. Example of two-dimensional domainΩ .

nonconforming Crouzeix–Raviart element discretization on the entire domain which, is nonconforming in both the Stokes
domain and Darcy domain and also a penalizing term is added. On the other hand, in [19] the authors propose an alternative
formulation of the coupled problem which allows them use the classical Mini elements or Taylor–Hood elements. We are
also focused on the development of a unified discretization (different to those consider in [19]) where the Stokes and the
Darcy are approximated by using the same continuous finite element. Indeed, with this purpose in mind, we modified the
mixed formulation (following the ideas given in [20]) in such a way that, the new problem has the same solution as the
original and, independent of the mesh size, the stability condition for the new Stokes–Darcy problem reduces to the same
as the Stokes problem.

The goal of this work is to apply the classical Mini-element to the modified coupled 2D Stokes–Darcy problem, which
has simple and straightforward implementations. We prove that the formulation satisfies the discrete inf–sup conditions,
obtaining as a result optimal accuracy with respect to solution regularity. Numerical experiments are also presented, which
confirm the excellent stability and optimal performance of our method.

The rest of the paper is organized as follows. In Section 2we state the classical Stokes–Darcy coupled problem. In Section 3
we present the modified coupled Stokes–Darcy problem. Section 4 is devoted to the finite element discretization and the
error estimation. Finally, in Section 5, we present two numerical examples, in one the porous medium is entirely enclosed
within the fluid region while in the other the two regions, fluid and porous, are only connected by the interface.

2. Problem statement

We consider an open, bounded and polygonal domain Ω ⊂ R2 divided into two open subdomains with Lipschitz
continuous boundaries ΩS and ΩD, where the indices S and D stand for fluid and porous, respectively. We assume that
Ω = ΩS ∪ΩD,ΩS ∩ΩD = ∅ andΩS ∩ΩD = Γ so, Γ represents the interface between the fluid and the porous medium.
The remaining parts of the boundaries are denoted by ΓS = ∂ΩS \ Γ and ΓD = ∂ΩD \ Γ , as illustrated in Fig. 1.

We denote by nS the unit outward normal direction on ∂ΩS and by nD the normal direction on ∂ΩD, oriented outward.
On the interface Γ , we have nS = −nD.

The Stokes–Darcy coupled problem describes themotion of an incompressible viscous fluid occupying a regionΩS which
flows across the common interface into a porous medium living in another region ΩD saturated with the same fluid. The
mathematical model of this problem can be defined by two separate groups of equations and a set of coupling terms.

For any function v defined inΩ , taking into account that its restriction toΩS or toΩD could play a differentmathematical
role (especially their traces on Γ ), we define vS = v|ΩS and vD = v|ΩD .

InΩS , the fluid motion is governed by the Stokes equations for the velocity uS and the pressure pS :⎧⎨⎩
−µ∆uS + ∇pS = fS, inΩS,

div uS = 0, inΩS,

uS = 0, in ΓS,

(1)

where fS ∈ (L2(ΩS))2 represents the force per unit mass and µ > 0 the viscosity.
InΩD, the porous media flow motion is governed by Darcy’ law for the velocity uD and the pressure pD:⎧⎪⎨⎪⎩

µ

K
uD + ∇pD = fD, inΩD,

div uD = gD, inΩD,

uD · nD = 0, in ΓD,

(2)
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where fD ∈ (L2(ΩD))2 represents the force per unit mass, gD ∈ L2(ΩD) a source and K denoting the permeability tensor
reduced to a positive scalar in the isotropic case considered here.

In Γ , we consider the following boundary conditions (see, for example, [14]):⎧⎨⎩
uD · nD + uS · nS = 0,

pS nS − µ∇uS nS − pD nS − µ
α

√
K
(uS · t) t = 0, (3)

where the first equation representsmass conservation and the second is due to the balance of normal forces and the Beavers–
Joseph–Saffman condition, with ∇u =

(
∂ui
∂xj

)
1≤i,j≤2

, α a parameter determined by experimental evidence and t the tangent

vector on Γ (we recommend [21] for more details on the interface conditions).
We will denote with boldface the spaces consisting of vector value functions. The norms and seminorms in Hm(D), with

m an integer, are denoted by ∥ · ∥m,D and |·|m,D respectively and (·, ·)D denotes the inner product in L2(D) or L2(D) for any
subdomain D ⊂ Ω . The domain subscript is dropped for the case D = Ω . Let H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)},
H0(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω), v · nD = 0 on ΓD} and L20(Ω) = {q ∈ L2(Ω) :

∫
Ω
q = 0}.

We define the spaces

V = {v ∈ H(div,Ω) : vS ∈ H1(ΩS), v = 0 on ΓS, and v · nD = 0 on ΓD}

and

Q = L20(Ω),

with the norms ∥v∥V = (|v|21,ΩS
+ ∥v∥2

0,ΩD
+ ∥ div v∥2

0,ΩD
)
1
2 = (|v|21,ΩS

+ ∥v∥2
H(div,ΩD)

)
1
2 and ∥q∥Q = ∥q∥0 respectively.

Multiplying the first equation of (1) by a test function v ∈ V and the second one by q ∈ Q , integrating by parts overΩS
the terms involving∆uS and ∇pS , yield the variational form of Stokes equations:

µ

∫
ΩS

∇uS : ∇v − µ

∫
Γ

(∇uS nS) · vS −

∫
ΩS

div v pS +

∫
Γ

vS · nS pS =

∫
ΩS

fS · v ∀ v ∈ V,∫
ΩS

div uS q = 0 ∀ q ∈ Q .

We apply a similar treatment to the Darcy equations by testing the first equation of (2) with a smooth function v ∈ V
and the second one by q ∈ Q , integrating by parts over ΩD the terms involving ∇pD, yield the variational form of Darcy
equations:

µ

K

∫
ΩD

uD · v −

∫
ΩD

pD div v +

∫
Γ

vD · nD pD =

∫
ΩD

fD · v ∀ v ∈ V,∫
ΩD

divuD q =

∫
ΩD

gD q ∀ q ∈ Q .
(4)

Now, incorporating the boundary conditions (3) and taking into account that the vector valued functions in V have
(weakly) continuous normal components on Γ (see Theorem 2.5 of [22]), the mixed variational formulation of the coupled
problem (1)–(3) can be stated as follows [15,16]: Find (u, p) ∈ V × Q that satisfies{

a(u, v) + b(v, p) = F (v) ∀ v ∈ V,
b(u, q) = G(q) ∀ q ∈ Q ,

(5)

where the bilinear forms a(·, ·) and b(·, ·) are defined on V × V and V × Q , respectively, as:

a(u, v) = µ

∫
ΩS

∇u : ∇v + µ
α

√
K

∫
Γ

(uS · t) (vS · t) +
µ

K

∫
ΩD

u · v,

and

b(v, q) = −

∫
Ω

div v q.

By last, the linear forms F and G are defined as:

F (v) =

∫
ΩD

fD v +

∫
ΩS

fS v and G(q) = −

∫
ΩD

gD q.

It is easy to prove that a and b are continuous, b satisfies the continuous inf–sup condition and a is coercive on the null
space of b (see, e.g., Lemma 3.3 of [15]). It is also clear that F and G are continuous and bounded. Then, using the classical
theory of mixed methods (see, e.g., Theorem and Corollary 4.1 in Chapter I of [22]) it follows the well-posedness of the
continuous formulation (5) and so the following theorem holds.
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Theorem2.1. There exists a unique (u, p) ∈ V×Q solution to (5). In addition, there exists C, depending on the continuous inf–sup
condition constant for b, the coercivity constant (on the null space of b) for a and the boundedness constants for a and b, such that

∥u∥V + ∥p∥Q ≤ C{∥fS∥0,ΩS + ∥fD∥0,ΩD + ∥gD∥0,ΩD}.

Remark 2.1. We observe that the mixed variational formulation of the coupled problem (5) is equivalent to the weak
formulation (2.4) (and also (2.5)) of [15], with the particularity that, in our case, for any v ∈ H we have that

∫
Γ
(vS − vD) ·

nS pD = 0.

It is well known that the discretization of the velocity and the pressure, for both Stokes and Darcy problems, and the
coupled problem, has to be in a particular way to avoid instabilities (see, for example, [23]).

In fact, if we consider a Darcy problem in some domain D and finite element spaces Vh ⊂ H0(div,D) and Qh ⊂ L20(D), in
order to approximate velocity and pressure, the following two conditions have to fulfilled:

(1) ∃α > 0 : ∥vh∥2
0,D ≥ α∥vh∥2

H,D , ∀vh such that: (div vh, qh)D = 0, ∀ qh ∈ Qh.
(2) The LBB conditions, i.e., there exists β̂ > 0 such that

sup
0̸=vh∈Vh

(div vh, qh)D
∥vh∥H,D

≥ β̂∥qh∥0,D ∀ qh ∈ Qh.

Therefore, themaindifference to dealwith the coupledproblem is that,while in the Stokes problem the family of elements
has only to satisfy the inf–sup conditions, the Darcy problem has to fulfill these two compatibility conditions. Indeed, for
any function v ∈ H1(D) we have that ∥v∥1,D ≥ ∥v∥H,D , it is clear that, if the family of finite elements satisfies the inf–sup
condition related to the Stokes problem:

sup
0̸=vh∈Vh

(div vh, qh)D
∥vh∥1,D

≥ β̃∥qh∥0,D ∀ qh ∈ Qh,

also satisfy the LBB condition (2) but not necessary the condition (1), unless div(Vh) = Qh. Thus, stable finite element
approximations to the Stokes problem could not be appropriate for Darcy problem and, therefore, to the coupled problem
under consideration.

3. A modified coupled Stokes–Darcy problem

In this section we introduce a modification to the Darcy equation, with the purpose in mind of the development of a
unified discretization for the coupled problem, that is, the Stokes and Darcy parts be discretized using the same continuous
finite element spaces.

The modification that we apply to the Darcy equation follows the idea given in [20] for linear elliptic equations. Indeed,
we observe that taking the second equation of Darcy’ problem (2) we can write, for any v ∈ V,∫

ΩD

(div uD − gD) div v = 0. (6)

Then, by adding this equation to the first equation of the variational form given in (4), we get

µ

K

∫
ΩD

uD · v +

∫
ΩD

div uD div v −

∫
ΩD

pD div v +

∫
Γ

vD · nD pD

=

∫
ΩD

fD · v +

∫
ΩD

gD div v ∀ v ∈ V∫
ΩD

div uD q =

∫
ΩD

gD q ∀ q ∈ Q .

(7)

From now on, we work with this modified variational form of Darcy equations.
In the sameway that before, incorporating the boundary conditions (3) and remembering that, since v ∈ V, it has (weakly)

continuous normal components on Γ , the variational form of themodified Stokes–Darcy problem can be written as follows:
Find (u, p) ∈ V × Q satisfying{

ã(u, v) + b(v, p) = L(v) ∀ v ∈ V,
b(u, q) = G(q) ∀ q ∈ Q ,

(8)

where the bilinear forms ã(·, ·) and b(·, ·) are defined on V × V, V × Q , respectively, as:

ã(u, v) = µ

∫
ΩS

∇u : ∇v +
µ

K

∫
ΩD

u · v +

∫
ΩD

div u div v + µ
α

√
K

∫
Γ

(uS · t) (vS · t),
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and

b(v, q) = −

∫
Ω

div v q.

By last, the linear forms L and G are defined as:

L(v) =

∫
ΩD

fD v +

∫
ΩS

fS v +

∫
ΩD

gD div v and G(q) = −

∫
ΩD

gD q.

This problem has a unique solution. Indeed, when we considered problem (5), we saw that b was continuous and
satisfied the continuous inf–sup condition and Gwas continuous and bounded. It is clear that, with the modification that we
introduced, the new bilinear form ã is coercive and continuous and L is continuous and bounded. Then, applying the classical
theory of mixed methods it follows the well-posedness of the continuous formulation (8).

Theorem 3.1. There exists a unique (u, p) ∈ V × Q solution to (8). In addition, there exists a positive constant C̃ , depending on
the continuous inf–sup condition constant for b, the coercivity constant for ã and the boundedness constants for ã and b, such that

∥u∥V + ∥p∥Q ≤ C̃{∥fS∥0,ΩS + ∥fD∥0,ΩD + ∥gD∥0,ΩD}.

4. Finite element approximation of the modified Stokes–Darcy problem

In this section, we use thewell knownMINI-element, which has been introduced in [24], in order to approach the velocity
and the pressure in the whole domain. Taking into account the modification that we introduced in the section above, this
element (which is probably the cheapest continuous one for the approximation of the Stokes equation) can be successfully
applied to the Stokes–Darcy modified coupled problem.

Let {Th}h>0 be a family of triangulations ofΩ such that any two triangles in Th share at most a vertex or an edge and each
element T ∈ Th is in either ΩS or ΩD. Let T S

h and T D
h be the corresponding induced triangulations of ΩS and ΩD. For any

T ∈ Th, we denote by hT the diameter of T and ρT the diameter of the largest ball inscribed into T and ηT =
hT
ρT

. We assume
that the family of triangulations is regular, i.e., there exists η > 0 such that ηT ≤ η for all T ∈ Th and h > 0. We also assume
that the triangulation Th satisfies that: for T ∈ Th, we have that T and Γ share at most a vertex or an edge (in particular, T
cannot have two edges in Γ ).

Let Vh ⊂ V and Qh ⊂ Q be finite element spaces. The weak formulation (8) leads to the following discrete problem: Find
(vh, ph) ∈ Vh × Qh that satisfies{

ã(uh, vh) + b(vh, ph) = L(vh) ∀ vh ∈ Vh,

b(uh, qh) = G(qh) ∀ qh ∈ Qh.
(9)

The discretization is said to be uniformly stable if there exist constants δ, γ > 0, independent of h, such that

ã(vh, vh) ≥ δ∥vh∥2
V ∀ vh ∈ Vh,

sup
0̸=vh∈Vh

b(vh, qh)
∥vh∥V

≥ γ ∥qh∥Q ∀ qh ∈ Qh.
(10)

From now on, we will denote by C a generic positive constant, not necessarily the same at each occurrence, which may
depend on the mesh only through the parameter η.

For T ∈ Th, let bT be the standard cubic bubble given by:

bT =

{
δ1,T δ2,T δ3,T in T

0 inΩ \ T ,

where δ1,T , δ2,T and δ3,T denote the barycentric coordinates of T ∈ Th. It is easy to check that the bubble function satisfies:∫
T
bT = Ch2

T and ∥bT∥1,T ≤ C . (11)

For any subdomain D ⊆ Ω , k ∈ N, we denote by Pk(D) = {v ∈ C0(D) : v|T∈ Pk(T ) ∀ T ∈ Th ∩ D}.
We introduce the following notation

E = {all edges in Th}, N = {all vertices in Th},

and we denote by N the number of vertices on N .
Let A be a set, we define

EA = {ℓ ∈ E : ℓ ⊂ A}.

We decompose

E = EΩS ∪ EΩD ∪ EΓS ∪ EΓD ∪ EΓ .
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For n ∈ N we denote

ωn =

⋃
{T | T ∈ Th and n ∈ T }.

For any T ∈ Th we define

ωT =

⋃
{ωn | n is a vertex of T }.

For ℓ ∈ EΓ , we denote by TS and TD the two triangles sharing ℓ, with TS ∈ T S
h and TD ∈ T D

h , and by ωℓ = TS ∪ TD. We
enumerate the vertices of TS and TD so that the vertices of ℓ are numbered first, i.e., let e1 and e2 be the vertices of ℓwe denote
by eS3 and eD3 the vertices inΩS andΩD respectively. Now, we consider the classical edge-bubble function bℓ defined by:

bℓ =

{
δe1,Tiδe2,Ti in Ti, i = S or D,

0 inΩ \ ωℓ,

and we define the space associated to bℓ by

B3,ℓ := {vh ∈ C0(Ω) : vh|ωℓ= bℓψωℓ , ∀ ℓ ∈ EΓ , with ψωℓ ∈ C0(ωℓ), ψωℓ |Ti∈ P1(Ti)

and ψωℓ (e
i
3) = 0, i = S or D}.

On the other hand, the space associated to bT is given by

B3 := {vh ∈ C0(Ω) : vh|T= cTbT , cT ∈ R, ∀ T ∈ Th}.

The finite element spaces for velocities and pressures are

Vh := {vh ∈ (C0(ΩS))2, vh ∈ (C0(ΩD))2 : vh|T∈ (P1(T ) ⊕ B3)2 ∀ T ∈ Th : ET ∩ EΓ = ∅,

and vh|T∈ (P1(T ) ⊕ B3)2 ⊕ B3,ℓ|T nℓ ∀ T ∈ Th : ET ∩ EΓ = ℓ,

vh = 0 on ΓS, vh · nD = 0 on ΓD and vDh · nD + vSh · nS = 0 on Γ }

and

Qh := {qh ∈ C0(ΩS), qh ∈ C0(ΩD) : qh|T∈ P1(T ) ∀ T ∈ Th} ∩ L20(Ω).

We observe that, bases for the space B3,ℓ can be easily obtained, for example, as follows: Let T̂ be the classical reference
triangle, i.e. the triangle of vertices (0, 0), (1, 0) and (0, 1). For each triangle T ⊂ ωℓ, we denote by e1, e2 and e3 the vertices
of T , such that e1 and e2 are the vertices of ℓ and e3 is the vertex of T that is not on Γ . If we denote by (xj, yj), 1 ≤ j ≤ 3,
the coordinates of the vertices ej of T , then the affine transformation from T̂ onto the triangle of vertices e1, e2 and e3 can be
defined as:

F (x̂, ŷ) =
(
x3 + (x1 − x3)x̂ + (x2 − x3)ŷ, y3 + (y1 − y3)x̂ + (y2 − y3)ŷ

)
,

we observe that F maps the edge (1, 0)(0, 1) into ℓ. In T̂ we consider the Lagrange bases β̂1 and β̂2 such that: β̂1( 14 ,
3
4 ) = 1,

β̂1( 34 ,
1
4 ) = 0 and β̂1(0, 0) = 0, and β̂2( 14 ,

3
4 ) = 0, β̂2( 34 ,

1
4 ) = 1 and β̂2(0, 0) = 0. Therefore, the corresponding bases

functions in T are βT ,i = β̂i ◦ F−1, i = 1, 2.
Then, we define the cubic bubbles vℓ,1 and vℓ,2 such that, vℓ,i|T= δe1,T δe2,TβT ,i, i = 1, 2 (see Fig. 2).
We remark that the velocity space Vh consists of all functions of the form

v = v0 +

∑
T∈Th

cT bT +

∑
ℓ∈EΓ

(αℓ,1vℓ,1nℓ + αℓ,2vℓ,2nℓ),

where v0 is a piecewise linear vector field which are continuous onΩD andΩS , bT is a bubble function on the triangle T , cT
is a constant vector, vℓ,1 and vℓ,2 are the bubble functions defined above with support on ωℓ, and αℓ,i, i = 1, 2 are constants.

The corresponding pressure space Qh consists of continuous piecewise linear functions onΩD andΩS .
We notice that although the added bubble functions are continuous on Ω , since the piecewise linear functions are not

supposed continuous onΩ , all functions in Vh and Qh are allowed to be discontinuous across Γ .
We use the well known mixed finite element theory (see, e.g., Lemma 1.1 of [22]) to get the existence and uniqueness of

a finite element solution of the discrete problem (9) for these spaces. Indeed, in order to prove the discrete inf–sup (10), we
seek for an operator Πh : H1

0(Ω) −→ Vh such that{
b(v − Πhv, qh) = 0 ∀ v ∈ H1

0(Ω) ∀ qh ∈ Qh

∥Πhv∥V ≤ C∥v∥1

where ∥v∥1 = (∥v1∥2
1 + ∥v2∥

2
1)

1
2 .

To define the operator Πh we use the Clèment’s interpolator.
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Fig. 2. The bubble functions vℓ,1|T and vℓ,2|T (top) and vℓ,1 and vℓ,2 on ωℓ (bottom).

For any n ∈ N and v ∈ L2(ωn), we can definePωn : L2(ωn) → P0(ωn) the orthogonal projection of v on P0(ωn) with respect
to the internal product in L2(ωn) that fulfills∫

ωn

v p0 =

∫
ωn

Pωn (v) p0 ∀ p0 ∈ P0(ωn),

and therefore

Pωn (v) =
1

|ωn|

∫
ωn

v.

Let {φi}i∈{1,···,N} be the Lagrange basis of Th, i.e., given a node ni, φi(ni) = 1 and it is zero at the rest of the nodes of the
mesh Th.

For any v = (v1, v2) ∈ L2(Ω) and n ∈ N we can define Pωn (v) = (Pωn (v1),Pωn (v2)). Then, let us consider a Clèment’s
interpolator as:

Iv(x) =

N∑
i=1

φi(x)Pωni
(v).

In order to construct the global operator Πh, we first impose a condition on each vertex n ∈ N according to its location
in the domain.

Πhv(n) =

{
Iv(n) = Pωn (v) if n ∈ ΩS, n ∈ ΩD or n ∈ Γ ◦

0 other case,

where Γ ◦ denotes, as usual, the interior of Γ .
We observe that Πhv = ((Πhv)1, (Πhv)2) so, in order to simplify notation, we call Πh,jv = (Πhv)j for 1 ≤ j ≤ 2.
Now, for each ℓ ∈ EΓ , we have two degrees of freedommore on ℓ and so we can impose that∫

ℓ

Πhv · nℓ γ =

∫
ℓ

vD · nℓ γ , ∀ γ ∈ P1(ℓ),

where nℓ stands for the unit normal vector on ℓ oriented outwardΩD.
The other condition, related to the bubble on each triangle T ∈ Th, that we consider to define the operator is:∫

T
Πh,jv =

∫
T
vj j = 1, 2, (12)



M.G. Armentano and M.L. Stockdale / Computers and Mathematics with Applications 77 (2019) 2568–2584 2575

Now, we write a formula for the global operator on each T ∈ Th. Note that there are two cases to consider:
(a) T ∈ Th : ET ∩ EΓ = ∅.
(b) T ∈ Th : ET ∩ EΓ = ℓ.

(a) For any triangle T ∈ Th has no sides on Γ , for both coordinates of the operators we are using the space P1 ⊕ B3. We
denote by ni, 1 ≤ i ≤ 3, its vertices and by βi the Lagrange basis of T , i.e., βi(ni) = 1 and it is zero at the rest of the nodes of
T . For each j = 1, 2, we observe that the operator restricted to T has the form:

Πh,jv|T=
3∑

i=1

α
j
i βi|T+γ

j bT ,

where

α
j
i =

{
Pωni

(vj) if ni ∈ ΩS, ni ∈ ΩD or ni ∈ Γ ◦,

0 if ni ∈ Γ S or ni ∈ ΓD,

and the constant γ j is obtaining by using (12), i.e.,
3∑

i=1

α
j
i

∫
T
βi + γ j

∫
T
bT =

∫
T
vj, j = 1, 2,

and so,

γ j
=

∫
T vj −

∑3
i=1 α

j
i

∫
T βi∫

T bT
, j = 1, 2.

Then,

Πh,jv|T=
3∑

i=1

α
j
iβi|T+

(∫
T vj −

∑3
i=1 α

j
i

∫
T βi∫

T bT

)
bT .

Wemodify the projector (see, e.g., Chapter II section 6 of [25]) in order to consider the different conditions imposed over
the vertices when we define the operator

P̃ωni
(vj) =

{
Pωni

(vj) if ni ∈ ΩS , ni ∈ ΩD or ni ∈ Γ ◦,

0 if ni ∈ Γ S or ni ∈ ΓD,

and therefore P̃ωni
(v) = (P̃ωni

(v1), P̃ωni
(v2)).

Next, we use the following modified interpolator

Ĩv(x) =

N∑
i=1

φi(x)P̃ωni
(v).

Using the previously defined we can rewrite the operator as

Πh,jv(x)|T= Ĩjv(x)|T+

(∫
T (vj − Ĩjv(x)|T )∫

T bT

)
bT (x). (13)

(b) Now, let T ∈ Th be a triangle with a side on Γ , i.e., ET ∩ EΓ = ℓ. For each j = 1, 2, we observe that the operator
restricted to T has the form:

Πh,jv|T=
3∑

i=1

α
j
i βi|T+γ

j bT + bℓψωℓ |Tnℓ,j,

where

α
j
i =

{
Pωni

(vj) if ni ∈ ΩS, ni ∈ ΩD or ni ∈ Γ ◦,

0 if ni ∈ Γ S or ni ∈ ΓD.

We define, as above, the corresponding operator

P̃ωni
(vj) =

{
Pωni

(vj) if ni ∈ ΩS, ni ∈ ΩD or ni ∈ Γ ◦,

0 if ni ∈ Γ S or ni ∈ ΓD,
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and the interpolator

Ĩv(x) =

N∑
i=1

φi(x)P̃ωni
(v),

with P̃ωni
(v) = (P̃ωni

(v1), P̃ωni
(v2)).

Now, in order to determinate γ j and vℓ = bℓψωℓ , we first observe that in this case, we have two degrees of freedommore
on ℓ and we can impose that∫

ℓ

Πhv · nℓ γ =

∫
ℓ

vD · nℓ γ , ∀ γ ∈ P1(ℓ), (14)

where nℓ stands for the unit normal vector on ℓ oriented outwardΩD. Then, γ j is obtained such that (12) holds.
Therefore, for each j = 1, 2, we observe that the operator restricted to T has the form:

Πh,jv(x)|T= Ĩjv(x)|T+

(∫
T (vj − Ĩjv) −

∫
T vℓnℓ,j∫

T bT

)
bT (x) + vℓ(x)|Tnℓ,j. (15)

where, in view of condition (14), vℓ is such that∫
ℓ

vℓ γ =

∫
ℓ

(vD − Ĩv) · nℓ γ , ∀ γ ∈ P1(ℓ), (16)

with, for T ⊂ ωℓ, vℓ|T= δe1,T δe2,T ψωℓ |T . It is easy to prove that vℓ, i.e, ψωℓ there exists and is unique. First, we note
that the number of conditions defining ψωℓ (two because γ ∈ P1(ℓ)) equals to the degrees of freedom of ψωℓ . In order
to show the existence of ψωℓ , it is enough to prove uniqueness. So, take ϕℓ = ψωℓ |ℓ, we have that ϕℓ ∈ P1(ℓ) and∫
ℓ
δe1,T δe2,T ϕℓ γ = 0 ∀ γ ∈ P1(ℓ), in particular we can take γ = ϕℓ and then,

∫
ℓ
δe1,T δe2,T ϕ

2
ℓ = 0. Therefore, ϕℓ = 0

and so, ψωℓ is zero in ℓ. Then, since ψωℓ is also zero in the vertices of ωℓ does not lie on ℓ, we conclude that ψωℓ ≡ 0 as we
wanted to see.

Now, we have to verify that the operator Πh satisfies

b(v − Πhv, qh) = 0, ∀ v ∈ H1
0(Ω), ∀ qh ∈ Qh.

Considering that

b(v, qh) = −

∫
ΩD

div v qh −

∫
ΩS

div v qh,

we have that

b(v − Πhv, qh) = −

∫
ΩD

div (v − Πhv) qh −

∫
ΩS

div (v − Πhv) qh.

Now, adding on all triangles in both domains, integrating by parts on each triangle we get

b(v − Πhv, qh) = −

∑
T⊂ΩD

∫
T
div (v − Πhv) qh −

∑
T⊂ΩS

∫
T
div (v − Πhv) qh

=

∑
T⊂ΩD

(∫
T
(v − Πhv)∇qh −

∫
∂T

qh(v − Πhv) · nD

)
+

∑
T⊂ΩS

(∫
T
(v − Πhv)∇qh −

∫
∂T

qh(v − Πhv) · nS

)
.

For any ℓ ∈ EΩS ∪ EΩD we choose a unit normal vector nℓ and denote the two triangles sharing this edge Tin and Tout, with
nℓ pointing outwards Tout. We define

[[v · nℓ]]ℓ :=
(
v|Tout

)
· nℓ −

(
v|Tin

)
· nℓ,

which corresponds to the jump of the normal component of v across the edge ℓ. Notice that this value is independent of the
chosen direction of the normal vector nℓ.

Rewriting the integrals on the borders of the triangles, we obtain

b(v − Πhv, qh) =

∑
T⊂ΩD

∫
T
(v − Πhv)∇qh +

∑
T⊂ΩS

∫
T
(v − Πhv)∇qh

−
1
2

∑
T⊂ΩD

∑
ℓ∈ET∩ΩD

∫
ℓ

[[(v − Πhv) · nℓ]]ℓ qh −

∑
ℓ∈EΓD

∫
ℓ

(v − Πhv) · nD qh
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−

∑
ℓ∈EΓ

[

∫
ℓ

(vD − Πhv) · nD qD,h +

∫
ℓ

(vS − Πhv) · nS qS,h]

−
1
2

∑
T⊂ΩS

∑
ℓ∈ET∩ΩS

∫
ℓ

[[(v − Πhv) · nℓ]]ℓ qh −

∑
ℓ∈EΓS

∫
ℓ

(v − Πhv) · nS qh

= I + II + III + IV + V + VI + VII.

We analyze the value of each of the previous terms:

(I–II) As qh|T∈ P1, their gradients are constant and by (12) we have that∫
T
(v − Πhv)∇qS,h = 0 ∀ T ⊂ ΩS,∫

T
(v − Πhv)∇qD,h = 0 ∀ T ⊂ ΩD.

(IV–VII) If ℓ ∈ EΓS , v = 0 = Πhv and we have
∫
ℓ
(v − Πhv) · nS qh = 0. On the other hand, if ℓ ∈ EΓD , v = 0 = Πhv and so∫

ℓ
(v − Πhv) · nD qh = 0.

(III–VI) For the continuity of the normal component of v and Πhvwe have that∫
ℓ
[[(v − Πhv) · nℓ]]ℓ qh = 0, for any ℓ ∈ EΩS ∪ EΩD .

(V) If ℓ ∈ EΓ , as v ∈ H1
0(Ω) we have that

∫
ℓ
(vS − Πhv) · nS qS,h =

∫
ℓ
(Πhv − vD) · nD qS,h. Thus, to prove that∫

ℓ
(vD − Πhv) · nD qD,h +

∫
ℓ
(vS − Πhv) · nS qS,h = 0, it is enough to see:∫

ℓ

Πhv · nD δ =

∫
ℓ

vD · nD δ ∀ δ ∈ P1(ℓ),

which holds from the property (14). Thus, we can ensure that the term V vanish.

As a consequence we can conclude that b(v − Πhv, qh) = 0 ∀ v ∈ H1
0(Ω) ∀ qh ∈ Qh.

Now, we need to prove that there exists a constant C > 0, independent of h, such that

∥Πhv∥V = (|Πhv|21,ΩS
+ ∥Πhv∥2

H(div,ΩD)
)
1
2 ≤ C∥v∥1.

First we analyze |Πhv|1,ΩS
.

|Πhv|21,ΩS
= |Πh,1v|21,ΩS

+ |Πh,2v|21,ΩS
.

Now, we can calculate the seminorm of the operators

|Πh,jv|21,ΩS
=

∑
T⊂ΩS :ET∩EΓ =∅

|Πh,jv|21,T +

∑
T⊂ΩS :ET∩EΓ ̸=∅

|Πh,jv|21,T , j = 1, 2.

First, we analyze the term I =
∑

T⊂ΩS :ET∩EΓ =∅
|Πh,jv|21,T . From (13) we have that

I ≤ C

⎛⎜⎝ ∑
T⊂ΩS :ET∩EΓ =∅

|Ĩjv|
2
1,T +

∑
T⊂ΩS :ET∩EΓ =∅

⏐⏐⏐ ∫T (vj − Ĩjv)
⏐⏐⏐2

(
∫
T bT )2

|bT |
2
1,T

⎞⎟⎠ .
Applying (11) we obtain

I ≤ C

⎛⎝ ∑
T⊂ΩS :ET∩EΓ =∅

|Ĩjv(x)|
2
1,T +

∑
T⊂ΩS :ET∩EΓ =∅

1
h4
T

⏐⏐⏐ ∫
T
(vj − Ĩjv(x))

⏐⏐⏐2
⎞⎠ . (17)

Now, for the second term we have that⏐⏐⏐ ∫
T
(vj − Ĩjv(x))

⏐⏐⏐ ≤

∫
T
|vj − Ĩjv(x)| ≤ |T |

1
2 ∥vj − Ĩjv(x)∥0,T .

Using |T |
1
2 ∼ hT and considering the approximation property given in the page 84 of [25] we obtain⏐⏐⏐ ∫

T
(vj − Ĩjv(x))

⏐⏐⏐ ≤ Ch2
T∥vj∥1,ωT .

For the first term in (17) we observe that, fixed i, 1 ≤ i ≤ 3, since the gradient of P̃ωni
(vj) is zero, for j = 1, 2, applying an

inverse estimate (see, e.g., Lemma 3.1 of [26]) and the previous approximation property we get

|Ĩjv(x)|1,T = |Ĩjv(x) − P̃ωni
(vj)|1,T ≤ C

1
hT

∥Ĩjv(x) − P̃ωni
(vj)∥0,T
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≤ C
1
hT

(
∥Ĩjv(x) − vj∥0,T + ∥vj − P̃ωni

(vj)∥0,T

)
≤ C∥vj∥1,ωT + C

1
hT

∥vj − P̃ωni
(vj)∥0,T .

Considering the approximation property given in the page 85 of [25] we get that

∥vj − P̃ωni
(vj)∥0,T ≤ Chωni

|vj|1,ωni
,

then

|Ĩjv(x)|1,T ≤ C∥vj∥1,ωT + C
hωni

hT
|vj|1,ωni

.

Since hωni
≤ ChT (see, e.g., Lemma 1 of [27])

|Ĩjv(x)|1,T ≤ C∥vj∥1,ωT .

Thus, we conclude that, as the number of triangles in a neighborhood ωni is bounded by a uniform constant,

I ≤ C
∑

T⊂ΩS :ET∩EΓ =∅

∥vj∥
2
1,ωT

≤ C∥vj∥
2
1 ≤ C∥v∥2

1.

Now, we analyze the term II =
∑

T∈ΩS :ET∩EΓ ̸=∅
|Πh,jv|21,T , i.e., the case in which T has only one side on the interface that

we denoted by ℓ.
From (15) we have that

II ≤ C

( ∑
T⊂ΩS :ET∩EΓ ̸=∅

|Ĩjv|
2
1,T +

∑
T⊂ΩS :ET∩EΓ ̸=∅

⏐⏐⏐ ∫T (vj − Ĩjv)
⏐⏐⏐2 +

⏐⏐⏐ ∫T vℓnℓ,j⏐⏐⏐2
(
∫
T bT )2

|bT |
2
1,T

+

∑
T⊂ΩS :ET∩EΓ ̸=∅

|vℓnℓ,j|21,T

)
. (18)

We observe that vℓ|T= δe1,T δe2,Tψωℓ |T and ψωℓ can be obtained by solving the non singular system (16).
More precisely, since for each T ⊂ ωℓ, the functionψωℓ |T can be written asψωℓ |T= αℓ,1βT ,1 +αℓ,2βT ,2 (with βT ,j, j = 1, 2,

the Lagrange basis defined above), if we denote by βωℓ,j the continuous functions defined in ωℓ such that βωℓ,j|T= βT ,j,
j = 1, 2, an easy calculation shows that

|αℓ,j| ≤
C
|ℓ|

max
j=1,2

⏐⏐⏐⏐∫
ℓ

(v − Ĩv(x)) · nℓ βωℓ,j

⏐⏐⏐⏐
and thus,∫

T
(vℓnℓ,j)2 =

∫
T
(δe1,T δe2,T ψωℓnℓ,j)

2
=

∫
T

(
(αℓ,1δe1,T δe2,T βT ,1(x) + αℓ,2δe1,T δe2,T βT ,2(x))nℓ,j

)2
≤ C max

i=1,2
|αℓ,i|

2
∥δe1,T δe2,T∥

2
0,T

≤ C
1
|ℓ|

∥v − Ĩv(x)∥2
0,ℓ∥δe1,T δe2,T∥

2
0,T

≤ C
|T |

|ℓ|
∥v − Ĩv(x)∥2

0,ℓ ≤ Ch2
T∥v∥

2
1,ωT

where we use that
∫
T δ

n1
e1,T
δ
n2
e2,T

dx =
n1!n2!2!

(n1+n2+2)! |T | and ∥v − Ĩv(x)∥0,ℓ ≤ C |ℓ|
1
2 ∥v∥1,ωT (see, for example, [25,28]).

Hence, |
∫
T vℓnℓ,j| ≤ |T |

1
2 ∥vℓnℓ,j∥0,T ≤ Ch2

T∥v∥1,ωT . Moreover, by using a classical inverse inequality, we get

|vℓnℓ,j|1,T ≤ C
1
hT

∥vℓnℓ,j∥0,T ≤ C∥v∥1,ωT .

Therefore, by using these estimations in the expression (18) of the operator togetherwith the fact that |Ĩjv|1,T ≤ C∥vj∥1,ωT

and
⏐⏐⏐ ∫T (vj − Ĩjv)

⏐⏐⏐ ≤ Ch2
T∥vj∥1,ωT as we proved above, we can conclude that

|Πhv|1,ΩS
≤ C∥v∥1.

Finally, we want to estimate ∥Πhv∥H(div,ΩD)
.

Since ∥Πhv∥H(div,ΩD)
≤ ∥Πhv∥1,ΩD , with the same analysis to the previous one for |Πh,jv|21,ΩS

, we can conclude that

∥Πhv∥1,ΩD ≤ C∥v∥1.
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Then, we have the following results.

Lemma 4.1. The operator Πhv is bounded: There exists a positive constant C such that

∥Πhv∥V ≤ C∥v∥1.

Lemma 4.2. Discrete Inf-Sup Condition: There exists a positive constant β such that

sup
0̸=vh∈Vh

b(vh, qh)
∥vh∥V

≥ β∥qh∥Q ∀ qh ∈ Qh.

Proof. Let qh ∈ Qh, it is a well known result (see, e.g., Corollary 2.4 in Chapter I of [22]) that there exists a vector valued
function v ∈ H1

0(Ω) and a constant C1 > 0, independent of qh such that ∇ · v = −qh and ∥v∥1 ≤ C1∥qh∥0.
By the definition of Πhv, we have b(v − Πhv, qh) = 0. Then, Lemma 4.1 implies

b(Πhv, qh) = b(v, qh) = ∥qh∥2
0 ≥

1
C1

∥v∥1∥qh∥0 ≥
1

C C1
∥Πhv∥V∥qh∥0,

which completes the proof with β = (C C1)−1. □

Considering that the bilinear form ã is coercive and continuous, b is continuous and satisfies the discrete inf–sup condition,
together with the abstract theory of mixed problems [6], immediately implies the following theorem.

Theorem 4.1. There exists a unique solution (uh, ph) ∈ Vh × Qh to the problem (9).

Theorem 4.2. Let (u, p) ∈ V × Q be the solution of the weak formulation (8) of the coupled problem. Let (uh, ph) ∈ Vh × Qh be
the solution of the discrete problem (9). Let the finite element spaces be chosen as in Section 4. Then, there exists a constant C such
that:

∥u − uh∥V + ∥p − ph∥Q ≤ C{ inf
vh∈Vh

∥u − vh∥V + inf
qh∈Qh

∥p − qh∥Q }.

Corollary 4.1. Let (u, p) be the solution of the coupled problems (1)–(2) together with the interface conditions (3) such that
u ∈ V and p ∈ Q are smooth enough, that the norms on the right hand side of (19) are finite for some r1, r2 ∈ (0, 1]. Then, the
discrete solution (uh, ph) of problem (9) satisfies the error estimation

∥u − uh∥V + ∥p − ph∥Q ≤ C{hr1∥u∥1+r1,ΩS + hr2∥u∥1+r2,ΩD + h(|p|1,ΩS
+ |p|1,ΩD

)}. (19)

5. Numerical experiments

In this sectionwe present some test cases to show the good performance of ourmethod.We defined the individual errors
by,

e0(pS) = ∥pS − pS,h∥0,ΩS e0(pD) = ∥pD − pD,h∥0,ΩD

e0(vS) = ∥vS − vS,h∥0,ΩS e0(vD) = ∥vD − vD,h∥0,ΩD

e0(div vS) = ∥div(vS − vS,h)∥0,ΩS e0(div vD) = ∥div(vD − vD,h)∥0,ΩD

e1(vS) = |vS − vS,h|1,ΩS
e1(vD) = |vD − vD,h|1,ΩD

and the rates of convergence given by,

ri(□) =

log( ei(□)
e′i(□) )

log( h
h′ )

□ ∈ {vS, vD, div vS, div vD, pS, pD} and i = 0, 1

where h and h′ denote two consecutive mesh-sizes with errors ei and e′

i. Using the previous definition of ri, we present for
the first example, in Tables 1 and 2, the convergence history for a set of shape regular triangulations of the domain and,
in Tables 3 and 4, the corresponding for the second one. For simplicity, all the parameters such as K , α and µ are set to
1. We mention that, since is difficult to construct examples satisfying the entire coupled Stokes–Darcy problem (1)–(3) (in
particular, the homogeneous interface conditions (3)), the numerical experiments could include nonhomogeneous terms for
the interface conditions and therefore conduce to modify (only) the right-hand side in (8).

We also comment that, in practice, mass conservation andNeumann condition have to be imposed in aweakway. Indeed,
when we are assembling the system matrix we must add equations that ensures the normal continuity of the velocity and
the boundary condition, i.e.,

∫
Γ
(vDh · nD + vSh · nS) γ = 0 and

∫
ΓD

vDh · nD γ = 0, ∀ γ ∈ {C0(Γ ) : γ |ℓ∈ P1(ℓ)} .
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Table 1
Mesh-sizes, errors, and rates of convergence (Example 1).
h e0(vS ) r0(vS ) e0(vD) r0(vD) e0(pS ) r0(pS ) e0(pD) r0(pD)

0.0625 0.00007 2.1274 0.0112 2.3051 0.0069 1.8767 0.0093 1.9248
0.0313 0.00002 2.0078 0.0028 2.0194 0.0020 1.7874 0.0024 1.9266
0.0156 0.000004 2.0020 0.0008 1.7002 0.0006 1.6937 0.0007 1.8263

Table 2
Mesh-sizes, errors, and rates of convergence (Example 1).
h e0(div vS ) r0(div vS ) e0(div vD) r0(div vD) e1(vS ) r1(vS ) e1(vD) r1(vD)
0.0625 0.0123 1.0084 0.0224 1.4040 0.0188 1.0109 0.4832 1.2828
0.0313 0.0061 1.0023 0.0109 1.0416 0.0094 1.0026 0.2078 1.2177
0.0156 0.0031 1.0009 0.0055 0.9781 0.0047 1.0008 0.1009 1.0415

Fig. 3. vS and vS,h (Example 1).

Fig. 4. pS and pS,h (Example 1).

In the first example we consider the regions ΩS = (0, 1
2 ) × (0, 1) and ΩD = ( 12 , 1) × (0, 1). The interface, Γ , is the

line x =
1
2 . We select the right-hand terms fS , gS =: div uS , fD, gD and the boundary conditions according to the analytical

solution given by

uS(x, y) =

(
xy(1 − y)

x2(1 − y)sin(y)

)
uD(x, y) =

(
2xy(1 − y)(1 − x)

xy2(1 − y)

)
pS(x, y) = 12x2ey pD(x, y) = 16xy3 − e − 2.

In this first example it is satisfied that uD · nD = 0 in ΓD and uD · nD + uS · nS = 0 in Γ .
In Figs. 3 and 5 we show the approximate and exact values of the velocities and in Figs. 4 and 6 of the pressures. It is clear

from these figures that the finite element spaces used provide very accurate approximations to the unknowns.
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Fig. 5. vD and vD,h (Example 1).

Fig. 6. pD and pD,h (Example 1).

Table 3
Mesh-sizes, errors, and rates of convergence (Example 2).
h e0(vS ) r0(vS ) e0(vD) r0(vD) e0(pS ) r0(pS ) e0(pD) r0(pD)

0.0884 0.0046 2.0636 0.0491 0.8073 0.1937 1.4637 0.0049 1.2839
0.0442 0.0011 2.0480 0.0267 0.8809 0.0683 1.5030 0.0020 1.3002
0.0221 0.0003 2.0216 0.0140 0.9324 0.0241 1.5046 0.0008 1.3226

The purpose of this second example, which matches with Example 1 in [14], is to confirm the good performance of
our mixed finite element scheme in comparison with other stable elements. Let ΩD = (− 1

2 ,
1
2 ) × (− 1

2 ,
1
2 ) and ΩS =

(−1, 1) × (−1, 1) \ ΩD be a porous medium completely surrounded by a fluid. The particularity of this example is that
there is no ΓD because the boundary ofΩD represents the interface, Γ . We set the appropriate forcing term fS and the source
gD, such that the following solution to the Stokes–Darcy coupled problem, with fD = 0, is exact

uS(x, y) =

(
−4(x2 − 1)2(y2 − 1)y
4(x2 − 1)(y2 − 1)2x

)
pS(x, y) = −sin(x)ey pD(x, y) = −sin(x)ey.

Figs. 7 and 8 show, respectively, the approximate and exact velocities and the approximate and exact values of the
pressure for the Stokes region, while Figs. 9 and 10 display the corresponding for the Darcy region. Tables 3 and 4, which can
be compared with Table 2 in [14], show that optimal rate of convergence can be also reached with our method.

We also observe that, in the two examples under consideration, the rate of convergence provided by Corollary 4.1 is
attained by all the unknowns.

We emphasize that the numerical results confirm the good performance of the mixed finite element scheme with Mini
element for the Stokes–Darcy coupled problem. We end this paper by mentioning that, the ideas used here for numerical
approximation of the coupled problem, could be successfully applied (with perhaps eventual technical difficulties) to another
family of elements that are known to be stable for the Stokes problem and it will be subject of future work.
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Table 4
Mesh-sizes, errors, and rates of convergence (Example 2).
h e0(div vS ) r0(div vS ) e0(div vD) r0(div vD) e1(vS ) r1(vS ) e1(vD) r1(vD)
0.0884 0.2905 0.9892 0.0437 1.2140 0.9110 0.9935 0.2160 0.6935
0.0442 0.1449 1.0034 0.0189 1.2056 0.4558 0.9990 0.1478 0.5473
0.0221 0.0723 1.0037 0.0086 1.1382 0.2278 1.0001 0.1051 0.4925

Fig. 7. vS and vS,h (Example 2).

Fig. 8. pS and pS,h (Example 2).

Fig. 9. vD and vD,h (Example 2).
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Fig. 10. pD and pD,h (Example 2).
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