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Optimal Cycle Program of Traffic Lights
With Particle Swarm Optimization

José Garcı́a-Nieto, Ana Carolina Olivera, and Enrique Alba

Abstract—Optimal staging of traffic lights, and in particular
optimal light cycle programs, is a crucial task in present day cities
with potential benefits in terms of energy consumption, traffic
flow management, pedestrian safety, and environmental issues.
Nevertheless, very few publications in the current literature
tackle this problem by means of automatic intelligent systems,
and, when they do, they focus on limited areas with elementary
traffic light schedules. In this paper, we propose an optimization
approach in which a particle swarm optimizer (PSO) is able to
find successful traffic light cycle programs. The solutions obtained
are simulated with simulator of urban mobility, a well-known
microscopic traffic simulator. For this study, we have tested two
large and heterogeneous metropolitan areas with hundreds of
traffic lights located in the cities of Bahı́a Blanca in Argentina
(American style) and Málaga in Spain (European style). Our
algorithm is shown to obtain efficient traffic light cycle programs
for both kinds of cities. In comparison with expertly predefined
cycle programs (close to real ones), our PSO achieved quantitative
improvements for the two main objectives: 1) the number of vehi-
cles that reach their destination and 2) the overall journey time.

Index Terms—Particle swarm optimization, programming
cycles of traffic lights, simulator of urban mobility (SUMO).

I. Introduction

POLLUTION, congestion, security, parking, and many
other problems derived from vehicular traffic are present

every day in most cities around the world. Since changes in
urban area infrastructure are usually not possible, researchers
often agree that a correct staging of traffic lights can help
to reduce these problems by improving the flow of vehicles
through the cities [1]–[3]. Nevertheless, as traffic lights are
installed in cities and their number grows, their joint pro-
gramming becomes more complex due to the huge number
of combinations that appear, and hence, the necessity of
implementing automatic systems to optimally program the
cycles of traffic lights is beyond doubt.
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In this sense, current research efforts in the field of auto-
matic traffic control signals are directed to two main initia-
tives. On the one hand, automatic models of adaptation of
signal control are designed [4]–[6] to change cycle program
duration throughout the day as vehicles in queues demand
these changes. The operation of these kinds of tools is directly
related to the sensor system and real-time computation of
the traffic flow. Although these tools successfully perform in
several cities around the world [4], [7], the real management
of the traffic network has a high operational cost and the real
world generally tends to repeat traffic flow patterns (rush hour,
holidays, etc.).

On the other hand, modern simulators [8]–[10] are very
useful for helping in traffic management, since they pro-
vide researchers with an immediate and continuous source
of information about traffic flow. In addition, economical
issues are also taken into account in this kind of research,
since the use of real traffic tests implies the necessity of
additional staff and sensoring platforms. Many studies in
traffic flow simulation have been performed representing both
macroscopic [1] and microscopic [2], [11] traffic views. Over
the past few years, efforts have concentrated on combining an
accurate microscopic modeling of traffic flow [2], [9] and the
programming of suitable traffic light cycles [12]. Accordingly,
the use of intelligent methods has proven to be useful for
the optimization of programming traffic light cycles [2], [13].
However, in general, authors have addressed specific urban
areas with few intersections and a small number of traffic
lights (from 1 to 4 intersections with around two traffic
lights controlling each intersection) [14], and most of them
consist of ad hoc algorithms designed for only one specific
instance [2], [13]. The use of intelligent techniques for large
and heterogeneous study cases is still an open issue [15]. It is
a complex problem since the greater the number of adjacent
intersections, the greater the interaction between the traffic
lights (which increases the complexity of the problem by
introducing a high epistasis between variables).

All this has motivated us to propose a technique based on a
particle swarm optimizer (PSO) [16]–[18] that will be shown
to find successful traffic light cycle programs coupled with
simulator of urban mobility (SUMO) [19], a well-known mi-
croscopic traffic simulator.1 Several features led us to use PSO

1All the materials generated in the experimentation, software, scenario
instances, scripts, cycle programs, traces, figures, etc., are available online
at http//neo.lcc.uma.es/problems/traffic-lights.
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instead of other optimization techniques. First, the PSO is a
well-known algorithm shown to perform a fast convergence to
suitable solutions [20]. This is a highly desirable property for
an optimal traffic light cycle program, where new immediate
traffic light schedules could be required to address updated
events in traffic scenarios. Second, the canonical PSO is easy
to implement and requires few tuning parameters [17], [20].
Third, PSO is a kind of swarm intelligence algorithm that can
inform us of future issues when dealing with this problem
using independent agents in the system for online adaptation
(a future line of research for us).

The task of SUMO is to evaluate cycle programs (codified
as vectors provided by our PSO) of the traffic lights that
control the scenario instance. In this paper, we have tested
our proposal with two large and heterogeneous metropolitan
areas with hundreds of traffic lights located in the cities of
Bahı́a Blanca in Argentina, and Málaga in Spain. Concretely,
our main contributions are as follows.

1) We propose a new PSO approach capable of obtaining
efficient cycle programs for realistic urban scenarios.
In this new approach, the initialization method, the
solution encoding, the fitness function, and the velocity
calculation have been adapted to deal with optimal traffic
light cycle programs.

2) The behavior of our proposal is analyzed under different
conditions of road network dimension and traffic density.
An analysis of the computational effort is also carried
out.

3) In comparison with predefined cycle programs close to
real ones, our PSO obtains quantitative improvements
in terms of the two main objectives: 1) the number of
vehicles that reach their destination and 2) the overall
journey time.

4) Further comparisons against other optimization meth-
ods [random search (RANDOM), differential evolution
(DE), and standard PSO 2011] will justify the use of
our PSO for the problem in question.

The remainder of this paper is organized as follows. In
Section II, a review of related work in the literature is
presented. In Section III, basic concepts of PSO and SUMO
are given. In Section IV, our optimization technique proposal
is described. Sections V and VI present the experimental
methodology used and the results obtained, respectively. Con-
clusions and future work are given in Section VII.

II. Literature Overview

There are different approaches in the state of the art that
deal with traffic light staging problems. Adaptive traffic lights
consider the real-time impact of the traffic cycle duration on
the traffic network. Much effort has been made in this sense,
mainly concerning the use of detectors to sense the traffic and
to change the duration of cycle programs, taking into account
the actual flow of vehicles [4]–[6].

In this regard, several research studies employ a fuzzy part
inside the intersection system control generally combined with
other computational intelligence technique or heuristic [21].
In [22], the authors adopted a type-2 fuzzy set and designed

a distributed multiagent traffic-responsive signal control sys-
tem. This system was tested on virtual road networks with
several scenarios. Results showed superior performance of the
approach in handling unplanned and planned incidents and
obstructions. An adaptive traffic control model of signal lights
is introduced in [4], consisting of the split cycle offset opti-
mization technique (SCOOT) platform. SCOOT is an adaptive
system for managing and controlling traffic signals in urban
areas that responds automatically to fluctuations in traffic flow
through the use of on-street detectors embedded in the road.
This tool is especially useful for areas where traffic patterns
are unpredictable.

Another adaptive method is the urban traffic optimiza-
tion by integrated automation (UTOPIA)/system for prior-
ity and optimization of traffic (SPOT), which was designed
and developed by the FIAT Research Centre, ITAL TEL,
and MIZAR Automazione (Turing) [23]. This system aims
to improve the flow in traffic for both private and public
transport vehicles. UTOPIA/SPOT is a distributed real-time
traffic-control system, especially suitable for countries with ad-
vanced public transport services (tested in Italy, Norway, The
Netherlands, Sweden, Finland, and Denmark). This system
uses a hierarchical-decentralized control strategy, involving
intelligent local controllers to communicate with other signal
controllers as well as with a central computer.

Different authors have analyzed the use of fuzzy logic con-
trollers at intersections of streets for adaptive tools. In an early
study, Lim et al. [10] proposed a fuzzy logic controller for real-
time local optimization of only one intersection. Later, in [9],
a traffic simulator using fuzzy logic agents was developed
for traffic lights at isolated junctions. The results showed a
minimization of the queue of vehicles on the roads; however,
their implementation is very compromised from an economic
point of view, and the system’s deployment required a great
inversion. Other authors applying fuzzy logic were Rahman
and Ratrout [24], with satisfactory results in a segment of the
King Abdullah Road in Saudi Arabia. The scenario shown in
that paper was composed of four intersections with two traffic
lights at each one. An exhaustive review of automatic adaptive
systems can be found in [5] and [6].

According to the way in which the traffic flow is modeled in
stochastic traffic flow methods, we can differentiate between
macroscopic and microscopic models [11]. Concerning the
optimization strategy, we can find publications in which dif-
ferent resolution techniques have been applied: 1) mathematic
models; 2) fuzzy logic approaches; and 3) biologically inspired
optimizers.

Several authors employed mathematical techniques for tack-
ling this kind of problem. For example, McCrea and Moutari
[1] combined continuous calculus-based and knowledge-based
models in order to describe the traffic flow in road networks.
Tolba et al. [11] introduced a Petri net-based model to repre-
sent the traffic flow, from a macroscopic viewpoint (where only
global variables are observed) and from a microscopic one
(where the individual trajectories of vehicles are considered).
More recently, Lammer and Helbing [25] designed a multia-
gent traffic model inspired by the self-organizing fluctuations
of vehicles in traffic jams. They used a simplistic simulation
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model considering only one direction of movement at a
time.

In [8], the authors proposed a special-purpose simulation
tool for optimizing traffic signal light timing. This tool pro-
vided complete traffic information, although it was limited to
working at only four intersections.

Recently, biologically inspired techniques such as cellular
automata (CA) and neural networks (NN) have been used
for tackling the underlying combinatorial optimization prob-
lems, particularly for solving traffic light staging problems.
Brockfeld et al. [14] applied a CA model in which the city
network was implemented as a simple square with a few
normal streets and four intersections. Spall and Chin [3]
presented an NN for the configuration of control parameters
in traffic lights. In this approach, the vehicles needed an
additional module for the data management.

Related to the biologically inspired techniques, metaheuris-
tic algorithms [26] have become very popular for solving
traffic light staging problems. A first attempt was made by
Rouphail et al. [27], where a genetic algorithm (GA) was
coupled with the CORSIM [28] microsimulator for the timing
optimization of nine intersections in the city of Chicago
(USA). The results, in terms of total queue size, were limited
due to the delayed convergence behavior of the GA.

In [29], the impact of signal time changes with respect to the
drivers was analyzed. More precisely, the authors considered
the problem of determining optimum signal timings while
anticipating the responses of drivers as an instance of the
network design problem (NDP). An NDP aims to improve an
existing network so that a total network performance measure
is optimized with respect to some discrete or continuous design
variables, while considering the user’s reaction to the improve-
ment. In order to solve the traffic equilibrium problem, they
used the simulation-assignment modeling package (SATURN)
[30]. The authors applied a macroscopic point of view of the
traffic flow and employed a GA to compute the signal setting
NDP (cycle time, offset, and green light times for stages). It is
important to note that the chromosome (gray code) encoding
was done differently for each particular instance being studied.
The algorithm was tested with the city of Chester in the U.K.,
mainly addressing a complete GA parameter analysis, not
really the traffic problem.

In [2], following the model proposed in [14], the authors
designed a GA with the objective of optimizing the cycle pro-
gramming of traffic lights. This GA was tested in a commercial
area in the city of Santa Cruz de Tenerife, Spain. In this
paper, they considered that every intersection had independent
cycles. For individual encoding, they used a similar binary
(gray code) representation to the one used in [29]. The
computation of valid states was done before the algorithm
began, and it strongly depended on the scenario instance
tackled.

Turky et al. [31] used a GA to improve the performance
of traffic lights and pedestrian crossing control in a single
four-way two-lane intersection. The algorithm solved the lim-
itations of traditional fixed-time control for passing vehicles
and pedestrians, and it employed a dynamic control system to
monitor two sets of parameters.

A few publications related to the application of PSO for
the schedule of traffic lights also exist. One of the most
representative was developed by Chen and Xu [32], where they
applied a PSO for training a fuzzy logic controller located at
each intersection by determining the effective time of green
for each phase of the traffic lights. A very simple network
with two basic junctions was used for testing this PSO.

Recently, Peng et al. [33] presented a PSO with isolation
niches for the scheduling of traffic lights. In this approach,
a custom microscopic view of the traffic flow was proposed
to evaluate the solutions. A purely academic instance with a
restrictive one-way road with two intersections was used to
test the PSO. Nevertheless, this paper focused on the capacity
of isolation niches to maintain the diversity of the swarm and
was not particularly concerned with the problem itself.

Finally, Kachroudi and Bhouri [34] applied a multiobjective
version of PSO for optimizing cycle programs using a predic-
tive model control based on a public transport progression
model. In this paper, private and public vehicles’ models are
used to carry out simulations on a virtual urban road network
made up of 16 intersections and 51 links. Each intersection is
then controlled by a traffic light with the same cycle time of
80 s.

All these approaches have focused on different aspects of
the traffic light programming. However, three common features
(limitations) can be found in all of them.

1) They tackle limited vehicular networks with few traffic
lights and a small number of other traffic elements
(roads, intersections, directions, etc.). In contrast, our
PSO can find optimized cycle programs for large sce-
narios with hundreds of traffic lights, vehicles, and other
elements.

2) Almost all of them have been designed for only one
specific scenario. Some of them study the influence of
traffic density. Our approach can be easily adapted to
represent different scenario topologies. In this paper, we
tackle two real scenarios with different combinations
of traffic lights and vehicles, fixing a number of 18
instances.

3) They are not compared with other techniques. Our PSO
is compared here with four different approaches: 1) a
RANDOM algorithm; 2) a DE; 3) the standard PSO
2011; and 4) the cycle program generator provided by
SUMO.

III. Basic Solver and Simulator

In this section, the basic concepts of PSO (the core of our
solver technique) and the SUMO simulator (involved in the
evaluation of solutions) are introduced.

A. Particle Swarm Optimization

Particle swarm optimization [17], [18] is a population-based
metaheuristic inspired by the social behavior of birds within a
flock, and was initially designed for continuous optimization
problems. In PSO, each potential solution to the problem is
called a particle position and the population of particles is
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Algorithm 1 Pseudocode of PSO

1: initializeSwarm()
2: computeLeader(b)
3: while g < maxIterations do
4: for each particle xi

g do
5: vi

g+1=updateVelocity(w, vi
g, xï¿½g, ϕ1, pg, ϕ2, bg)

6: xi
g+1=updatePosition(xi

g, v
i
g+1)

7: evaluate(xi
g+1)

8: pi
g+1=update(pi

g)
9: end for

10: bg+1=updateLeader(bg)
11: end while

called the swarm. In this algorithm, each particle position xi

is updated each iteration g by means of

xi
g+1 = xi

g + vi
g+1 (1)

where term vi
g+1 is the velocity of the particle, given by

vi
g+1 = w · vi

g + U[0, ϕ1] · (pi
g − xi

g) + U[0, ϕ2] · (bg − xi
g). (2)

In this formula, pi
g is the best solution that the particle i

has seen so far, bg is the global best particle (also known as
the leader) that the entire swarm has ever created, and w is
the inertia weight of the particle (which controls the trade-
off between exploration and exploitation). Finally, ϕ1 and ϕ2

are the acceleration coefficients that control the relative effect
of the personal and global best particles, while U[0, ϕk] is a
uniform random value in [0, ϕk], k ∈ 1, 2, which is sampled
anew for each component of the velocity vector and for every
particle and iteration.

Algorithm 1 describes the pseudocode of PSO. The algo-
rithm starts by initializing the swarm (line 1), which includes
both the positions and velocities of the particles. The corre-
sponding pi of each particle is randomly initialized, and the
leader b is computed as the best particle of the swarm (line 2).
Then, for a maximum number of iterations, each particle flies
through the search space updating its velocity and position
(lines 5 and 6); it is then evaluated (line 7) and its personal
best position pi is also updated (line 8). At the end of each
iteration, the leader b is also updated.

The particle swarm optimization algorithm is currently em-
ployed in a multitude of engineering problems [18], [35]–[37]
showing a successful performance, even when compared with
other modern optimization techniques [38], [39]. Nevertheless,
the use of PSO for the optimal cycle program and other
problems related to the traffic light staging is still limited.

B. SUMO

SUMO [19] is a well-known traffic simulator that provides
an open source, highly portable, and microscopic road traf-
fic simulation tool designed to handle large road scenarios.
SUMO requires several input files that contain information
about the traffic and the streets to be simulated. A network
(.net.xml file) holds the information about the structure of
the map: 1) nodes, 2) edges, and 3) connections between

them. The network can be imported from popular digital maps
such as OpenStreetMap (OSM) [40] and converted to a valid
SUMO network by means of a series of scripts provided in
the SUMO package. We have chosen OSM because it provides
both geographic data and traffic light information.

A journey is a vehicle movement from one location to
another defined by the starting edge (street), the destination
edge, and the departure time. A route is an extended journey,
meaning that a route definition contains not only the first and
the last edges, but also all the edges the vehicle will pass
through. These routes are stored in a demand file (.rou.xml
file) either through a route generator given by SUMO, existing
routes imported from other software, or by hand. Additional
files (.add.xml) can be added to SUMO information about the
map or about the traffic lights. SUMO allows replacing and
editing information on the cycles of traffic lights by manip-
ulating a file with .add.xml extension. It is important to note
that SUMO by default provides the valid combination of states
that the traffic light controller can go through inside the map
specification file (.net.xml file) [19], and an approximation of
interval times for these states [41]. This means that SUMO
already incorporates a solver algorithm for the cycle program
of traffic lights based on greedy and human knowledge. That
solver will be called SUMO cycle program generator (SCPG)
in this paper and it will be used in a comparison with our
PSO.

The output of a SUMO simulation is registered in a journey
information file (.tripinfo.xml) that contains information about
each vehicle’s departure time, the time the vehicle waited to
start at (offset), the time the vehicle arrived, the duration of
its journey, and the number of steps in which the vehicle
speed was below 0.1 m/s (temporal stops in driving). This
information is used to evaluate traffic lights cycle programs.

C. SUMO Data Structure

As previously mentioned, the main objective of our ap-
proach is to find optimized cycle programs (duration of color
states of traffic lights) for all the traffic lights located in a
given urban area. At the same time, these programs have to
coordinate traffic lights in adjacent intersections aiming to
improve the global flow of vehicles circulating within the
established routes. For this reason, we have focused on a
microscopic view of the management of traffic agents, but
at the same time, we want to evaluate the behavior of all the
vehicles in the complete urban scenario during a given time
span. The evaluation of the resulting traffic light programs is
carried out by means of automatic simulations. For this task,
we use SUMO.

The simulation structure of SUMO comprises a series of
elements that we have taken into account when developing
our traffic scenarios. A SUMO instance for a urban traffic
scenario is basically composed of intersections, traffic lights,
roads, and vehicles moving along their previously specified
routes. The traffic lights are located at intersections (junctions
in SUMO) and control the flow of vehicles by following their
programs of color states and cycle durations. In this context,
all traffic lights located at the same intersection are governed
by a common program, since they have to be necessarily
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Fig. 1. Intersection with four traffic lights selected from the SUMO instance map. Phase durations (cycles) are specified in the instance.add.xml file and
encoded inside a PSO tentative solution.

synchronized for traffic safety. In addition, for all the traffic
lights in an intersection, the combination of color states during
a cycle period is always kept valid [41] and must follow
the specific traffic rules of intersections, in order to avoid
vehicle collisions and accidents. For example, two traffic lights
located at the same intersection but controlling conflicting
movements must not be green at the same time instance. In
this regard, as illustrated in Fig. 1, SUMO provides a complete
set of valid combinations of color states for each intersection,
which cannot be modified during the optimization process.
This avoids invalid combinations of color states and restricts
the optimization approach to work only with feasible states.

Fig. 1 shows an illustration of the main elements constitut-
ing the traffic light cycle programs in SUMO. This program
staging is implemented in an XML file (instance.add.xml) that
SUMO uses to load cycles and states, prior to the simulation
process. In this file, each tl-logic element corresponds to an
intersection. Following the model designed by Krajzewicz
et al. [19], a tl-logic cyclically comprises a sequence of
phases during the simulation time. Each phase indicates the
corresponding color states (attribute state) of all the traffic
lights at the intersection and the duration of this state (attribute
duration).

An example of this mechanism can be observed in Fig. 1
where the tl-logic with id=i, which corresponds to an in-
tersection of the SUMO instance, contains four phases with
durations of 40, 5, 40, and 10 s (simulation steps). In these
phases, the states have four colors, each corresponding to
one of the four traffic lights located at the intersection being
studied. These states are the valid ones generated by SUMO

adhering to real traffic rules. In this instance, the first phase
contains the state GGrr meaning that two traffic lights are
in green (G) and the other two are in red (r) for 40 s.
The following phase changes the state of the four traffic
lights to yyrr (y is amber) for 5 s, and so on. The last
phase is followed by the first one and this cycle is repeated
throughout the simulation. All the tl-logics in the complete
SUMO instance perform their own programming cycles of
phases at the same time, thereby constituting the global staging
of the traffic lights. Therefore, programming cycles are the
main focus of this paper, since we are interested in optimizing
the combination of phase durations of all traffic lights (at
all intersections) with the aim to improve the global flow of
vehicles circulating in an urban scenario instance.

A final indication along these lines concerns the behavior
of the vehicles involved in the SUMO instance scenario,
which depends on both road directions and speed. SUMO
employs a space-discrete extended model as introduced by
Krauß [42]. In this model, the streets are divided into cells and
the vehicles circulating through the streets go from one cell to
another, if allowed. The speed of each vehicle depends on its
distance from the vehicle in front of it, with a preestablished
maximum speed typical of urban areas (50 km/h in this
paper).

IV. PSO for Traffic Light Scheduling

This section describes our optimization solver proposed for
the optimal cycle programs of traffic lights. It describes the
solution encoding, the fitness function, and finally the global
optimization procedure.
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A. Solution Encoding

Following the structure of programming cycles adopted by
SUMO, the global staging of traffic lights has been easily
encoded by means of a vector of integers, where each element
represents a phase duration of one state of the traffic lights
involved in a given intersection. This way, as shown in Fig. 1,
all the phase durations in the tl-logic elements are successively
placed in the solution vector, thereby mapping the complete
staging of traffic lights in a simple array of integers. The reason
for working with this representation is twofold. First, the
SUMO simulator itself works with integer values to represent
the discrete sequence of time steps (seconds) that make up
the complete simulation procedure. Second, real traffic lights
also employ integer values to specify the duration of phases
in their internal programs.

Despite its simplicity, this solution representation allows our
PSO to take into account the interdependency of variables,
not only between phase durations in a common tl-logic
element, but also between traffic lights at adjacent intersec-
tions. In this regard, PSO is known to successfully perform
in nonseparable problems [20], [43], which is the case in this
approach. This last fact is an interesting feature since solutions
with coordinated traffic lights (located in different but close
intersections) could then be promoted by our optimization
algorithm.

B. Fitness Function

Each solution vector (s), codifying the cycle program of the
traffic light programs, is evaluated considering the information
obtained from the events happening during the simulation by
means of the following equation:

F(s) =

(
V∑

v=0
jv(s)

)
+

(
V+C∑
v=0

wv(s)

)
+ (C(s) · St)

V 2(s) + Cr
. (3)

The main objective is to maximize the number of vehicles
that reach their destination (V ) during the simulation time
(St), namely, minimizing the number of vehicles that do
not reach their destination and remain circulating (C) after
the simulation time is reached. A secondary but important
objective is to minimize the overall duration of the vehicle’s
journeys (jv). It is clear that the overall duration concerns
the journey time of the vehicles that reach their destination
during the simulation process. To the contrary, vehicles with
incomplete journeys (C) consume all the simulation time St,
and then, an additional penalization is induced by multiplying
these two factors. It is worth mentioning that the terms in (3)
are in the range of values [1e+0 · · · 5e+2]; therefore, additional
weighting values were not considered in this formulation.
Only the number of vehicles that arrive at their destinations is
squared (V 2) in order to prioritize it over the other terms and
factors.

An important factor concerns the state of the traffic lights
in each precise moment, since it influences the time that each
vehicle must stop and wait (wv), with the consequent delay in
its own journey time, e.g., a prolonged state of traffic lights in
red could collapse the intersection where it is, and even close

other intersections. However, a prolonged state in green could
improve the traffic flow in a given area or direction, but also
make the traffic flow of other areas and directions worse. In
this respect, a balanced number of color lights in the phase
duration of the states should promote those states with more
traffic lights in green located on streets with a high number of
vehicles circulating, and traffic lights in red located on streets
with a low number of vehicles moving. The ratio of colors
in each phase state of all the tl-logic tl (intersections) can be
formulated as

Cr =
tl∑

k=0

ph∑
h=0

sk,h ·
(

Gk,h

Rk,h

)
(4)

where Gk,h is the number of traffic lights in green (G), and
Rk,h is the number of traffic lights in red in the phase state h

(with duration sk,h) and in the tl-logic k. The minimum value
of rk,h is 1 in order to avoid division by 0.

C. Optimization Strategy

Our optimization strategy is composed of basically two
main parts: 1) an optimization algorithm and 2) a simulation
procedure. The optimization part is carried out by means of
the particle swarm optimization algorithm, which has been
specially adapted to find optimal (or quasi-optimal) cycle
programs for traffic lights. It works as follows.

1) The initial swarm is composed of a number of particles
(solutions) initialized with a set of random values rep-
resenting the phase durations. These values are within
the time interval [5, 60] ∈ Z+ and constitute the range
of possible time spans (in seconds) a traffic light can
be kept on a signal color (only green or red; the time
for amber is a constant value). We have specified this
interval by following several examples of real traffic
light programs provided by the City Council of Málaga,
Spain.

2) The velocity calculation has been softly modified in
order to deal with integer combinatorial values by
truncating (with floor �·� and ceiling �·� functions) all
elements (j) of the new velocity vector as

vi
g+1(j) =

{�vi

g+ 1
2
(j)� if U(0, 1)i(j) ≤ λ

�vi

g+ 1
2
(j)� otherwise.

(5)

In this formula, vi

g+ 1
2

is the intermediate velocity value
obtained from (11). The parameter λ determines the
probability of performing ceil or floor functions in the
velocity calculation (λ = 0.5 for this paper).

3) The inertia weight changes linearly through the opti-
mization process by using the following equation:

ω = ωmax − (ωmax − ωmin) · g

gtotal
. (6)

In this way, at the beginning of the process, a high
inertia (ωmax) value is introduced, which decreases until
reaching its lowest value (ωmin). A high inertia value
provides the algorithm with exploration capability and a
low inertia promotes exploitation.
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Fig. 2. Optimization strategy for the cycle program configuration of traffic
lights. The algorithm invokes SUMO for each solution evaluation.

The simulation procedure is the way of assigning a quan-
titative quality value (fitness) to the solutions, thus leading to
optimized cycle programs tailored to a given urban scenario
instance. This procedure is carried out by means of the SUMO
traffic simulator, which accepts new cycle programs of traffic
lights and computes the required values in (3).

As Fig. 2 illustrates, when PSO generates a new solution, it
is immediately used to update the cycle program. Then, SUMO
is started to simulate the scenario instance with streets, di-
rections, obstacles, traffic lights, vehicles, speeds, routes, etc.,
under the new defined staging of the cycle programs. After the
simulation, SUMO returns the global information necessary
to compute the fitness function. Each solution evaluation
requires only one simulation procedure since vehicle routes in
SUMO are generated deterministically. In fact, as suggested
in [44], stochastic traffic simulators obtain similar results to
deterministic ones, the latter allowing huge computing savings.

In addition, we must note that each new cycle program is
statically loaded for each simulation procedure. Our aim here
is not to dynamically generate cycle programs during an iso-
lated simulation as is done in agent-based algorithms [45], but
rather to obtain optimized cycle programs for a given scenario
and timetable. In fact, what real traffic light schedulers actually
demand are constant cycle programs for specific areas and
for preestablished time periods (rush hours, nocturne periods,
etc.), which led us to take this approach.

V. Methodology of Our Paper

This section presents the experimental framework followed
to assess the performance of our optimization solver. First,
we describe the traffic light scenario instances generated
specifically for this paper. Later, the implementation details
and parameter settings are presented.

A. Instances

As we are interested in developing an optimization solver
capable of dealing with close-to-reality and generic urban
areas, we have generated two scenarios by extracting actual
information from real digital maps. These two scenarios cover
similar areas of approximately 0.42 km2 and are physically
located in the cities of Bahı́a Blanca in Argentina, and Málaga
in Spain. The information used concerns traffic rules, traffic
element locations, buildings, road directions, streets, inter-
sections, etc. Moreover, we have set the number of vehicles

circulating, as well as their speeds by following current spec-
ifications available in the mobility delegation of the city hall
of Málaga (http://movilidad.malaga.eu/). This information was
collected from sensorized points in certain streets obtaining a
measure of traffic density in several time intervals. In the case
of Bahı́a Blanca, we could not obtain this information and so
we considered the same number of vehicles as used for the
Málaga scenario.

In Fig. 3, the selected areas of the two cities are shown
with their corresponding capture views of OSM and SUMO
(as explained in Section III-B). Other driving styles such as
the Commonwealth/British one could be also tackled with our
approach, since we can easily capture areas of U.K. cities with
OSM and export them to SUMO, to then work with them
by following their directions and traffic rules. The specific
features of the selected areas in this paper are as follows.

1) Rivadavia Square: Located in the city center of Bahı́a
Blanca (see Fig. 3, top), it has 53 intersections between
streets that form a practically regular grid of blocks, as
is usual in American cities. Except for the main avenue,
almost all streets are one way in opposite directions
to each other. Therefore, the great majority of traffic
logics (junctions) in this scenario have four traffic lights:
straight on, left, and the two on the perpendicular street.

2) Alameda Avenue: The city center of Málaga (see Fig.
3, bottom), represents the common irregular structure
of European cities, having different street widths and
lengths. It has 73 junctions between streets and round-
abouts. Each intersection includes from four to 16 traffic
lights.

We have considered these two scenarios since they con-
stitute quite different urban areas with heterogeneous struc-
tures and traffic organization. Moreover, in order to obtain
generalized concluding results, the number of instances used
in the experimentation has been increased by incorporating
different numbers of vehicles moving through these streets
and different numbers of traffic lights operating within the
selected areas. Table I contains the combination of traffic
logics (intersections) and vehicles used in each instance for
each scenario, constituting a total number of 18 instances: nine
for Rivadavia Square and nine for Alameda Avenue. We have
to note that despite both scenarios having similar scales of
traffic logics (20, 30, and 40), the number of traffic lights is
not the same, as they contain different intersection shapes.

Concerning the number of vehicles, we have considered
three different scales of 100, 300, and 500 cars for each
instance (as shown in Table I) circulating throughout the
simulation time. Each one of the vehicles takes its own route
from origin to destination, circulating with a maximum speed
of 50 km/h (typical in urban areas). The routes were previously
generated by following random paths and covering as far
as possible all network entries. Starting times of vehicles
were also randomly (uniform) specified throughout the entire
simulation. This means that only a subset of the entire set
of vehicles is circulating through the network at the same
time. The simulation time was fixed at 500 s (iterations of
microsimulation) for each instance. This time was determined
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Fig. 3. Process of creation of real-world instances for study. Rivadavia Square (38°43′03′′ S 62°15′56′′O) and Alameda Avenue (36°43′60′′N 4°25′87′′O)
instance views. After selecting our area of interest (Google Map view), it is interpreted by means of the OSM tool, and then exported to SUMO in an XML
format.

TABLE I

Rivadavia Square and Alameda Avenue Instances

City Number of Number of Number of
instance traffic logics traffic lights vehicles

100
20 88 300

500
100

Rivadavia Square 30 136 300
(Bahı́a Blanca) 500

100
40 176 300

500
100

20 78 300
500
100

Alameda Avenue 30 130 300
(Málaga) 500

100
40 184 300

500

as the maximum time needed for a car to complete its route,
even if it must stop at all the traffic lights it comes to. When a
vehicle leaves the scenario network, it does not appear again.

B. Experimental Setup

We have used the implementation of the PSO algorithm
provided by MALLBA [46], a C++ based framework of meta-
heuristic algorithms for solving optimization problems. The
simulation phase is carried out by executing (in the evaluation

of particles) the traffic simulator SUMO release 0.12.0 for
Linux. The experiments were performed on computers at the
laboratories of the Department of Computer Science at the
University of Málaga (Spain). Most of them are equipped
with modern dual core processors, 1 GB RAM, and Linux
Debian operating system. They operate under a Condor [47]
middleware platform that acts as a distributed task scheduler
(each task dealing with one independent run of PSO).

For each scenario instance, we have carried out 30 inde-
pendent runs of our PSO. The swarm (population) size was
set to 100 particles performing 300 iteration steps, resulting
in 30 000 solution evaluations (SUMO simulations) per run
and instance. The choice of these two parameters (swarm
size and maximum iteration steps) corresponds to previous
tuning experiments as described in Section VI-A. The particle
size directly depends on the number of traffic lights of each
instance (shown in Table I). The remaining parameters are
summarized in Table II. These parameters were set after
preliminary executions of PSO with the smallest instances of
Rivadavia Square and Alameda Avenue (with 20 traffic logics
and 100 vehicles). Specific parameters of PSO were selected
as recommended in the studies about the convergence behavior
of this algorithm in [20] and [48]. In accordance with these,
acceleration coefficients ϕ1 and ϕ2 were set to 2.05 and inertia
weight (ω) decreases linearly along with the increment of the
iteration steps from 0.5 to 0.1.

Additionally, we have implemented three algorithms also
in the scope of the MALLBA [46] library, in order to es-
tablish comparisons against our PSO. These three algorithms
are a RANDOM, a DE [49], and the standard PSO 2011



GARCÍA-NIETO et al.: OPTIMAL CYCLE PROGRAM OF TRAFFIC LIGHTS WITH PARTICLE SWARM OPTIMIZATION 831

TABLE II

Simulation and PSO Parameters

Solver phase Parameter Value
Simulation time (steps) 500 s.

Simulation area 0.45 km2

Simulation details Number of vehicles 100/300/500
Vehicle speed 0–50 km/h

Number of traffic logics 20/30/40
Maximum number of evaluations 30 000

Swarm size 100
Particle size (number of traffic lights) 88/136/176

78/130/184
PSO parameters Local coefficient (ϕ1) 2.05

Social coefficient (ϕ2) 2.05
Maximum inertia (wmax) 0.5
Minimum inertia (wmin) 0.1

Velocity truncation factor (λ) 0.5

Algorithm 2 Pseudocode of RANDOM

1: initializeSolution(x)
2: i ← 0
3: while i < Max Number of Evaluations do
4: generate(xi) //new solution
5: if f(x) ≥ f(xi) then
6: x ← xi

7: end if
8: i ← i + 1
9: end while

(SPSO2011) [16]. Thus, performing the same experimenta-
tion procedure, we expect to obtain some insights into the
power of our proposal (how intelligent it is) regarding a
technique without any heuristic information in its operation
(RANDOM), and with regard to two other difference-vector-
based metaheuristics: 1) DE and 2) SPSO2011. In the case
of SPSO2011, it is the last PSO proposal in [16] and uses a
different quantisation/discretization method to our PSO. The
maximum number of evaluations was set to 30 000, as for
PSO.

1) RANDOM: The pseudocode of the RANDOM algo-
rithm is shown in Algorithm 2. It basically performs by
keeping just the best solution found so far in the optimization
procedure.

2) DE: In DE, the task of generating new individuals is
performed by differential operators such as the differential
mutation and crossover. A mutant individual wi

g+1 is generated
by

wi
g+1 = vr1

g + F · (vr2
g − vr3

g ) (7)

where r1, r2, r3 ∈ {1, 2, . . . , i − 1, i + 1, . . . , N} are random
mutually different integers, which are also different from index
i. The mutation constant F > 0 stands for the amplification
of the difference between the individuals vr2

g and vr3
g , and it

avoids the stagnation of the search process.
In order to further increase the diversity in the population,

each mutated individual undergoes a crossover operation with
the target individual vi

g, by means of which a trial individual
ui

g+1 is generated. A randomly chosen position is taken from

Algorithm 3 Pseudocode of DE

1: initializePopulation()
2: while g < maxIterations do
3: for each individual vi

g do
4: choose mutually different(r1, r2, r3)
5: wi

g+1 = mutation(vr1
g , vr2

g , vr3
g , F ) //(7)

6: ui
g+1 = crossover(vi

g, w
i
g+1, cp) //(8)

7: evaluate(ui
g+1)

8: vi
g+1 = selection(vi

g, u
i
g+1) //(9)

9: end for
10: end while

the mutant individual to prevent the trial individual replicating
the target individual

ui
g+1(j) =

{
wi

g+1(j) ifr(j) ≤ Crorj = jr

vi
g(j) otherwise.

(8)

As shown in (8), the crossover operator randomly chooses a
uniformly distributed integer value jr and a random real num-
ber r ∈ (0, 1), also uniformly distributed for each component j

of the trial individual ui
g+1. Then, the crossover probability Cr

and r are compared just like j and jr. If r is lower or equal
to Cr (or j is equal to jr), then we select the jth element
of the mutant individual to be allocated in the jth element
of the trial individual ui

g+1. Otherwise, the jth element of
the target individual vi

g becomes the jth element of the trial
individual. For this paper, F and Cr have been set to 0.5 and
0.9, respectively, as initially recommended in [49].

Finally, a selection operator decides on the acceptance of
the trial individual for the next generation if and only if it
yields a reduction (assuming minimization) in the value of the
fitness function f (), as shown by

vi
g+1 =

{
ui

g+1 iff (ui
g+1) ≤ f (vi

g)

vi
g otherwise.

(9)

Algorithm 3 shows the pseudocode of DE. After initializing
the population, the individuals evolve during a number of
iterations (maxIterations). Each individual is then mutated
(line 5) and recombined (line 6). The new individual is selected
(or not) following the operation of (9) (lines 7 and 8).

In order to make a fair comparison, we also adapted the
DE for dealing with integer values in the solution codification,
that is, using the same mechanism of ceiling/flooring (�·�/�·�)
functions as done in the velocity vector calculation of PSO
[see (5)]

wi
g+1(j) =

{�wi

g+ 1
2
(j)� if U(0, 1)i(j) ≤ λ

�wi

g+ 1
2
(j)� otherwise.

(10)

In the case of DE, the truncation method is applied to the
mutant vector wi

g+1, as specified in (10), also with λ = 0.5.
3) Standard PSO 2011: We have selected the standard

PSO 2011 (to compare with our proposal) from all the
existing versions of PSO in the literature, since it includes
a series of new advances proposed by prominent researchers
in this area [16]. Some of these interesting advances consist
of rotation invariance method, new particles generation in
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Algorithm 4 Pseudocode of standard PSO 2011

1: initializeSwarm()
2: while g < maxIterations do
3: for each particle xi

g do
4: bn

g=bestNeighbourSelection(xi
g, n)

5: vi
g+1=updateVelocity(w, vi

g, xï¿½g, ϕ1, pg, ϕ2, b
n
g)

6: xi
g+1=Q(updatePosition(xi

g, v
i
g+1))

7: evaluate(xi
g+1)

8: pi
g+1=update(pi

g)
9: end for

10: end while

hypersphere, Gaussian random number generator, and mid-
tread quantization/discretization method.

The main feature of the standard PSO 2011 consists in the
velocity vector (vi

g+1) calculation which is given by

vi
g+1 = w · vi

g + Gri
g − xi

g + HS(Gr, ‖ Gr − �xg ‖) (11)

with

Gri
g =

xi
g + p

′i
g + l

′i
g

3
(12)

p
′i
g = x

′i
g + c · (pi

g − xi
g) (13)

l
′i
g = xi

g + c · (lig − xi
g). (14)

In these formulas, pi
g is the best solution that the particle

i has seen so far, lig is the best particle of a neighborhood
of k other particles (also known as the social best) randomly
(uniform) selected from the swarm, and w is the inertia weight
of the particle (it controls the trade-off between exploration
and exploitation). The acceleration coefficient c > 1 is a
normal (Gaussian) random value with μ = 1/2 and ρ = 1/12.
This coefficient is sampled anew for each component of the
velocity vector. Finally, HS [16] is a distinctive element of the
standard PSO 2011 with regard to the previous ones. HS is
basically a random number generator within a hypersphere
space, with Gr as the center of gravity. That is, Gr is
calculated as the equidistant point to p′

g, l′g, and xg.
Since the optimal cycle programming requires solutions en-

coded with a vector of integers (representing phase durations),
we have used the quantization method provided in the standard
specification of PSO 2011 [16]. This quantization is applied
to each new generated particle [in (1)], and transforms the
continuous values of particles to discrete ones. It consists of
a mid-thread uniform quantizer method as specified in (15).
The quantum step is set here to � = 1

Q(x) = � · �x/� + 0.5�. (15)

Algorithm 4 describes the pseudocode of the standard PSO
2011. The algorithm starts by initializing the swarm (line 1).
The corresponding elements of each particle (solutions) are
initialized with random values representing the phase dura-
tions. These values are within the time interval [5, 60] ∈ Z+

and constitute the range of possible time spans (in seconds).
Then, for a maximum number of iterations, each particle

moves through the search space updating its velocity and
position (lines 4–6), it is then evaluated (line 7), and its
personal best position pi is also updated (line 8). Finally, the
best particle found so far is returned.

4) Deterministic Cycle Programs Generator: Finally, as
previously commented on in Section III-B, SUMO provides a
deterministic algorithm for generating cycle programs (SCPG).
Then, we also compare the cycle programs obtained by our
PSO with those obtained by SUMO. This last algorithm
basically consists of assigning the phase durations of the traffic
logics with fresh values in the range of [6, 31], according to
three factors:

1) the proportion of green states in the phases;
2) the number of incoming lanes entering the intersection;
3) the braking time of the vehicles approaching the traffic

lights.

Further information on this algorithm can be found in [19].

VI. Analysis and Discussion of Results

The results and the analyses are presented in this section
from several viewpoints. First, we study the performance of
our optimization solver in comparison with other techniques,
and its ability to report successful cycle programs for the
different instances. After this, we present a brief report on the
computational effort required for the experiments. Later, we
focus on the problem domain and we examine representative
reported solutions with the aim of justifying the use of our
PSO with a potentially truly positive impact on traffic flow.

A. Performance Analysis of Algorithms

Before any comparison takes place, we first wish to show a
representative view of the internal behavior of our PSO under
different conditions of swarm size and maximum number of
iterations. We used this investigation as a basis for setting
the most convenient values in the following experimentation.
So, Fig. 4 plots the traces of progress of the best fitness
values (median run out of 30 independent executions) of PSO
tackling with the Alameda Avenue instance with 30 traffic
logics and 300 vehicles. These traces correspond to different
configurations of swarm size (SS) with 50, 100, and 200
particles, and maximum number of iterations (MaxIt) with
100, 300, and 500 steps to the stop condition. It is worth
noting that the number of iteration steps directly influences the
inertia weight (in the velocity calculation of PSO), and hence,
this parameter should be studied separately in combination
with all the different values of the swarm size.

As shown in Fig. 4, for almost all the combinations (of SS
and MaxIt), our PSO got to converge on the interval of 100
and 300 iterations, showing the combination of 100 particles in
the swarm and 300 iteration steps the best performance results.
In fact, for this configuration, the fitness clearly improved
after 100 iterations to finally converge just before 200 iteration
steps (20 000 function evaluations). We have to mention that
other configurations of PSO with SS=200 and MaxIt=500 also
obtained such successful results although it required a higher
computational cost with more than 50 000 function evaluations
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TABLE III

Median Fitness Values Obtained by PSO for All of the Scenario Instances

Number of Vehicles
Instance NTL 100 300 500

PSO RANDOM SCPG PSO RANDOM SCPG PSO RANDOM SCPG
20 1.64E+00 2.91E+00 2.38E+00 8.40E−01 1.45E+00 9.24E−01 7.93E−01 1.51E+00 9.56E−01

Rivadavia Square 30 1.80E+00 3.11E+00 2.45E+00 9.09E−01 1.65E+00 9.57E−01 8.79E−01 1.72E+00 9.89E−01
40 1.79E+00 3.08E+00 2.49E+00 9.11E−01 1.75E+00 9.76E−01 8.96E−01 1.74E+00 9.93E−01
20 9.47E−01 1.68E+00 1.49E+00 8.44E−01 1.62E+00 1.29E+00 4.10E+00 7.87E+00 2.35E+01

Alameda Avenue 30 1.56E+00 3.55E+00 5.12E+00 1.74E+00 4.52E+00 6.00E+00 7.67E+00 1.33E+01 3.31E+01
40 1.88E+00 3.98E+00 5.38E+00 2.87E+00 7.33E+00 1.83E+01 9.39E+00 1.64E+01 1.47E+01

Median fitness values obtained by RANDOM and by SCPG algorithms are also provided. NTL is the number of traffic logics.

Fig. 4. Traces of progress of the best fitness values (median out of 30
independent runs) of PSO tackling with the Alameda Avenue instance
with 30 traffic logics and 300 vehicles. The traces correspond to different
configurations of swarm sizes (with 50, 100, and 200 particles) and maximum
number of iterations (100, 300, and 500) as the stop condition.

Fig. 5. Trace progress of the best fitness values in 30 independent runs of
PSO tackling with the Rivadavia Square instance with 40 traffic logics and
500 vehicles.

(SS=100 and MaxIt=500), in contrast with 30 000 ones in the
case of SS=100 and MaxIt=300. Therefore, we opted to set
100 particles in the swarm and a maximum of 300 iteration
steps in our experimentation.

From another viewpoint, Fig. 5 plots the trace progress of
the best fitness values obtained in 30 independent runs of PSO

Fig. 6. Swarm fitness histogram through 300 iterations in the optimization
of the Rivadavia Square scenario with 40 traffic logics and 500 vehicles.

when solving the Rivadavia Square instance with 40 traffic
logics and 500 vehicles. In this figure, we can observe that
for all executions, our algorithm practically converged after the
first 150 iterations, using the remaining time to only slightly
refine solutions. In addition, all the computed solutions are
close to each other in quality, but different between each
other. These are desirable features in terms of convergence
and robustness, since we can offer an expert, a varied set of
accurate cycle programs in a reduced time.

To better explain this, Fig. 6 plots the absolute frequency
of the fitness distribution of the entire swarm through the
optimization process of one typical execution. Specifically, it
illustrates one of the 30 independent runs of our PSO tackling
the Rivadavia Square scenario with 40 traffic logics and 500
vehicles. We can see that the initial particles are diverse and
with high cost values (
 7), although they were able to
converge in a low fitness region (≤ 1) during the second half
of the execution process. In this specific run, 475 vehicles
out of 500 reached their particular destinations (95%) in a
simulation time lower than 500 s (the complete number of
microsimulation steps). This accurate behavior is also found
in all executions and for all instances, and it represents another
interesting feature of our approach.

Table III contains the median fitness values obtained by the
proposed PSO for all the scenario instances. Additionally, the
median fitness values obtained by the RANDOM algorithm,
and the results of the SCPG, are also provided in order
to permit comparisons. In this table, we can easily check
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Fig. 7. Boxplot representation of distribution results of Rivadavia Square (three at the top) and Alameda Avenue (three at the bottom) instances with 20,
30, and 40 traffic logics, and 100, 300, and 500 vehicles. The results of SCPG are represented with a � point since this technique always returns the same
deterministic result for a given instance.

that PSO obtained the best median fitness (marked in bold)
independently of both the number of vehicles and the number
of traffic logics in each scenario instance.

In order to provide statistically meaningful comparisons,
we have applied a signed ranked (Wilcoxon)2 test [50] to
the numerical distributions of the results. We have used this
nonparametric test as the resultant distributions usually violate
the condition of normality required to apply parametric tests
(Z Kolmogorov–Smirnov = 0.04).3 Another implication of
the violation of the normality condition is the use of median
values (as shown in Table III) instead of other measures such
as the mean and the standard deviation [51]. The confidence
level was set to 95% (α=0.05), which allows us to ensure
that these results are statistically different if they result in a
p-value < 0.05.

In effect, for all the instances, the differences between
the distributions out of 30 independent runs resulted with p-
values < 0.05. In general, the differences in the distributions

2The null hypothesis in Wilcoxon test is that the median difference between
pairs of observations is zero, with a confidence level of 95% (α=0.05) in our
case. This means that if resultant p-value is lower than 0.05, then the compared
distributions are different.

3Kolmogorov–Smirnov compares the accumulated distribution of observed
data with the accumulated distribution expected for a Gaussian distribution,
obtaining the p-value based on both discrepancies. Therefore, it measures
the quality of a normal fitting to the data and then can be used to test the
hypothesis of normality in the population distribution.

of the medians (see Table III) resulted in a global p-value
of 5.73E−7 when comparing PSO with RANDOM, and a
global p-value of 6.33E−5 when comparing PSO with SUMO.
Therefore, we can claim that our PSO obtained statistically
better results than the other two algorithms compared: 1)
RANDOM (stochastic search) and 2) SCPG (deterministic).
This also means that our algorithm is intelligent and competent
when compared to greedy information and human knowledge.

A summary of these results can be seen in Fig. 7, where
the boxplots of the distribution fitness of PSO and RANDOM
are plotted. The results of SCPG are represented with a point
since this technique always returns the same deterministic
result. As expected, the distributions of PSO show better lower
quartiles, medians, and upper quartiles than RANDOM for all
the instances. Regarding SCPG, we can see that the median
values of PSO are generally better than the results of SCPG.
Only in the case of Rivadavia Square with high densities of
traffic (300 and 500 vehicles) do the SUMO results get close
to the upper quartiles of our PSO distributions.

Concerning the two scenario instances, the resulting fitness
values in Rivadavia Square are generally better than the ones
obtained in Alameda Avenue. This difference in the results is
more noticeable when a large number of vehicles is circulating
(500), where the median fitness values differ in two orders of
magnitude (from 7.93E−01 to 3.31E+01). We suspect that the
regular structure of Rivadavia Square (see Fig. 3) makes the
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TABLE IV

Median Fitness Values Obtained by Our PSO, DE, and standard PSO 2011 for All of the Scenario Instances

Number of Vehicles
Instance NTL 100 300 500

PSO DE SPSO2011 PSO DE SPSO2011 PSO DE SPSO2011
20 1.64E+00 2.18E+00 1.87E+00 8.40E−01 9.94E−01 9.82E−01 7.93E−01 9.80E−01 1.22E+00

Rivadavia Square 30 1.80E+00 2.25E+00 2.33E+00 9.09E−01 1.11E+00 1.28E+00 8.79E−01 1.02E+00 1.44E+00
40 1.79E+00 2.23E+00 2.50E+00 9.11E−01 1.13E+00 1.25E+00 8.96E−01 1.10E+00 1.40E+00
20 9.47E−01 1.22E+00 1.11E+00 8.44E−01 1.07E+00 9.12E−01 4.10E+00 4.98E+00 4.71E+00

Alameda Avenue 30 1.56E+00 2.19E+00 2.49E+00 1.74E+00 2.54E+00 3.47E+00 7.67E+00 8.57E+00 1.11E+01
40 1.88E+00 2.54E+00 3.21E+00 2.87E+00 4.06E+00 5.32E+00 9.39E+00 1.17E+01 1.30E+01

NTL is the number of traffic logics.

traffic more fluid in this scenario than in Alameda Avenua
(with irregular European design), which could lead the PSO
to obtain different ranges of results in similar conditions.

B. Comparison With Other Metaheuristic Algorithms:
DE and Standard PSO 2011

For a further comparison, we have studied the performance
of two other metaheuristic algorithms for the same experimen-
tal procedure as our proposal. A first comparison concerns
a DE algorithm (as described in Section V-B), by means of
which we expect to better justify the use of PSO on the
traffic light cycle program. Second, we compare our PSO with
the standard PSO 2011, which performs a different velocity
calculation and discretization method.

The median fitness values (out of 30 independent runs)
resulted in the experimentation of DE and SPSO2011 are
included in Table IV together with the ones of our PSO
for the two scenario instances: 1) Rivadavia Square and 2)
Alameda Avenue. Again, we confirm that the PSO obtained
the best median fitness for all the combinations of number
of vehicles and number of traffic logics in each scenario
instance. In general, using a Wilcoxon signed rank test with
α=0.05, the differences in the distributions of the medians
(see Table IV) resulted in a global p-value of 1.94E−4 when
comparing PSO with DE, and a global p-value of 1.96E−4
when comparing PSO with SPSO2011. In the first case, the
different learning procedures that our PSO and DE perform
is the main factor that influences the statistical differences in
results, since these two algorithms used the same discretization
method. In the second case, the different velocity calculation
methods influence the algorithms’ performances of our PSO
and SPSO2011, indicating that our proposal is better than the
last standard PSO for the problem under consideration.

In a further comparison, SPSO2011 showed better fitness
values than DE, resulting in a global p-value of 1.47E−2.
If we take into account that DE uses a similar discretization
method as our PSO, the last results lead us to suspect that
the different discretization of vectors marginally influences the
global algorithm’s performance.

Therefore, within the scope of the experimental framework
adopted in this approach, we can claim that our PSO also
obtained statistically better results than the other metaheuristic
approaches (DE and SPSO2011) used to solve the optimal
cycle program of traffic lights.

Fig. 8. Increment of the median fitness with regard to the number of traffic
lights for the Alameda Avenue scenario. The values are in logarithmic scale.

C. Scalability Analysis

To study the scalability of our proposal, we now focus on
the influence of the two main factors defining the complexity
of the instances: 1) the number of traffic logics (20, 30, and
40) and 2) the number of vehicles circulating (100, 300, and
500).

The first observation concerns the number of traffic logics
(and hence, the number of traffic lights), since it determines
the dimensionality of the problem. In Fig. 8, we can observe
that the mean fitness values increase with the number of traffic
logics, as expected, although this increment is moderate with
regard to the number of traffic lights (dotted lines).

A second interesting observation can be obtained from
Fig. 7, where the distribution of results concerning the number
of vehicles is completely different for both scenarios. Thus, in
Alameda Avenue (three boxplots at the top), the distribution of
results gets worse with an increase in the number of vehicles.
This seems logical since a high number of cars increases the
possibility of traffic jams being generated. In addition, we must
take into account that the number of vehicles that arrive at
their destination directly influences the fitness function. To the
contrary, in Rivadavia Square (three boxplots at the bottom),
the distribution of results improves as the number of vehicles
increases. In this case, we suspect that the particular shape
of this scenario, with parallel streets and thus organized flow,
could influence in the number of vehicles that quickly reach
their destinations and leave the scenario, hence introducing
great benefits to the fitness calculation.
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TABLE V

Mean Time and standard Deviation in Seconds of Our PSO to Compute all the Experiments

Instance Number of Traffic Logics
Number of Vehicles

100 300 500
20 4.14E+02±6.74E+01 5.94E+02±6.83E+01 7.25E+02±6.53E+01

Rivadavia Square 30 4.09E+02±6.11E+01 5.04E+02±5.54E+01 7.44E+02±6.51E+01
40 3.56E+02±5.42E+01 4.43E+02±4.60E+01 6.66E+02±5.66E+01
20 4.30E+02±4.55E+01 1.20E+03±7.58E+01 1.59E+03±9.50E+01

Alameda Avenue 30 5.46E+02±5.48E+01 1.14E+03±7.43E+01 1.51E+03±8.59E+01
40 5.12E+02±5.12E+01 1.23E+03±8.03E+01 1.48E+03±8.51E+01

Fig. 9. Number of vehicles that did reach their destination (continuous lines)
versus vehicles that did not reach their destination (dotted lines) in the studied
time frame. Overlapped curves show the mean number of vehicles (out of 30
independent runs) that did arrive and did not arrive at their destination. SCPG
results are also shown with dotted straight lines.

D. Computational Effort

Table V contains the mean times (and standard deviations)
in seconds required by our PSO to compute all the experi-
ments. We must state that these times are averaged, since they
were calculated in the scope of a Condor [47] middleware with
a pool of machines with different specifications.

The lowest execution time (3.56E+02 s) was required for
solving the Rivadavia Square scenario with 40 traffic logics
and 100 vehicles. The highest time (1.59E+03 s) was used in
the resolution of the Alameda Avenue scenario with 20 traffic
lights and 500 vehicles. All these times are in a range from
6.33 to 26.5 min, which is acceptable for the human experts in
civil engineering, designing and taking decisions on the traffic
network.

We stress that the computing time increases with the number
of vehicles (common sense), although it decreases with the
number of traffic lights (counterintuitive). This fact could be
due to the optimized cycle programs that control a great num-
ber of traffic lights. These optimized traffic lights enhance the
traffic flow, meaning the cars get to their destinations quickly,
thereby reducing the computing load of the simulation.

Fig. 10. Mean journey time of vehicles calculated for each one of the
simulations performed through a representative run of PSO. SCPG results
are also shown with a dotted straight line. The y-axis represents the journey
time in seconds.

E. Analysis of Solutions

Finally, in this section, we focus on the cycle programs
obtained as solutions by our PSO, and the possible benefits
they can offer to the actual users in this field. So we show the
broad impact of using our strategy, able to compute realistic
and comprehensive traffic light cycle programs.

In this context, for each iteration step of the PSO and for
each particle in the swarm, we have saved the information
obtained from each simulation (solution evaluation) about both
the number of vehicles that reached their destination and
the average duration of their journeys. In this way, we can
distinguish the progressive improvement in the traffic flow
obtained from the initial solutions to the final ones, throughout
the complete optimization procedure.

A representative example can be observed in the opti-
mization process of the Alameda Avenue scenario with 30
traffic logics (130 traffic lights in the cycle program) and 300
vehicles. First, in Fig. 9 we can see the trace of the number
of vehicles that did reach their destination (upper continuous
line) versus the number of vehicles that did not reach their
destinations (lower dotted line) for each iteration step in a
run of PSO. The overlapped curves show the mean number of
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Fig. 11. Simulation traces of the traffic flow (cars in white) resulting from the cycle programs generated by both (left) SCPG and (right) PSO. The pictures
show snapshots at the end of the simulation time. The reader can see that the SCPG leaves a dense traffic, while PSO has cleared the routes and the traffic
is very fluid and smooth.

vehicles (out of 30 independent runs) that did arrive and did
not arrive at their destination. In contrast, this figure also shows
the results (in dotted straight lines) of the SCPG (SUMO
algorithm) for this same instance.

We can easily see in Fig. 9 how the number of vehicles
that did arrive (did not arrive) at their destination increases
(decreases) as the algorithm reaches the stop condition of 300
iterations. In fact, at the initial steps of the optimization pro-
cess, the number of vehicles that reached their destination was
lower than the ones resulting in the cycle program generated
by SCPG. However, in the final steps of the PSO procedure,
the solutions obtained show a high quality in terms of the
traffic flow, since 295 vehicles of the initial 300 (98.33%)
finalized their trips successfully. Moreover, a mean number of
255 vehicles completed their journeys in the final solutions of
PSO (average of 30 runs). This contrasts with the 160 vehicles
that reached their destination in the SUMO cycle program. The
improvement obtained by our PSO over SCPG is 31.66%.

Another interesting behavior that can be observed in Fig. 9
is the alternating peaks and valleys that appear in the curves
of the single run of PSO. These peaks represent solutions
with an accurate fitness but with a low number of cars
reaching their destinations. This can be due to the fact that
the fitness function [see (3)] promotes cycle programs with
large durations of phases in which the proportion of traffic
lights in green is higher than in red. For certain intersections
with several secondary streets and only one big avenue, the
traffic lights controlling this avenue could extend their states in
red, thus resulting in a traffic jam that could delay the traffic
in other adjacent intersections/streets. A string influence on
the successful journeys in the fitness function (promoting the
number of vehicles that arrive and penalizing it when vehicles
do not arrive) leads the PSO to avoid these kind of solutions.

From another viewpoint, Fig. 10 plots the trace of the
average journey time employed by the vehicles in the resulting
solutions of PSO through all the iterations of an example run.
In this case, the journey time becomes shorter as the algorithm
approaches the stop condition. We must note that in the
calculation of the journey time, the vehicles that did not arrive
at their destinations took 500 s, the complete simulation time.

For this reason, SCPG solutions showed an average journey
time of 308.75 s, while PSO solutions obtained a journey
length of 78 s, which means an improvement of 74% with
respect to the SCPG solution. In this specific case, 295 vehicles
(of 300) completed their journey during the simulation time
with an average journey time of 78 s to complete the urban
scenario of 650 × 650 m. In the worst case, the remaining
five vehicles will complete their trips in at most 500+78 s,
that is, the complete simulation time plus the average journey
time.

Finally, in order to clarify the final implications of using
(or not using) an optimized cycle program, Fig. 11 shows the
simulation traces of the traffic flow resulting from solutions
generated by both (left) SCPG and (right) PSO. The pictures
were captured at the end of the simulation time (500 s),
and correspond to two simulation procedures of the scenario
instance Alameda Avenue with 40 traffic logics (184 traffic
lights) and 500 vehicles. As we can observe, the traffic density
of the SCPG cycle program is clearly higher than that of PSO,
even showing the former several intersections with traffic jams.
As to the PSO cycle program, all intersections are unblocked
at the end of the study.

VII. Conclusion

In this paper, we proposed an optimization technique based
on a particle swarm optimization algorithm that can find suc-
cessful traffic light programs. For the evaluation of solutions,
we used SUMO, a well-known microscopic traffic simulator.
For this paper, we tested two extensive and heterogeneous
metropolitan areas located in Bahı́a Blanca and Málaga.

From two scenarios, a total number of 18 different numer-
ical instances were generated depending on the number of
vehicles circulating and the number of traffic lights operating.
A series of analyses was carried out from different viewpoints:
1) the performance of the optimization technique; 2) the
scalability; 3) the computational effort; and 4) the quality
of solutions. From these, the following conclusions can be
extracted.
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1) Our PSO solver performs successfully in the generation
of optimized cycle programs for big realistic traffic
scenarios. For all the instances, our proposal obtained
robust results statistically better than the other two
algorithms compared: 1) the SCPG and 2) a RANDOM
algorithm.

2) In comparison with the DE and standard PSO 2011
algorithms, our PSO also showed a better performance.

3) In the scope of the scenario instances studied here, we
can claim that our PSO scales adequately in terms of
the number of traffic lights. Concerning an increase in
the number of vehicles, we have characterized how the
scenario topology can influence the scalability power of
our proposal, showing accurate results especially with
regular route designs.

4) The complete optimization process required a computa-
tional mean time in the range from 6.33 to 26.5 min,
which is completely acceptable for use by human experts
in civil engineering. Furthermore, these values suggest
that we can still work with larger scenario instances in
future experiments.

5) The final solutions obtained by our PSO can improve the
number of vehicles that reach their destination and the
mean journey time, for all the instances. In particular,
for the Alameda Avenue instance with 30 traffic logics
and 300 vehicles, the improvement obtained is around
31.66% in the number of completed journeys and 74%
in the journey time, regarding SCPG. All this means a
real improvement in city traffic.

In future work, we will be tackling the optimal cycle
program with other optimization techniques, and in partic-
ular other metaheuristics. We are also interested in using
other traffic simulators and creating new larger dimension
instances, as close as possible to real scenarios of an entire
city.
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