
Review

Nutritional and environmental
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Abstract: The prevalence of autism spectrum disorders (ASD) has risen sharply in the last 30 years, posing a major public health concern and
a big emotional and financial challenge for families. While the underlying causes remain to be fully elucidated, evidence shows moderate
genetic heritability contribution, but heavy environmental influence. Over the last decades, modern lifestyle has deeply changed our eating,
rest, and exercise habits, while exposure to air, water, and food chemical pollution has increased due to indiscriminate use of pesticides, food
additives, adjuvants, and antibiotics. The result is a drastic change in the quality of our energy source input, and an overload for antioxidant
and detoxification pathways that compromises normal metabolism and homeostasis. Current research shows high prevalence of food
selectivity and/or food allergy among children with autism, resulting in essential micronutrient deficits that may trigger or aggravate physical
and cognitive symptoms. Nutrigenomics is an emerging discipline that focuses on genotype-micronutrient interaction, and a useful approach
to tailor low risk, personalized interventions through diet and micronutrient supplementation. Here, we review available literature addressing
the role of micronutrients in the symptomatology of ASD, the metabolic pathways involved, and their therapeutic relevance. Personalized and
supervised supplementation according to individual needs is suggested as a complement of traditional therapies to improve outcome both for
children with autism and their families.
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Abbreviations

5-MTHF 5-methyl-tetrahydrofolate
ASD autism spectrum disorders
BBB blood-brain barrier
DHFR dehydrofolate reductase
FR folate receptor
FRAA α-FR autoantibodies
GSH reduced glutathione
GSSG oxidized glutathione
MS methionine synthase
MTHFR methylene tetrahydrofolate reductase
PCFT proton coupled folate transporter
PL pyridoxal
PLP pyridoxal 5’-phosphate
RA retinoic acid
RARE retinoic acid response element
ROS reactive oxygen species (ROS)
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SNP small nuclear polymorphism

THF tetrahydrofolate
VDR vitamin D receptor
VDRE vitamin D response element
PUFA polyunsturated fatty acids
ARA arachidonic acid (20:4 n-6)
EPA eicosapentanoic acid (20:5 n-3)
DHA docosahexanoic acid (22:6 n-3)
eCB endocannabinoids
PPAR peroxisome prolifarator-activated receptors

Introduction

Autism spectrumdisorders (ASD) are complex neurodevel-
opmental conditions typically manifested by impaired
language and social skills and disruptive behaviors such
as self-harm and severe meltdowns [1]. Over the years,
many frequent comorbidities have been identified in ASD
individuals, including epilepsy, attention deficit and hyper-
activity disorder (ADHD), learning disability, allergies, and
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sleep, nutritional, and gastrointestinal issues, to mention
the most recurrent ones (see [2, 3] for review).

Theprevalence ofASD is somewhat controversial since it
has showed an exponential increase over the last 3decades.
When ASD numbers began to build-up, so did the argu-
ments about real increase versus improved and earlier
diagnosis, aswell as changes indiagnosis criteria. Bi-annual
reports of the ASD surveillance program, launched by the
Centers for Disease Control and Prevention (CDC) in
2000, revealed indeed an alarming increment in ASD
frequency in 8-year-old children in the USA, from 1 in
150 in the first report to 1 in 59 in 2014, being 4 timesmore
common inboys than ingirls [4].According to theSummary
of ASD Prevalence Studies published in the CDC website,
global prevalence is between 1 and 2% considering reports
from Asia, Europe and North America [5]. Noteworthy,
another study available in this web site indicates that 1 in
6 children in the United States had a developmental
disability from 1997 to 2008, and that there has been a
17,1% rate increase according to parental report over the
last 12-year period [6]. Since 1994 ASD was diagnosed
according to the 4th edition of theDiagnostic and Statistical
Manual of Mental Disorders (DSM-IV) criteria, by the
American Psychiatric Association. In May 2013 the 5th edi-
tion (DSM-V) established new guidelines for ASD identifi-
cation, which some authors proposed as a plausible cause
for prevalence increase, since disorders that were consid-
ered different from autism in DSM-IV (such as pervasive
developmental disorder or Asperger’s syndrome), fall
within the spectrum in DSM-V. However, a rate attenua-
tion was observed after DSM-V introduction, between
2013 and 2015 [1, 7, 8]. Furthermore, a population-based
cohort study in Denmark showed that changes in diagnosis
criteria and report improvement accounted for60%ofASD
prevalence rise, with the remaining 40% reflecting the
effective rate increase, prompting intensive research to
identify risk factors and prevent exposure [9]. The outcome
of these efforts is highly relevant not only for individuals
with ASD and their families, which face substantial finan-
cial and emotional burdens, but also for public health and
education systems [10].

While the underlying causes of autism remain unclear,
the original concept of a pure non-genetic neurological
disorder has been replaced by one that proposes instead a
polygenic and multifactorial origin, emphasizing the role
of epigenetic changes [11]. Inherited single-gene and
chromosomal defects account for just a minority of ASD
cases [12], and studies among identical twins showed that
while genetic heritability had a moderate influence,
environmental factors (e.g. immune maternal activation,
pesticides or heavy metal exposure) may strongly
influence the onset and persistence of autistic traits, as

evidenced by discordant DNA methylation patterns is
monozygotic twins [13–15]. Since genetic variation does
not account for ASD prevalence escalation in such a short
period of time, the question arises: what else has changed
in our lifestyle and/or environment over the last decades
that could contribute to increasing rates of autism? Also,
while there are still neither definite biochemical diagnosis
nor specific medical treatment for autism, what novel
strategies have been advanced? On a global scale, we have
witnessed significant changes in our nutritional habits over
the last few decades. Adoption ofWestern eating habits led
to overconsumption of refined carbohydrates and sugar,
protein from processed meat, food additives and preserva-
tives, and saturated fatty acids that accompanied the
increase in obesity, diabetes, and cardiovascular disease.
Micronutrient malnutrition, a condition where the balance
in key micronutrients such as vitamins, minerals and
essential fatty acids required for optimal metabolism and
health is lost, becamemoreprevalent toowith theconsump-
tion of processed, rather than raw or minimally processed
foods, especially in industrialized societies. Along with
these changes, environmental contamination increased as
well through continuous release into the air and water of
pollutants derived from agriculture, urbanization, and
industry [16, 17]. These and other environmental toxicants,
including neurotoxins within cosmetic and pharmaceutical
adjuvants, as well as the indiscriminate use of antibiotics,
were linked todevelopmentaldelayandavarietyof congen-
ital and acquired health conditions [18–21]. The result is a
drastic change in the quality of our energy source input,
and an overload for antioxidant and detoxification path-
ways that compromises normal metabolism and cell and
organdevelopmentand function.Currently,ASDtreatment
consists of behavioral interventions (disruptive behavior
modification therapies) together with educational and
speech therapy for years to come after diagnosis, aimed to
improve social integration and provide autonomy in
adult life [22, 23]. However, outcome success is generally
limited, stressing out the necessity to find novel diagnostic
tools and therapeutics to synergistically arrive to earlier,
more effective interventions.

Based on current evidence both in humans and in animal
models [24–29], we hypothesize that advances in nutrige-
nomics raise the chance to tailor low risk, personalized
interventions through diet and/or micronutrient supple-
mentation according to individual nutritional deficits, to
optimize health and complement standard autism treat-
ment. In this review,we summarize data on several promis-
ing micronutrients in terms of ASD therapeutic relevance,
and list someof themost prevailingdisturbances associated
with vitamins and omega 3 fatty acids deficiencies in rela-
tion to their physiological actions and metabolic pathways.
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Methods

Aweb literature search was conducted in PubMed, Science
Direct and Cochrane databases for peer-reviewed English-
language articles published from 2000 to the present time.
The following keywords and their combinations (made by
applying operators AND and OR) were used in the search:
autism, nutrition, food selectivity, food allergy, vitamins,
supplementation, vitamin A, vitamin B, pyridoxal, folate,
folinic acid, cobalamin, vitamin D, vitamin K, omega 3,
PUFA, DHA, EPA, PPAR, endocannabinoids, oxidative
stress, neurodevelopment, neurotoxicity, methylation,
epigenetic, environmental exposure. Reference lists of
selected papers were consulted as well. Because random-
ized, double-blind placebo-controlled studies in large
populations including both diagnosed and unrelated neu-
rotypical participants are scarce, results from small studies
were carefully analyzed to allow comparisons with larger-
scale studies.

Epigenetics: environmental
contribution and genetic
susceptibility in ASD

Many authors refer an impact of pre- and/or perinatal
exposure to different environmental stressors or nutri-
tional deficits on neurodevelopment outcome, according
to gene-variant susceptibility [11, 30–33]. Here we discuss
metabolic pathways involved in increased neurodevelop-
mental vulnerability, based on known genetic predisposing
factors.

Oxidative stress and methylation deficit

It is well known that reactive oxygen and nitrogen species
(ROS and RNS respectively) damage DNA, proteins, and
lipids, affecting cell signaling, gene expression,metabolism
and ultimately, cell fate and viability [34]. Cellular antioxi-
dant defense status varies according to age, nutritional sta-
tus and genetics, the latter depending on polymorphisms of
key genes coding for enzymes involved in specific path-
ways, considered next [35]. Several metabolic aspects of
�l-γ-glutamyl-�l-cysteinylglycine (glutathione; GSH), the
main intracellular antioxidant, have been linked to the
pathophysiology of ASD and other disorders. Nearly 90%
of the cell and tissue GSH pool is in the reduced form and
is crucial for thiol-redox homeostasis [36]. Less than 10%
is oxidized, and the molar ratio between the reduced and
the oxidized/dimerized (GSSG) forms of GSH is a sign of
cell functionality and redox status. Increased plasma levels

of homocysteine andGSSG, togetherwith adecrease in cys-
teine, total GSH, and the GSH/GSSG ratio correlate with
the severity of symptoms in autism [37, 38]. Impairment
of GSH homeostasis, reflected by lower activities of gluta-
mate cysteine ligase (GCL; the rate limiting enzyme in
GSH synthesis), as well as glutathione peroxidase (GPX)
and glutathione-S-transferase (GST), was observed in cere-
bellum samples from ASD individuals [39]. In addition,
specific polymorphisms in the genes coding for GST
(rs1695 inGSTP1) andGPX (rs1050450 inGPX1) have been
linked to diminished antioxidant capacity in ASD [40, 41].
Abnormalities in other antioxidant enzymes, including
superoxide-dismutase and/or catalase imbalance, [42,
43] as well as impaired bioenergetics associated to mito-
chondrial dysfunction and oxidative stress [44–46] have
also been described in relation to autism.

DNA methylation and histone acetylation are key
features of epigenetic modulation [47]. One-carbon (C1)
metabolism (Figure 1) represents a central pathway linked
to methylation, de novo nucleotide biosynthesis, trans-
sulfuration, GSH metabolism, and redox homeostasis [48,
49]. The onset of autism symptoms was proposed to result
from a redox/methylation deficit [50, 51]. Methyl groups
for methylation reactions are provided by methionine-
synthase (MS), requiring reduced cobalamin (vitamin B12)
as coenzyme. Under oxidative stress cobalamin is oxidized,
so MS activity drops off and methylation deficit follows.
Since MS modulates methyl donor S-adenosylmethionine
(SAM) and acceptor S-adenosylhomocysteine (SAH) bal-
ance (SAM/SAH ratio), a pro-oxidant status can indirectly
lead to hypomethylation, since it would divert homocys-
teine toGSHsynthesis inorder to copewithoxidative stress,
thus decreasing SAM levels [52, 53]. Other methylation
events dependent on the SAM/SAH ratio include protein
and RNAs methylation, which in turn contribute to cell
function through protein turnover and post-transcriptional
gene expression regulation [54, 55]. A specific polymor-
phism in the MS gene (G allele for rs1805087) has been
linked to increased autism risk, while significantly
decreased levels of MS mRNA have been reported in cere-
bral cortex fromautistic subjects, especially at youngerages
[56, 57].

Impaired detoxification mechanisms have been pro-
posed to contribute to ASD etiology [18, 21, 58]. About half
of the thousands of chemicals found in consumer prod-
ucts lack developmental toxicity data, and many industrial
and environmental chemicals detected on cord blood anal-
yses (including heavy metals, pesticides and endocrine-
disruptors) are able to alter chromatin structure, affect
DNA methylation, and trigger developmental defects in
animal models [59–61]. Thus, the weight of the evidence
accumulated this far puts in the spotlight a fine interplay
between genetic and epigenetic contributions to ASD
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phenotype and severity, emphasizing the need to identify
environmental stressors in order to prevent exposure of
both gestating mothers and newborns.

Nutritional deficit aspects

Our eating habits changed remarkably in the last decades,
with a meaningful decrease in the quality of our energy
source input derived from increased consumption of
processed, rather than raw or minimally processed foods.
The Western diet, enriched in refined carbohydrates,
cholesterol, and trans-saturated fats, jeopardizes the supply
of key micronutrients such as vitamins, minerals, and
essential fatty acids needed for optimal metabolism and
health. Worryingly, most children with autism present
with food selectivity and/or food allergies [62–64], which
compromises their nutritional status and magnifies
genetic susceptibility in the presence of gene polymor-
phisms affecting micronutrient metabolism, or even major
metabolic pathways such as glycolysis [65, 66]. Genetic
variants related to specific micronutrients and increased
susceptibility are considered in the next sections.

Vitamins are essential micronutrients. Although vitamin
D can be synthesized by the body upon sunlight exposure,

current lifestyle leads to suboptimal endogenous synthesis
making it necessary to increase intake, in order to achieve
optimal levels (further addressed in section 4.3). All other
vitamins or their precursorsmust be acquired from the diet.
An adequate vitamin supply is particularly important since
vitamins influence every metabolic pathway, either as
coenzymes, transcription factor ligands, or antioxidants.
Consequently, several aspects of metabolism may be
compromised due to the “picky” eating pattern frequent
in children with ASD [67, 68]. In view of recent supplemen-
tation studies targeting subjects with autism and pregnant
women [24, 26–29, 33, 69–76] (Table 1), in the following
sectionswewill address someof themost relevantmicronu-
trients, in terms of therapeutic relevance for ASD and
proper neurodevelopment.

Vitamin deficiencies in ASD

Vitamin B6, B9, and B12

These vitamins are water-soluble, have a pivotal role in C1
metabolism and hence in redox status and methylation
(Figure 1) [48].

Figure 1. One-carbon (C1) metabolism. DHF (dihydrofolate), THF (tetrahydrofolate), SAM (S-adenosyl methionine), SAH (S-adenosyl homocys-
teine), DHFR (dihydrofolate reductase), MTHFR (methyl tetrahydrofolate reductase), BHMT (betaine-homocysteine S-methyltransferase), MS
(methyl synthase); MT (methyl transferase), CBS (cystathionine-β-synthase), CL (cystathionine-γ-lyase), B2 (riboflavin), B6 (pyridoxal phosphate),
B12 (cobalamin), NADPH (reduced nicotinamide adenine dinucleotide phosphate), FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide).
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Vitamin B6 or pyridoxal (PL)
Pyridoxal (PL) is required for over 160 different catalytic
reactions spanning amino acid and neurotransmitter syn-
thesis and degradation, tryptophan catabolism (involved
in melatonin and serotonin synthesis), and nicotinamide
adenine dinucleotide (NAD+) synthesis [77]. The active
formof vitaminB6 is pyridoxal 5’-phosphate (PLP). Absorp-
tion kinetics for PLP and other phosphorylated B6 vitamers
proceeds by a series of tissue-specific, tightly regulated
dephosphorylation and rephosphorylation reactions [78].
PLP is also required as coenzyme for glutamic acid decar-
boxylase (GAD) responsible for gamma aminobutyric acid
(GABA) synthesis from glutamate (Glu). Glu and GABA
are, respectively, the major excitatory (E) and inhibitory
(I) neurotransmitters in the adult brain. An imbalance in
E/I neurotransmission has been observed in ASD and has
been linked to epilepsy, a frequent ASD comorbidity.
Vitamin B6-dependent seizures, triggered by PLP defi-
ciency and reduced GAD activity, contribute to increased
Glu and decreased GABA signaling and may underlie
epileptic episodes in children with autism [79–81].

The role ofB6metabolismonASDremains controversial,
since either low or high plasma total B6 levels have been
reported in patients with autism [82–84]. Increased B6

levels could result frompolymorphisms involving pyridoxal
kinase [84] or tissue nonspecific alkaline phosphatase,
another enzyme related to B6metabolism [85]. Despite this
uncertainty, vitamin B6 plus magnesium supplementation
was reported to ameliorate ASD core symptoms; strikingly,
autistic traits reappeared a few weeks after supplement
discontinuation [74].However, B6 supplementation studies
inautismarescarce, andmethodological limitations suchas
small number of participants or lack of placebo arm are
common [86, 87]. Still, considering the potential benefits
and low cost of B6-Mg supplementation, future research
should address this matter in order to safely recommend
it as a therapeutic complement upon individual assessment.

Vitamin B9 or folate
The term vitamin B9 refers to a family ofmolecules derived
from folic acid. Folic acid does not exist in nature but can
result from folate oxidation and is also the synthetic form
found in most dietary supplements and fortified foods.
Tetrahydrofolate (THF) and 5-methyl-tetrahydrofolate
(5-MTHF) are the biologically active molecules, so other
members of the family need to undergo chemical transfor-
mation by dihydrofolate reductase (DHFR), in the case of
folic acid, or by methylene tetrahydrofolate reductase
(MTHFR), for folinic acid and other reduced forms of folate
(Figure 1). The folate cycle is the key motor of C1metabo-
lism.5-MTHFis thedonorof reactiveone-carbonunitsused
by MS to methylate homocysteine to methionine, which in
turn is converted into S-adenosyl-methionine (SAM), theTa
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universal methyl donor species for most methylation reac-
tions in the cell. Dietary folate is absorbed by enterocytes
by two carriers, the proton-coupled folate transporter
(PCFT) and the reduced folate carrier (RFC). In most
tissues, folate uptake involves mainly four folate receptors
(α-FR,β-FR, γ-FR,δ-FR)withdifferential expressionamong
tissues [88, 89]. Given folate’s central role in C1 metabo-
lism, many aspects of its chemistry and genetics have been
an active topic in autism research. To this extent, different
polymorphisms in MTHFR (C677T and 1298AC) [90],
DHFR (19 bp deletion) [91], and the maternal RFC1 gene
(maternal G allele in A80G) for the reduced folate carrier
were associated with increased ASD risk [92]. Evidence
suggests that folate bioavailability may also be compro-
mised in ASD. 5-MTHF accounts for over 90% of circulat-
ing folate and binding to the aforementioned carrier
proteins allows it to cross the blood-brain barrier (BBB).
While α-FR shows high affinity for folate and is the main
transport mechanism across the BBB, RFC has lower
affinity and is themain carrier in neuronswithin the central
nervous system (CNS). Several studies showed a high
prevalence of serum autoantibodies against α-FR (FRAA)
not only in ASD cases, but also in their parents and typi-
cally-developing (TD) siblings [93, 94]. Furthermore, in
double-blind placebo controlled trials, supplementation
with folinic acid (which is transported by RFC across the
BBB) improved core ASD symptoms, especially verbal
communication [28]. Current research in this field will
hopefully provide a new treatment option to complement
speech and behavior therapies.

Vitamin B12 or cobalamin
Cobalamin is a coenzyme forMS inC1metabolism, andalso
formitochondrialmethylmalonyl-CoAmutase, the enzyme
that converts methylmalonyl-CoA into succinyl-CoA,
whichconnects vitaminB12 tobioenergeticsaswell.Clinical
B12 deficiency presents with classic hematological (e.g. per-
nicious anemia) and neurological manifestations. Dietary
cobalamin is absorbed and transported through a series of
carrier proteins and receptors that may be involved in vita-
min B12 deficits. For example, mutations in the protein
amnionless, part of the cubam B12 receptor, can lead to
Imerslund-Gräsbeck syndrome and impair vitamin B12

transport into the CNS [95]. Under oxidative stress, the
cobalt atom in cobalamin is oxidized, inactivating B12 in
an irreversible way. In most cell types, oxidized cobalamin
is remethylated by a methyltransferase, with SAM as the
methyl donor. In neurons, however, oxidized cobalamin
dissociates from MS and must be replaced by another
reduced cobalamin molecule [50, 96]. In fact, B12 was
shown to be an efficient superoxide anion scavenger,
which could contribute to B12 depletion upon inactivation
by oxidation [97]. Concerning ASD, significantly lower

cobalamin levels, similar to those of elderly subjects, were
found in postmortem frontal cortex from children with aut-
ism compared to age-matched controls [53]. Plasma levels
of cobalamin in ASD subjects were reported to be normal,
so lower cortex level could imply deficient transport across
the BBB. In this regard, a lower affinity binding polymor-
phism for B12 plasma carrier transcobalamin II was identi-
fied [98], the frequency of the homozygous genotype for
this variant was found to be 10% higher in ASD versus TD
children, increasing autism risk 1.7-fold [37]. Furthermore,
polymorphisms in the genes coding for cubilin, also part of
the cubamreceptor [99], and the renal receptorLRP2 [100]
showed that cobalamin homeostasis is crucial for normal
neurodevelopment. Interestingly, LRP2 andcubilin are also
involved in α-FR-folate complex endocytosis, confirming
the importance of folate- andB12-dependentDNAmethyla-
tion for normal development [101]. Although multivitamin
supplementation is now commonly recommended during
pregnancy, and folate supply has been shown to decrease
neural tube defects, appropriate vitamin intake limits
should be considered: whereas extremely high maternal
plasma folateandB12 levels atbirthwere linked to increased
autism risk, moderate concentration inmaternal bloodwas
shown to reduce autism risk in offspring [27]. Finally, B12

supplementation trials on ASD population are scarce, and
only one randomized trial of methyl-B12 showed improve-
ment [71]. The study in question indicated better methyla-
tion capacity associated to increased SAM/SAH ratio,
although no significant behavioral changes were observed
in parent-rated ABC (aberrant behavior checklist) and
SRS (social responsiveness scale) scores.

Vitamin A

Vitamin A is liposoluble and has three active isoforms,
retinol, retinal, and retinoic acid (RA), the latter being an
important transcriptional regulator. Vitamin A actions
include antioxidant defense as a free radical scavenger, cell
growth and differentiation, and immune function [102,
103]. VitaminA is stored as retinyl estersmainly in the liver,
and hydrolyzed to retinol according to physiological needs
(Figure 2). Diet-related vitamin A deficiency is prevalent
in children with autism [67]. In addition, a small number
of ASD cases present E3 ubiquitin ligase (UBE3A) hyperac-
tivity, leading to excessive ubiquitylation of retinalde-
hyde dehydrogenase (ALDH1A; the rate limiting enzyme
in RA synthesis), reduced RA signaling, and impaired
RA-mediated synaptic plasticity. Accordingly, ASD-like
symptoms were observed in mice overexpressing UBE3A
in the prefrontal cortex or administered an ALDH1A
antagonist, while RA supplementation alleviated the autis-
tic phenotype [104]. RA nuclear receptor alpha (RARα)
plays a crucial role in nervous system development,

�2020 Hogrefe Int J Vitam Nutr Res (2020), 1–19
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learning, and memory, through epigenetic modifications,
particularly by modulating histone acetylation in the
hippocampus. In vitamin A-deficient rats, significant lower
histone acetylation was correlated with impaired learning
andmemory, pinpointing the relevance of vitamin A intake
during pregnancy and childhood to prevent learning and
memory decline in adulthood [105].

ASDprevalence is4 timeshigher inmales than females, a
bias suggested to be related to high fetal testosterone levels
in boys [106]. Decreased levels of aromatase, the enzyme
that converts androgens to estrogens, were detected in
the frontal cortex of individuals diagnosed with ASD.
Studies suggested that this finding may be secondary to
alterations in nuclear RA-related orphan receptor alpha
(RORA) expression, which modulates aromatase activity
and is in turn modulated by vitamin A levels [107]. Since
RORA activity is regulated in an opposite fashion by sex
hormones, with dihydrotestosterone (DHT) suppressing
and estradiol promoting its expression [108], this model
provides a plausible answer for increased testosterone
levels in the ASD male brain tissue, while higher estrogen
levels in females might buffer RORA suppressing agent
[107] or else vitamin A deficiency. RORA has also been

associated to circadian rhythm control (frequently altered
in ASD) and neuroprotection against oxidative stress and
inflammation [109, 110]. Noteworthy, DNA methylation
and immunohistochemical analyses demonstrated
prevalence of RORA hypermethylation in lymphoblasts
from children with autism, while low expression of RORA
(and other regulators of the circadian rhythm) in ASD brain
tissue was linked to severe language impairment [111].
Collectively, these findings suggest that addressing
vitamin A deficiency may prevent or alleviate ASD
symptoms.

Vitamin D

This liposoluble vitamin is traditionally known for its role in
calcium and phosphorus homeostasis and skeletal health.
However, interest in its role influencing gene expression
has grown over the last two decades, after �2000 genes
were found to encompass vitamin D response elements
(VDREs) within their regulatory regions. Vitamin D is an
active neurosteroid that plays crucial neuroprotective roles
in the developing brain, participating in cell proliferation
and differentiation, immunomodulation, regulation of

Figure 2. Vitamin A genomic and non-genomic actions. CRABP (cellular retinoic acid binding protein), GPCR (G-protein coupled receptor), MAPKs
(mitogen-activated protein kinases pathway), ERK (extracellular signal-regulated kinase pathway), PI3K (phosphatidylinositol 3-kinase pathway),
RA (retinoic acid), RAL (retinaldehyde), RAL-DH (retinaldehyde dehydrogenase), RARE (retinoic acid response element), RAR⍺ (retinoic acid receptor
alpha), RARγ (retinoic acid receptor gamma), RBP (retinol binding protein), ROL (retinol), ROL-DH (retinol dehydrogenase), RORA (retinoic acid
related orphan receptor), RXR (retinoid X receptor), STRA6 [stimulated by retinoic acid gene 6 homolog (mouse)] [103, 189].

Int J Vitam Nutr Res (2020), 1–19 �2020 Hogrefe
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neurotransmission, and steroidogenesis [112, 113]. Vitamin
D is the only vitamin that can be synthesized de novo by
humans. Nutritional vitamin D intake represents roughly
10% of daily needs, so most of our vitamin D require-
ment must come from endogenous sources. In the skin,
7-dehydrocholesterol renders pre-vitamin D3 upon ultravi-
olet irradiation exposure, which is converted into vitamin
D3 or cholecalciferol [114]. The dietary vitaminD fromveg-
etable origin isD2 or ergosterol. BothD2 and previtamin-D3

reach the liver through the bloodstream bound to the
vitamin D transporter protein DBP, to be hydroxylated by
hepatic D-25-hydroxylase (CYP2R1) to 25-hydroxy-vitamin
D (25-OH-D) or calcidiol, the main circulating form of
vitamin D. Next, calcidiol is further hydroxylated to 1,25-
dihydroxy-vitamin D (1,25-diOH-D) or calcitriol by renal
25-OH-D-1⍺-hydroxylase (CYP27B1). Although CYP27B1
was believed to be expressed only in the kidney, it was later
found in many other cells and tissues including brain,
immune cells such as macrophages and T-lymphocytes,
and placenta, highlighting a more general role for vitamin
D as an autocrine or paracrine modulator of gene expres-
sion, versus the endocrine role of renal calcitriol [115].
Calcitriol exerts its actions by binding to cellular vitamin D
Receptor (VDR), with both genomic and non-genomic
effects (Figure 3). In line with current scientific evidence,
normal range minimun level for serum 25-OH-D has
recently changed to 30 ng/ml (75 nmol/l) and values from
40 to60 ng/ml (100 to 150 nmol/l) are considered optimal

for health benefits. Serum levels between 20 and 29 ng/ml
are considered as vitamin D insufficiency, while scores
under 20 ng/ml indicate vitamin D deficiency [116].
Remarkably, it seems likely that the prevailing medical
advice against sunlight exposure (tempered by recommen-
dation of preventivemeasures, i.e. sunscreen protection) to
reduce skin cancer risk has actually contributed to wide-
spread D hypovitaminosis. Achieving optimal vitamin D
serum levels from supplements alone would demand
1000-4000 IU/day for adults, while most “over-the-
counter” supplements provide in average 500 IU/dose.
Cannell [117] was the first to propose a link between
increased autism rates and gestational/early childhood
vitamin D deficiency caused by medically-recommended
sun avoidance. Supporting this theory, several studies from
different latitudes suggest that ASD prevalence rates tend
to be the lowest in countries near the Equator and to
increase moving poleward (reviewed by [118]). Vitamin D
is crucial not only for proper neurodevelopment but also
for brain function, and several neuropsychiatric conditions
have been related to vitamin D status [119–123]. Vitamin D
contributes to antioxidant defensemechanisms by increas-
ing GSH synthesis, thus improving redox status [124, 125].
Concerning calcitriol homeostasis, functional polymor-
phism analyses revealed an increased ASD risk for the AA
genotype of theGC gene encodingDBP [126], a variant pre-
viously associated with lower plasma 25-OH-D levels [127].
Similarly, the GG genotype for the CYP2R1 gene coding

Figure 3. Vitamin D genomic and non-genomic actions. D3 (calcitriol), GPCR (G-protein coupled receptor), PI3K (phosphatidylinositol 3-kinase
pathway), PKA (protein kinase A), PKC (protein kinase C), PLC (phospholipase C), RXR (retinoid X receptor), VDR (vitamin D receptor), VDRE (vitamin
D response element) [190, 191].
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25-D-hydroxylase was also linked to higher ASD risk after
being associated to reduced 25-OH-D plasma concentra-
tions [128]. Twopaternal andchild variants in theVDRgene
(TaqI and BsmI) were also linked to increased risk for ASD
[126, 129, 130]. Meanwhile, lower 25-OH-D plasma levels
in ASD versus TD [131, 132], as well as a relationship
between decreased 25-OH-D level and ASD severity [133,
134] have been demonstrated. Thus, as evidence of higher
risk of autism due to maternal vitamin D deficit keeps
growing [135, 136], several randomized trials reported
significant improvement in core symptoms of autism upon
vitamin D3 supplementation [26, 72, 137].

The recurrence prevalence for ASD is nearly 20% in
siblings [138], but according to a small study, vitamin D
supplementation in both expecting mothers who already
had a child diagnosedwith autism (5000 IU/day) and their

newborns (1000 IU/day until the age of 3), decreased the
expected incidence to 5% [73]. In agreement with these
findings, earlier research associated maternal 25-OH-D
insufficiency during pregnancy with offspring language
impairment and suggested that gestational vitamin D sup-
plementation may reduce this outcome [139]. Given the
lack of negative result reports upon supervised vitamin D
supplementation, anddocumentedhigh cost-effectiveness,
larger randomized trials are warranted.

Vitamin K

Although recent research has focused on investigating
associations between vitamin K status and several health
outcomes, the therapeutic potential of vitamin K in ASD
has remained so far unexplored.

Figure 4. Vitamin K genomic and non-genomic actions. VK (vitamin K), GGCX (gamma-glutamyl carboxylase), Glu (glutamic acid), Gla
(γ-carboxyglutamic acid), RXR (retinoid X receptor), SXR (steroid and xenobiotic nuclear receptor), SXRE (steroid and xenobiotic response element)
[192].
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Vitamins K1 (phylloquinone) and K2 (menaquinone) are
liposoluble molecules with a wide action repertoire includ-
ing epigenetic function, calcium metabolism regulation,
coagulation,oxidative stress, inflammation, andcell growth
and proliferation. There is also a water-soluble synthetic
form of vitamin K known as K3 or menadione, which is
turned into K2 upon isoprenylation in the liver by UbiA
prenyltransferase domain containing protein 1 (UBIAD1).
UBIAD1 is involved in the biosynthesis of both vitamin K2

and coenzymeQ10, and exhibitsmultiple subcellular local-
izations including mitochondria, endoplasmic reticulum,
and Golgi [140]. The metabolism of dietary vitamin K is
represented in Figure 4. Compared to other liposoluble
vitamins, the vitamin K reserve is low; given its central role
in coagulation, a vitamin K cycle is at work to prevent
depletion in case of insufficient dietary intake. Vitamin K
is a coenzyme for microsomal γ-glutamyl carboxylase,
which carboxylates glutamate residues of target proteins
to enable calcium binding (Figure 4). Because of this post-
translationalmodification ofGlu to γ-carboxyglutamic acid
(Gla) residues, these proteins are collectively known as
Gla-proteins or vitamin K dependent proteins (VKDP).
About 14 VKDP have been identified; half of them are pro-
duced in the liver and participate in blood coagulation, and
the rest contribute tobone remodeling (includingcell prolif-
eration and differentiation) and tissue calcification [141,
142]. Vitamin K1 draw attention and was first described
because of its antihemorrhagic role, but lately K2 gained
interest as a plausible aid in bone health and cardiovascular
diseasegiven its rolenot only in regulatingbone remodeling
but also in the calcification of soft tissue such as blood
vessels [143]. Bone health in young ASD individuals has
been overlooked compared to behavioral, cognitive or
social issues. Lower bone mineral density (BMD) was
observed inperipubertal boyswithASD,while ahigher frac-
ture rate was described in both children and adults (male
and female) with autism. Additionally, compared to TD
children, boys with ASD showed lower protein, calcium,
and phosphorus intake in association with lower BMD
[144–147]. Vitamin K2 has been proposed as a therapeutic
agent for osteoporosis treatment. Evidence accumulating
over the last few years suggested a synergistic effect of
vitamin D3 and K2 co-supplementation on bone metabo-
lism, calcium bioavailability, and cardiovascular health
[143, 148, 149]. On the other hand, a study showed that
vitamin K2 improved anxiety and depression in an animal
model of metabolic syndrome [150]. Furthermore, vitamin
K2 was shown to provide neuroprotection after neurotoxin
exposure [151] and to potentially prevent neurodegenera-
tive diseases such as Alzheimer’s and Parkinson’s through
anti-apoptotic and antioxidant effects [152, 153]. Along
these lines, synthetic K3 was found to modulate amyloid

plaque formationkinetics by inhibiting protein aggregation,
conferring neuroprotection against amyloid-induced
cytotoxicity [154].

Two Gla-proteins (Gas6 and Protein S) were shown to
critically influence neurite growth, redox status, and anti-
inflammatory responses in the developing nervous system.
Gas6 is also involved in the synthesis of sphingolipids, and
vitamin K deficiency was shown to decrease ceramide and
sphingomyelin synthesis and increase gangliosides content
in the rat brain [155, 156].

As mentioned above, mitochondrial dysfunction and
bioenergetics failure are common events in ASD.
Ubiquinone, a vitamin K-related molecule, is a key compo-
nent of the electron transport chain. In fact, vitamin K2was
proposed to act as amitochondrial electron carrier between
electron-donating and electron-accepting enzyme com-
plexes, contributing to normal ATP synthesis and restoring
mitochondrial function [157, 158].

No vitamin K supplementation trials have been
conducted in subjects diagnosed with ASD, thus future
research should address thismatter, considering the poten-
tial metabolic gain.

Omega-3 polyunsaturated fatty acid
(n-3 PUFA) deficit and ASD

Restricted food range and nutritional habits in people with
autism also compromise essential fatty acids proper intake.
Lipids from diet, particularly n-3 and n-6 polyunsaturated
fatty acids (PUFA) are known to influence plasma mem-
brane lipid composition and lateral domain organization,
affectingmembrane proteins partition and thus, cell signal-
ing and cell metabolism [159–161]. Our ancestry’s diet
involved an n-6/n-3 ratio fairly close to 1:1, but in recent
decades modern lifestyle changed the odds up to 20:1 in
favor of n-6, resulting in a plethora of health consequences
[162]. N-3 PUFA are enriched in oily marine fish and sea
food, which are a rare food choice among individuals with
autism. Today we know PUFA modulate physiology in
many ways. For instance, eicosanoids derived from 20:4
n-6 arachidonic acid (ARA) (e.g. prostaglandin E2 and
leukotriene B4) are stronger pro-thrombotic and pro-
inflammatory agents than eicosanoids derived from 20:5
n-3 eicosapentenoic acid (EPA) (prostaglandin E3 and
leukotriene B5), actually considered anti-inflammatory.
In fact, n-3 PUFA give rise to lipoxins, resolvins, maresins
and protectins, collectively known as specialized pro-
resolving mediators or SPMs that return the system to
homeostasis after an inflammatory event. It is interest-
ing that failure of this final stage of resolution of the
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inflammatory response could lead to chronic (neuro)in-
flammation, a condition often linked to ASD [163–166].
Moreover, 22:6 n-3 docosahexanoic acid (DHA) bioaccu-
mulates inbrain tissue since the third trimester duringpreg-
nancy and on through the lactation period, accounting for
about 30% of brain fatty acids, while EPA level is kept low
and tightly regulated by beta-oxidation denoting precise
functions in the CNS [167]. A study in an animal model
showed that maternal deprivation of n-3 PUFA during
pregnancy and lactation affected neurogenesis and apopto-
sis in adult offspring, involving increasedDNAmethylation
of theBDNFcoding gene.This outcomedidnot revert upon
restoring n-3 PUFA supply after weaning, suggesting a role
of n-3 PUFA in long-term imprinting [168]. By modulating
membrane biophysical properties, PUFA also influence
neurotransmission by regulating vesicular release from
presynaptic cells and receptor partition in the postsynaptic
membrane as well, due to lipid domain organization and
membrane fluidity [169, 170]. Endocannabinoids (eCB)
constitute another neurobiological relevant PUFA-derived
group of molecules, which perform their action by binding
to cannabinoid receptors (CBR) types 1 and 2; CBR1 is
highly expressed in the nervous system, while CBR2 is
mainly (but not exclusively) found outside the CNS. The
endocannabinoid system plays an important role in
learning and memory by restraining neurotransmitter
release in the presynaptic neuron [171]. The eCB system is
also a key modulator of the immune system through
CBR2, highly expressed in macrophages and microglia,
and is noteworthy that CBR2 signaling was found to be
upregulated inmononuclear cellsderived fromautistic chil-
dren’s blood samples [172, 173]. In addition, n-3PUFA bind
to certain neurotransmitters (e.g. DHA- or EPA-serotonin,
DHA- or EPA-dopamine) resulting in eCB-like molecules
with novel physiological roles that merit further investiga-
tion in the near future, but have already been linked to
inflammation, cancer and pain [174]. PUFA also modulate
gene expression as ligands of a nuclear transcription factors
family, the peroxisome proliferator-activated receptors
(PPAR)with threemembers, PPARα, PPARβ/δ andPPARγ,
expressed in different organs and tissues including
adipose, liver,muscleandbrain.These transcription factors
are involved in lipids homeostasis, energymetabolism [175,
176], inflammatory response [177], and neurologic func-
tions such as memory, learning and behavior [178], all of
which have been previously related to autism. Like
liposoluble vitamins intracellular receptors, PPAR require
heterodimerization (e.g. with RXR) in order to bind to
response elements in DNA and modulate gene expression.
Interestingly, recent research suggests that PPAR agonists
should be further explored as complementary treatment,
since animal and small sized studies in humans showed

improvement in cognitive function, behavior and biochem-
ical indicators of oxidative stress and inflammation
[76, 179–183].

Decreased n-3 PUFA plasma levels have been correlated
with several neuropsychiatric disorders, including ASD
[184], proving their crucial role in neurodevelopment and
proper neurologic function. The role of EPA and DHA in
neurodevelopment and their epigenetic contribution to
autism (and ADHD), as well as a summary of the available
supplementation trials has been recently and extensively
reviewedbyMartins et al. [75]. Theyhighlight that theFood
and Drug Administration (FDA) of the United States has
recently increased the suggested amount of fish consump-
tion for women considering getting pregnant, pregnant or
nursing, and they conclude that n-3PUFA supplementation
is an option for mothers with inadequate dietary intake as
well as fortification of formula, considering the benefits
and the lack of serious adverse effect reports (mainly mild
gastrointestinal symptoms). Supporting supplementation
in autistic subjects, certain polymorphism for the rate
limiting enzymes responsible for the synthesis of n-3 and
n-6 PUFA from essential fatty acids (fatty acid desaturases
1and2, andelongase2; FADS1, FADS2andELOVL2 respec-
tively) were analyzed and related to autism risk. A study
showed that the A/A genotype of rs10498676 in ELOVL2
and the G allele for rs526126 in FADS2 actually correlated
with a decline in the Autism Diagnostic Interview-Revised
communication (verbal and nonverbal) domain, in Chinese
children, suggesting lower risk for carriers [185].Moreover,
the G allele for rs526126 in FADS2 was linked to lower
levels of ARA [186]. Considering different variants for
FADSand/orELOVcouldmodulatePUFA levels andhence
their derivatives (in spite of adequate essential fatty acids
intake), n-3 PUFA level should be assessed in order to
guaranteemetabolic needs and avoid adverse downstream
consequences.

Concluding remarks and future
guidelines

Autism is a very complex, highly heterogeneous andmulti-
factorial disorderwith symptomsvarying in occurrence and
severity. Variation depends on individual genotype x envi-
ronment interactions, resulting in an aptly called spectrum
of phenotypes. As mentioned, there is a large number of
genes and variants linked to autism and yet, most cases
are idiopathic, highlighting the impact of both environment
and interindividual genetic differences. Exposure to certain
risk factors is in many cases inevitable (e.g. air and water
chemical contamination derived from industrialization).
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However, one major risk factor that we can handle is
micronutrient deficiency. Eating disorders, food selectivity
and foodallergies are common inASD,making it difficult to
introduce diet modifications towards improved nutrition,
andnutrigenomics is certainly apowerful tool in this regard.
Tackling nutritional deficits in ASD is a worthy effort that
entails little risk andmany potential benefits. As knowledge
in this field continues to grow, it becomes clear that both
genetic risks and nutritional status should be addressed in
order to characterize and attend individual deficiencies
through supervised, tailored supplementation plans suited
to specific needs, since food choice range varies among
subjects and hence, interindividual deficiencies as well.
Additionally, scientific evidence on the link between
gastrointestinal health, the gut microbiome, and their
impact on nervous system function in autism is growing
(see [187, 188] for review), although its analysis exceeds
the scope of thismanuscript. Nevertheless, gastrointestinal
issues including dysbiosis, should be assessed before initia-
tion ofmacro- ormicronutrient supplementation regimens.

Thiswork summarized current evidenceon selectedvita-
mins and omega-3 fatty acids regarding potential impact on
ASD, therapeutic uses, and the status of supplementation
trials. Somesystematic reviewsandmeta-analysesquestion
the relevance of most supplementation and/or environ-
mental risk factor studies due tomethodological limitations
such as small sampling size, or lack of placebo arm or
neurotypical control group. However, a growing number
of investigations suggest the strong association of environ-
mental factors with both autistic traits and the global
increase in ASD prevalence, meriting therefore our full
attention.

Today, autism treatment predominantly focuses on life-
timebehaviormodification therapies, aimed to lower symp-
toms severity and improve communication and social skills
to promote autonomy, independence, and social inclusion.
Although further research and thoughtful experimental
design is needed, we feel nutritional intervention will help
complement conventional interdisciplinary treatment to
improve physical and cognitive results and increase life
quality for people with autism and their families.
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