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While the interaction forces between two electric and two magnetic dipoles are formally identical,

their interaction energies differ because in addition to mechanical work, the magnetic energy

includes the electrical work needed to keep the dipole moments unaltered. This energy difference

appears to contradict a calculation based on the integrals of the squares of the electric and magnetic

fields since the electric and magnetic dipole fields have precisely the same geometry. VC 2013 American
Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4776652]

I. INTRODUCTION

It is well known that, except for the obvious differences in
the coefficients, the electric field of an electric dipole is for-
mally identical to the magnetic field of a magnetic dipole. Fur-
thermore, the interaction forces between electric and magnetic
dipoles are also formally identical.1–4 However, the interac-
tion energy of a system made of two electric dipoles does not
coincide with the energy of a similar system made of two
magnetic dipoles. The reason is because the mechanical work
needed to bring an electric dipole from infinity to its final
position is only equal to the corresponding work in the mag-
netic case if both magnetic dipole moments are kept fixed dur-
ing the entire process; in order to accomplish this, additional
electrical work is required. Therefore, the total energies of the
two interacting systems must be different, and this appears to
contradict the fact that the electric and magnetic fields of these
systems have exactly the same geometry and, therefore, the
electrostatic and magnetostatic energies calculated as integrals
of the squares of the fields should have the same value. In
what follows we will take a closer look at this situation and
resolve this apparent paradox.

II. THE PARADOX

Consider two electric dipoles:~p located at position~r and ~p0

located at the origin. The electric force acting on dipole~p is

~FE ¼ ð~p � ~rÞ~E ¼
3

4pe0

~r �~p0
r5

~p þ ~r �~p
r5

~p0
�

þ ~p �~p0
r5
� 5

~r �~p~r �~p0
r7

� �
~r

�
: (1)

An analogous expression exists for the magnetic force
between two magnetic dipoles ~m (at position ~r) and ~m0 (at
the origin):

~FM ¼ ð~m � ~rÞ~B ¼
3l0

4p

~r � ~m0
r5

~m þ ~r � ~m
r5

~m0
�

þ ~m � ~m0
r5
� 5

~r � ~m~r � ~m0
r7

� �
~r

�
: (2)

The use of the first equality in Eq. (2) is justified because in
the system considered the sources of either dipole are not
present at the position of the other.5–11

The forces in Eqs. (1) and (2) become identical if the mag-
nitudes of the dipole moments are related by

m ¼ cp; (3)

where

c ¼ 1ffiffiffiffiffiffiffiffiffi
l0e0
p (4)

is the speed of light. For the remainder of this paper we will
assume that Eq. (3) holds.

In the simplest case of two identical dipoles located so
that they are facing each other, one at the origin and the other
at an arbitrary point on the x-axis, the forces are repulsive
and have magnitudes

FE ¼
3

4pe0

2p2

x4
; (5)

FM ¼
3l0

4p
2m2

x4
: (6)

Therefore, the mechanical work required to move the right-
hand dipole from x!1 to a finite x value is

Wm
E ¼ �

3

4pe0

2p2

ðx

1

dx

x4
¼ 1

4pe0

2p2

x3
; (7)

Wm
M ¼ �

3l0

4p
2m2

ðx

1

dx

x4
¼ l0

4p
2m2

x3
: (8)

These expressions make it possible to write down the total
electric energy of the final configuration as

Wt
E ¼ 2Wc

E þWm
E ¼ 2Wc

E þ
1

4pe0

2p2

x3
; (9)

where Wc
E is the energy needed to create each electric dipole.

As for the magnetic case, the total magnetic energy of the
final configuration is

Wt
M ¼ 2Wc

M þWm
M þ 2Wj

M ¼ 2Wc
M þ

l0

4p
2m2

x3
þ 2Wj

M;

(10)

where Wc
M is the energy needed to create each magnetic

dipole and Wj
M is the energy needed to maintain a constant

current density for each magnetic dipole while ~m moves
from x!1 to its final position.

It should also be possible to calculate the energy of these
two configurations by integrating the square of the electric
and magnetic fields over all space:12–15
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Wt
E ¼

e0

2

ð
E2dV; (11)

Wt
M ¼

1

2l0

ð
B2dV: (12)

However, because the (electric) field of an electric dipole
has exactly the same geometry as the (magnetic) field of a
magnetic dipole,16 these two expressions should have exactly
the same value. This raises the question, why does the term
2Wj

M, present in Eq. (10), not appear in the latter calculation
based on electromagnetic field energies?

III. RESOLUTION

In order to answer this question it is necessary to analyze
in more detail how the electric and magnetic dipoles are
made. Among the infinite number of charge and current den-
sity distributions that can be used to represent electric and
magnetic dipoles, we will use the simplest models that pro-
vide analytical solutions for the electric and magnetic fields
everywhere in space.

Consider a thin, conducting spherical shell of radius R that
is inserted into a uniform electric field ~E ¼ E0 êz. This elec-
tric field induces a surface charge density rðhÞ on the sphere
that produces a uniform field inside, which has the same
magnitude but opposite direction to the applied field (thereby
shielding the external field), and a dipolar field outside. The
total internal and external fields, written using spherical
coordinates, are given by

~E
t

i ¼ 0; (13)

~E
t

e ¼ E0ðcos h êr � sin h êhÞ þ C
2 cos h êr þ sin h êh

r3
;

(14)

where C is a constant. The coefficient C and the surface
charge density rðhÞ can be determined using the following
boundary conditions: (1) continuity of the tangential com-
ponent of the electric field and (2) discontinuity of the ra-
dial component of the electric displacement due to the
surface charge density. Applying these boundary conditions
gives

C ¼ R3E0; (15)

rðhÞ ¼ 3e0E0 cos h: (16)

These results and the superposition principle show that a
possible model for an electric dipole ~p is a spherical surface
of radius R with surface charge density

rðhÞ ¼ 3p

4pR3
cos h: (17)

The external field of this configuration coincides with the
field of a point dipole

~Ee ¼
1

4pe0

p
2 cos h êr þ sin h êh

r3
; (18)

while the internal field is uniform

~Ei ¼ �
1

4pe0

p
cosh êr � sin h êh

R3
: (19)

Now consider a thin, perfectly conducting spherical shell
of radius R that is inserted into a uniform magnetic field
~B ¼ B0êz. Similar to the electric field situation, this magnetic
field induces a surface current density~jðhÞ on the sphere that
produces a uniform field inside, which has the same magni-
tude but opposite direction to the applied field (to maintain a
magnetic flux of zero), and a dipolar field outside. The total
internal and external fields are given by

~B
t

i ¼ 0; (20)

~B
t

e ¼ B0ðcos h êr � sin h êhÞ þ D
2 cos h êr þ sin h êh

r3
;

(21)

where D is a constant. The coefficient D and the surface cur-
rent density~jðhÞ can be determined by the following bound-
ary conditions: (1) continuity of the radial component of the
magnetic field and (2) discontinuity of the tangential compo-
nent of the magnetic field intensity due to the surface current
density. Applying these boundary conditions leads to

D ¼ �R3B0

2
; (22)

~jðhÞ ¼ B0

2l0

sin h êu: (23)

Once again we find that a possible model for a magnetic
dipole ~m is a spherical surface of radius R with surface cur-
rent density

~jðhÞ ¼ 3m

4pR3
sin h êu: (24)

The external field of this configuration coincides with the
field of a point dipole

~Be ¼
l0

4p
m

2 cos h êr þ sin h êh

r3
; (25)

while the internal field is uniform

~Bi ¼
l0

4p
2m

cos h êr � sin h êh

R3
: (26)

Note that, except for the obvious dimensional differences,
the external electric and magnetic fields [Eqs. (18) and (25)]
are identical, while the internal fields [Eqs. (19) and (26)] are
not; the magnetic field is twice as large as, and points in the
opposite direction to, the electric field (see Fig. 1). (These
conclusions are in agreement with Refs. 11, 17, and 18).

The energy to create each of these electric and magnetic
dipoles can be calculated by integrating the square of the
electric and magnetic fields over all space, giving

Wc
E ¼

e0

2

4pR3

3
j~Eij2 þ

e0

2

ð1
R

ðp

0

j~Eej22pr2 sin h dh dr

¼ 1

4pe0

p2

R3

1

6
þ 1

3

� �
¼ 1

4pe0

p2

2R3
; (27)
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Wc
M ¼

1

2l0

4pR3

3
j~Bij2 þ

1

2l0

ð1
R

ðp

0

j~Bej22pr2sin h dh dr

¼ l0

4p
m2

R3

2

3
þ 1

3

� �
¼ l0

4p
m2

R3
: (28)

Note that the creation energy for the magnetic dipole is twice
as large as that of the electric dipole. Furthermore, this dif-
ference corresponds entirely to the internal field, which com-
prises an energy that is four times larger for the magnetic
dipole compared to the electric dipole.

Combining Eq. (27) with Eq. (7) for the mechanical work
leads to an expression for the total electric energy of the two
interacting electric dipoles in their final configuration (see
Fig. 2),

Wt
E ¼ 2Wc

E þWm
E ¼

1

4pe0

p2

R3
1þ 2R3

x3

� �
: (29)

As for the magnetic case, the total magnetic energy of the
final configuration, obtained using Eqs. (8) and (28), is given
by (see Fig. 3)

Wt
M ¼ 2Wc

M þWm
M þ 2Wj

M ¼
l0

4p
m2

R3
2þ 2R3

x3

� �
þ 2Wj

M:

(30)

The expression for Wj
M, corresponding to the energy needed

to maintain a fixed surface current density for each magnetic
dipole during the displacement of dipole ~m, can now be cal-
culated dividing each dipole into a series of differential cir-
cular circuits with radius R sin h and current dI ¼ jðhÞRdh. In

view of Faraday’s law, if the magnetic flux across each of
these circuits changes by an amount d/, an electrical work
dWj

M ¼ dI d/ is required in order to prevent the current from
changing [see Ref. 3, second equation on page 212]. Using
Eqs. (24) and (25), we then obtain

Wj
M ¼ �

ðp

0

3m

4pR3
sin h R

l0

4p
2m

x3
p ðR sin hÞ2 dh

¼ � l0

4p
2m2

x3
; (31)

where we have assumed that x� R so that the external field
of one dipole at the position of the other is (approximately)
uniform. Combining Eqs. (30) and (31) leads to

Wt
M ¼ 2Wc

M þWm
M þ 2Wj

M ¼
l0

4p
m2

R3
2� 2R3

x3

� �
; (32)

which shows that the interaction part of the total energy has
the same value in the electric and magnetic cases [Eqs. (29)
and (32)] except for the sign.11,19,20

The total energy of the final configuration of two interact-
ing electric dipoles can also be calculated by integrating the
electric field squared over all space, giving

Wt
E ¼ 2

e0

2

4p
3

R3 1

4pe0

p

R3

� �2

þ 2
1

4pe0

p

R3

1

4pe0

2p

x3

" #
þWEext

¼ 1

4pe0

p2

R3

1

3
þ 4R3

3x3

� �
þWEext: (33)

In writing the first equality it was assumed that x� R so
that the external field of one dipole at the position of the
other one is (approximately) uniform and much smaller than
the internal field. The last term in this expression, WEext, rep-
resents the electric field energy located in the space outside
the dipoles. While this term cannot be easily integrated, its
value can be deduced by equating Eqs. (29) and (33), leaving
us with

WEext ¼
1

4pe0

p2

R3

2

3
þ 2R3

3x3

� �
: (34)

Comparing Eqs. (33) and (34) shows that one third of the
interaction energy is stored in the field outside the electric
dipoles and, therefore, two thirds is stored in the field inside
the electric dipoles.

Fig. 1. Internal and external fields of the proposed electric (left) and a mag-

netic (right) dipole models.

Fig. 2. Two interacting electric dipoles. Notice that the internal field of each

dipole is increased by the external field of the other.

Fig. 3. Two interacting magnetic dipoles. Notice that the internal field of

each dipole is decreased by the external field of the other.
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The magnetic energy of the final configuration of two
interacting magnetic dipoles can similarly be written (again
assuming x� R) as

Wt
M ¼ 2

1

2l0

4p
3

R3 l0

4p
2m

R3

� �2

� 2
l0

4p
2m

R3

l0

4p
2m

x3

" #
þWMext

¼ l0

4p
m2

R3

4

3
� 8R3

3x3

� �
þWMext: (35)

The magnetic field energy located in the space outside the
dipolar spheres WMext must be identical to the corresponding
electric energy [Eq. (34)] because the external dipolar fields
have exactly the same form. Therefore

WMext ¼
l0

4p
m2

R3

2

3
þ 2R3

3x3

� �
; (36)

and when included in Eq. (35) we get

Wt
M ¼

l0

4p
m2

R3
2� 2R3

x3

� �
; (37)

which coincides with Eq. (32) as expected. Once again we see
that the total magnetic interaction energy has the same value
but opposite sign compared to the electric case [Eq. (29)].11

Therefore, the answer to the question formulated in the
preceding section is that the assertion that the fields of elec-
tric and magnetic dipoles have exactly the same geometry is
only true for their far fields. The “internal” fields are com-
pletely different, both in magnitude and direction. Because
of this difference, the field energy of two interacting dipoles
calculated over all space, including the volume occupied by
the dipoles themselves, is not the same in the electric and
magnetic cases.

IV. CONCLUSION

While the external fields of electric and magnetic dipoles
have exactly the same form, their internal fields are very dif-
ferent—the magnetic field is twice as large as the electric
field and the two fields have opposite directions (Fig. 1).
Because of the field intensity difference, the internal field
energy of a magnetic dipole is four times larger than that of
an electric dipole, and this gives rise to a total field energy
that is two times larger [Eqs. (27) and (28)].

Because of the field direction difference, the original field
inside either of the two interacting electric dipoles (Fig. 2)
has the same direction as the external field of the other
dipole. Consequently, the total internal field is increased. On
the contrary, in the magnetic case (Fig. 3), the external field
of one dipole is in the opposite direction to the internal field
of the other, so the total internal field decreases. This qualita-
tive difference leads to the interaction energy terms for elec-
tric and magnetic dipoles having opposite signs [Eqs. (29)
and (37)].

As already noted, our results for the internal fields of the
electric and magnetic dipoles, Eqs. (19) and (26), are consist-
ent with Refs. 11, 17, and 18. In these works, however, the
interaction energy is only calculated considering the external
dipolar field, as if the internal field contribution can be
neglected for point dipoles. On the contrary, we show that
the relative contribution of the internal energy is independent

of the dipole size and is the origin of the sign difference
between the electric and magnetic interaction energies. This
difference leads to the usual statement that while the electric
force is equal to the negative gradient of the total energy, the
magnetic force is equal to the negative gradient of the poten-
tial energy or the positive gradient of the total energy.11,21–24

While the presented results were deduced using particu-
larly simple models for the electric and magnetic dipoles, the
main conclusions are completely general. This can be veri-
fied using Eqs. (4.18) and (5.62) in Ref. 3, which demon-
strates that the integral of the electric (magnetic) field of any
charge (current) distribution used to represent an electric
(magnetic) dipole is:ð

V

~Eð~rÞdV ¼ � ~p

3e0

; (38)

ð
V

~Bð~rÞdV ¼ 2l0~m

3
; (39)

where V is a sphere of radius R that includes all the charges
(currents) that make the dipole. Equation (38), together with
Eq. (34), makes it possible to rewrite Eq. (33) for the general
case as

Wt
E ¼ 2

e0

2

ð
V

j~Eð~rÞj2 þ 2~Eð~rÞ � 1

4pe0

2~p

x3

� �
dV þWEext

¼ 2
e0

2

ð
V

j~Eð~rÞj2dV þ 1

4pe0

p2

R3

2

3
þ 2R3

x3

� �
: (40)

The first term on the right-hand-side of the last equality repre-
sents the part of the creation energy that depends on the partic-
ular charge distribution of the two dipoles. The second term
corresponds to the remaining part, which has a general form
since it is associated with the external field of the dipoles.
Finally, the third term represents the interaction energy, which
coincides with the corresponding term in Eq. (29).

Proceeding in a similar way, Eq. (39), together with
Eq. (36), makes it possible to rewrite Eq. (35) for any current
distribution of the magnetic dipoles

Wt
M ¼ 2

1

2l0

ð
V

j~Bð~rÞj2 þ 2~Bð~rÞ � l0

4p
2~m

x3

� �
dV þWMext

¼ 1

l0

ð
V

j~Bð~rÞj2dV þ l0

4p
m2

R3

2

3
� 2R3

x3

� �
: (41)

Again, the interaction energy term coincides with the corre-
sponding term in Eq. (37). Therefore, the expressions
obtained for the dipole-dipole interaction energies for elec-
tric and magnetic dipoles, as well as the conclusion that these
energies have the same value but opposite sign in the electric
and magnetic cases, are completely general.

ACKNOWLEDGMENTS

Financial support for this work by CIUNT (project 26/E419)
is gratefully acknowledged.

a)Electronic mail: cgrosse@herrera.unt.edu.ar
1J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromag-
netic Theory, 4th ed. (Addison-Wesley, Boston, MS, 1993).

301 Am. J. Phys., Vol. 81, No. 4, April 2013 Constantino Grosse 301

Downloaded 19 Mar 2013 to 200.45.169.5. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

mailto:cgrosse@herrera.unt.edu.ar


2W. Greiner, Classical Electrodynamics (Springer, New York, 1998).
3J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York,

1999).
4D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice-Hall,

Englewood Cliffs, N.J., 1999).
5See Eq. 10.10 in Ref. 2.
6J. D. Jackson, Classical Electrodynamics, 1st ed. (Wiley, New York, 1975),

Eq. 5.69.
7J. B. Greene and F. G. Karioris, “Force on a magnetic dipole,” Am. J.

Phys. 39, 172–175 (1971).
8T. H. Boyer, “The force on a magnetic dipole,” Am. J. Phys. 56, 688–692

(1988).
9L. Vaidman, “Torque and force on a magnetic dipole,” Am. J. Phys. 58,

978–983 (1990).
10V. Hnizdo, “Comment on “Torque and force on a magnetic dipole,” by

L. Vaidman [Am. J. Phys. 58, 978–983 (1990)],” Am. J. Phys. 60,

279–280 (1992).
11D. J. Griffiths, “Dipoles at rest,” Am. J. Phys. 60, 979–987 (1992).

12See Eqs. 6.17 and 12.15 in Ref. 1.
13See Eqs. 2.45 and 7.34 in Ref. 4.
14P. Lorrain, D. R. Corson, and F. Lorrain, Electromagnetic Fields and

Waves (Freeman, New York, 1988), Eqs. 6.11 and 26.23.
15Z. Popovic and B. D. Popovic, Introductory Electromagnetics (Prentice-Hall,

Englewood Cliffs, N.J., 1999), Eqs. 9.7 and 16.17.
16See Eqs. 3.103 and 5.86 in Ref. 4.
17See Eqs. 4.20 and 5.64 in Ref. 3.
18See problems 3.41 and 5.57 in Ref. 4.
19R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on

Physics Vol 2 Mainly Electromagnetism and Matter (Addison-Wesley,

Reading, MS, 1964).
20G. H. Goedecke, R. C. Wood, and P. Nachman, “Magnetic dipole orienta-

tion energetics,” Am. J. Phys. 67, 45–51 (1999).
21See Eqs. 5.72 and 5.151 in Ref. 3.
22See Eqs. 6.34 and 12.20 in Ref. 1.
23See Eq. 26.43 in Ref. 14.
24See Eqs. 9.11 and 16.21 in Ref. 15.

302 Am. J. Phys., Vol. 81, No. 4, April 2013 Constantino Grosse 302

Downloaded 19 Mar 2013 to 200.45.169.5. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

http://dx.doi.org/10.1119/1.1986086
http://dx.doi.org/10.1119/1.1986086
http://dx.doi.org/10.1119/1.15501
http://dx.doi.org/10.1119/1.16260
http://dx.doi.org/10.1119/1.16912
http://dx.doi.org/10.1119/1.17001
http://dx.doi.org/10.1119/1.19189

