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ABSTRACT

DNA damage-sensing (DDS) and DNA damage-repair (DDR) mechanisms are
essential for the fidelity of genetic information transmission. Failure to accomplish an
effective DDS/DDR mechanism can lead to cell death or otherwise to cell
transformation and cancer development. microRNAs (miRs) are short noncoding
RNAs that primarily function as micromanagers of gene expression. Herein, we aimed
to investigate the links between miRs and the translation of specific mMRNAs encoding
proteins involved in genomic DDS and DDR and to screen drugs that have high binding
affinity to the selected miRs, which may serve as cancer therapeutics. To accomplish
these aims, we used a variety of computational methods spanning data analysis,
molecular modeling, and simulation tools (i.e., PyRx, Biopython, ViennaRNA,
RNAComposer, AutoDock Vina, OpenBabel, PyMOL, Discovery Studio,
MarvinSketch). The genes and miRNAs involved in the DDS and DDR mechanisms
were retrieved from either the literature or various online databases (e.g., miRDB).
miR data were further cleaned and prepared using scripts, and various libraries were
used to obtain their 3-D structures. Genes interacting with miRs were enriched based
on multiple database annotations using Enrichr KG. Then, we used docking analyses
to virtually screen compounds to serve as ligands for the miRs. Finally, we generated
gene-disease-miR-drug networks to study the linkages between the compounds and
miR molecules under investigation. For the first time, we were able to identify five
compounds that could be repurposed for downregulating miRs that are linked to
inhibition of translation of MRNA involved in the DDS and DDR processes. The
gathered candidate drugs can be useful for preventing cell transformation and cancer

development.

Keywords: DNA damage sensing, DNA damage repair, gene expression, miR,

computational drug discovery, gene-disease-miR-drug network

Pagina 2 de 32


https://doi.org/10.1101/2024.06.18.599590
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.18.599590; this version posted June 22, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

DCR-SEGM-06-15-24

1. INTRODUCTION

Spontaneous and induced DNA polymerase errors or environmentally induced
genomic damage must be sensed and repaired by well-regulated DNA direct and
indirect repair mechanisms. The DNA damage response is sensed by specific
proteins, leading to the activation of signaling pathways to engage repair processes
(Harper & Elledge, 2007). If genomic DNA damage is not repaired, the cell can
undergo apoptosis or, in the worst case, cell transformation and tumor development
(Chatterjee & Walker, 2017). Several studies have shown that in most cancers,
alterations to the DNA damage-sensing (DDS) and -response (DDR) pathways occur
(Bouwman & Jonkers, 2012; Ghosal & Chen, 2013).

When there is no significant distortion to the DNA helix due to DNA damage,
the base excision repair (BER) process is activated. This process has been shown to
occur in the G1 phase of the cell cycle (Dianov & Hubscher, 2013). However, when
the damage to the DNA is bulky and is responsible for twisting the DNA helix, mostly
due to damage from UV radiation or chemotherapeutic agents, the nucleotide excision
repair (NER) process is activated (Masutani et al., 1994; Nishi et al., 2005). When
simple incorrect Watson-Crick base pairing (mismatches) or strand slippage occurs,
the mismatch repair (MMR) mechanism is activated (Bindra & Glazer, 2007; Mihaylova
et al., 2003; Nakamura et al., 2008). Multiple other repair mechanisms also exist, such
as interstrand cross-link repair, translesion synthesis, and single- and double-strand
break repairs (Chatterjee & Walker, 2017). Therefore, it is essential to identify genes
encoding DDS and DDR proteins to ensure efficient repair mechanisms.

Small, noncoding RNAs called microRNAs (or miRs) play a key role in
posttranscriptional gene regulation by silencing gene expression at the level of
translation. These micromanagers of gene expression are approximately 18-23
nucleotides in length (Felekkis et al., 2010). In mammals, miRs regulate approximately
30% of all protein-encoding genes (Filipowicz et al., 2008; Kozomara & Griffiths-Jones,
2011). miRs are transcribed as long transcripts by RNA polymerase Il from their
encoding genes as long transcripts named pri-miRs. Then, pre-miRNAs are produced
inside the nucleus by the cleavage of the pri-miRNA by the Drosha RNase Il
endonuclease and the DCGRS8 enzyme (Lee et al., 2002). The miR-miR* complex is
an incomplete double-stranded molecule, where miR is the mature miR and miR* is
the opposing arm (Aravin et al., 2003; Lagos-Quintana et al., 2002; Vishnoi & Rani,

2017). The miR-miR* complex is loaded into the RNA-induced silencing complex
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(RISC), which contains the argonaut (AGO) protein—the catalytic subunit (Lodish et al.,
2008). This RISC complex then binds to the target mMRNA and leads to translation
suppression (Sanghvi & Steel, 2011; Vishnoi & Rani, 2017).

Herein, we aimed to investigate the links between miRs and the
translation of specific mMRNAs encoding proteins involved in genomic DDS and DDR
processes. Using this information, we then screened those drugs that had the highest

binding affinity to the selected miRs, which may serve as novel cancer therapeutics.

2. METHODS

2.2. Computational workflow

Various computational methods have been used to extract, clean, and standardize
the data we wish to analyze and simulate. Fig 1 shows the workflow used to find
DDS/DDR-modulating miR sequences, obtain the 3-D structure of those miRs, and
identify potential ligands to inhibit their action. Initially, the list of genes that are
involved in DDR processes was collected through an extensive literature search
and collated into one list of target genes (Aravind et al., 1999; Eisen & Hanawalt,
1999; Knijnenburg et al., 2018; Lange et al., 2011; Montelone, 2006; Ronen &
Glickman, 2001; Wood et al., 2001).

2.2. miR Data

Multiple database sources contain data regarding both experimentally verified and
predicted targets of miRs. We obtained a list of miRs from both sources. For
experimentally verified targets, we used miRTarBase (H. Y. Huang et al., 2020), which
only contains target data that have been experimentally validated. From the data
obtained, we filtered out the desired miRs by cross-referencing the gene targets with
the initial gene list we had procured. We obtained 32 unique miRs through this
procedure, some of which target multiple genes from our list. To retrieve miRs that
have our desired genes as predicted targets, we used the database miRDB (Y. Chen
& Wang, 2020). This database uses a proprietary prediction algorithm named
miRTarget (Liu & Wang, 2019) to detect possible mRNA targets for miRs. We were
able to obtain 83 miRs targeting DDR and DDS-related transcripts through this

database.
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Then, we obtained the 3-D structures of miR-mRNA duplexes by searching
databases, or in the absence of X-ray data, there exist multiple algorithms and libraries
for predicting the structure of these complexes that may aid in our research. To obtain
the 3-D structure, it was necessary to first find the sequences and secondary

structures.

2.3. miR sequences

To obtain the miRNA sequences, we first downloaded a database of all known miRs
acting on human genes from miRBase (Griffiths-Jones, 2004; Griffiths-Jones et al.,
2006, 2008; Kozomara et al.,, 2019; Kozomara & Griffiths-Jones, 2011, 2014).
miRBase is a virtual database of published miR sequences and annotations. Then, to
retrieve the sequences for the selected miRs, we used a Python script that was written
using the Biopython library (Chapman & Chang, 2000; Cock et al., 2009). The
Biopython library allowed efficient parsing of FASTA files and made it easy to write
into another FASTA file.

2.4. miR-mRNA duplex secondary and 3D tertiary structure
RNAs are very similar to proteins in the sense that they also have secondary and
tertiary structures based on the way they fold owing to noncovalent bonding and
interaction between different functional groups within their nucleotide chains. Before
predicting the 3D tertiary structure, we deciphered the secondary structure from the
miR-MmRNA sequence. The gene binding location (miR-target RNA sequence) was
obtained from miRTarBase.

A molecule's most thermodynamically stable structure is the one with the lowest
molecular free energy (MFE) (Ronny et al., 2016). The MFE structure was thus one of
the first goals of our structure prediction strategy (Irmtraud & Meyer, 2007). Any
sequence has a finite number of valid secondary structures. In theory, the MFE
structure can be derived by computing the free energy for each potential base-pairing
pattern using the experimentally discovered set of energy rules (Higgs, 2000). Herein,
we used ViennaRNA to determine secondary structures (Lorenz et al., 2011). For the
secondary structure of miRs, the notation used is as suggested by Zhong et al., where
a base is represented by one character. A base is paired with another base ahead of

it if the parenthesis is open. A base with closed parentheses is paired with another
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base behind it. Periods, or dots, denote an unpaired base. Therefore, there will always
be an equal number of open and closed parentheses (Zhong et al., 2013).

To obtain the predicted tertiary 3D structures of the miR-mRNA, the tool
RNAComposer was used. This tool's workflow entails breaking down the user-defined
RNA secondary structure into its parts. According to Popenda et al. (2010), this
fragmentation algorithm provides stems, loops (apical, bulge, internal, and n-way
junctions), and single strands that are all closed by canonical base pairs (s). This
serves as the input for automatically searching possible related tertiary structure
elements in the RNA FRABASE dictionary (Popenda et al., 2010, 2012). Finally, we
used energy reduction in torsion angle space and Cartesian coordinates to refine the

generated structure to create the final, high-quality RNA 3D model.

2.5. Construction of networks for the interaction miR target genes

The roles of miRs in diverse regulatory signaling pathways are well established. In this
respect, it is important to identify target genes specific to miRs to gain insights into the
regulatory molecular mechanism and their role in causing diseases. Target
identification through in vitro and in vivo methods is resource intensive and expensive.
Therefore, the computational prediction of the mRNAs interacting with miRs is a
significant approach to understanding miR-target gene interactions. These
computational data need to be further validated considering the prioritized miR-mRNA
interactions by using experimental methods. Network Data Exchange Integrated
Query (NDEx IQuery) leverages building networks based on gene sets from pathways.
It specifically integrates resources from curated pathways (WikiPathways & SIGNOR)
and integrates them with Cytoscape, leading to archival and sharing of the analyzed
results. The overlapping genes were predicted to be involved in multiple DDR
mechanisms to build networks based on the INDRA GO system.

2.6. miR-disease network construction

Because miRs are involved in regulating gene expression, they are highly associated
with the pathophysiology of multiple diseases, including cancers. The experimental
approach to derive the relations of miRs to disease is also laborious and expensive.
In silico prediction of miR-disease interactions can lead to the discovery of miR

functions as biomarkers and therapeutics. miRNet has effectively built miR-disease
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networks by integrating database information. This platform is composed of the input
data and currently available knowledge base on miR functions. Prediction of the
betweenness of the miRs for the prioritization of the miR-disease correlations was
adopted (Chang et al., 2020). It provides high-performance miR-centric networks for
visual data analysis by integrating fourteen varied miR databases for six host

organisms, including humans.

2.7. miR interacting gene set enrichment prediction

RNA expression analysis is a crucial tool in bioinformatics for obtaining novel insights
into biological processes, diseases, signaling pathways, drug targets, and cell types.
This information is significant for leading to knowledge-based discovery of gene
potential. Gene set enrichment analysis is a powerful analytical technique that
provides novel insights into gene involvement in the abovementioned areas. We used
Enrichr KG as a uniqgue tool for the integration of the key insights of biological
information about mMRNA and cancer. Gene enrichment is a crucial step in multiomics
data analysis based on experimental results. Enrichr has gained popularity as a gene
enrichment analysis web server by integrating gene set enrichment predictions across
various knowledge bases (domains and libraries).

Enrichr KG is a web application with knowledge graph applications for the
integration of gene set enrichment analysis and interactive visual outputs. It provides
subgraphs including nodes and edges by connecting the genes with the enriched
features. Therefore, we generated an info-graphical output by combining the results
across 26 libraries with the enriched gene set. It orients the significant associations
masked between the genes and annotated enriched data from multiple knowledge
resources based on multiple categories, such as ontologies, pathways, cells,

transcription factors, and diseases/drugs.

2.8 Virtual Screening of Ligands

To identify ligands that not only interact with the miR molecules of interest but also
downregulate them, we used a web server named PSRR (Yu et al., 2022). This server

uses the random forest algorithm to predict up- and downregulation pairs for miR-small
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molecules. The downregulated ligands were obtained by entering the respective
sequences to be targeted. Ligands with a threshold score >0.85 were selected, where
PSRR predictions were based on random forest algorithms. Furthermore, the machine

learning model was trained on empirical data. (https://rnadrug.shinyapps.io/PSRR/).

When the PSRR server downregulation ligand-miR model’s prediction score was
>0.41 (suggestion rate), the small molecules were significant for further study. These
ligands were further screened for ADMET properties using SWISSADME and
considering multiple factors. Finally, the respective ligands were converted to the

desired file extension using Open Babel (O’Boyle et al., 2011).

2.9 Molecular docking and analysis

Docking between selected small molecule ligands and miR-mRNA duplexes was
performed using AutoDock Vina (Trott & Olson, 2009). For further analysis, we
selected the conformations with the highest (most negative) binding energy.

Interactions were visualized on PyMOL (https://[pymol.org/2/). Nucleotides

participating in hydrogen bonding and other interactions with the duplexes were
studied and analyzed using BIOVIA Discovery Studio 3.5

(https://www.3ds.com/products-services/biovia/products/molecular-modeling-

simulation/biovia-discovery-studio/).

3. RESULTS

3.1. Gene List

We were able to obtain data for 48 genes along with their specific functions using the
DAVID functional annotation tool, as shown in Table 1. The workflow for the prediction
of the highest ranked miRs, mRNAs, and the association of miR-gene, disease-miRs,

genes-DDR mechanism, and the docking results is shown in Fig 1.

3.2. Screening for miRs with DDR genes as targets

Among the 84 miRs, we obtained 32 unigue miRs that have DDS/DDR genes as
targets, and the experimental validation is shown in Table 2. Therein, miRs with query
genes as predicted targets are shown along with their miRTarget score. For docking

studies, miRs targeting more than 1 unique gene were selected.
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3.3. mMiRNA-mRNA duplex structure

miR-mRNA duplex structures were generated for BRCA1-24-3p, POLD1-24-3p,
ABL1-203a-3p, ATM-203a-3p, MSH6-21-5p, ERCC3-192-5p, ERCC4-192-5p,
BRCA1-146a-5p, BRCA2-146a-5p, MLH1-155-5p, MSH6-155-5p, and RAD51-155-
5p, as shown in Table 3. Supplementary Figure 2 shows the 2D structure obtained
for each of the selected miRs using the RNAfold Web Server. The 3D structures for

the queried miR-mRNA complexes are shown in Figure 2.

3.5. Prediction and orientation of query genes involved in DDR mechanisms

Prediction and orientation of the query genes involved in the DDR mechanisms are
crucial to prioritize the genes involved in significant steps for developing novel iRNAs
as therapeutics. The NDEx IQuery web user ranks and orients the queried genes
based on the network overlapping potential and calculates the cumulative distribution
based on an adjusted probability score to identify a high false discovery rate. We were
able to predict that the queried genes are distributed in 12 networks (Fig. 3) involved
in specific DDR mechanisms. NDEXx IQuery integrates curated pathway information to
build gene interaction networks based on annotated Gene Ontology terms (Pillich et
al. 2023). This prediction of the genes involved in DDR mechanisms provides novel

insights into the functions of specific genes.

3.6. Prediction and network analysis of the miR-disease network

As a comprehensive web interface, miRNet (http://www.mirnet.ca/) predicts the target

genes for significant disease-miR interactions by integrating the data from eleven
miRNA databases (i.e., miRTarBase, TarBase, miRanda, miRecords, miR2Disease,
PhenomiR, SM2miR, PharmacomiR, EpimiR, HMDD, and starBase). miRNet 1 was
effective in predicting gen-miR interactions. Later, based on transcription factor and
single nucleotide polymorphism data affecting the function of miRs, a >5-fold
knowledge base enhancement of miR-disease associations was incorporated (see
Suppl. Fig. 1). Additionally, the visualization of the multifaceted networks for analyzing
miRs is enabled. It provided the disease information from the DisGeNET database and
ranked them based on the number of hits, P value, and adj. Pval. The diseases

associated with high-ranked miRs by miRNet are shown in Supplementary Table 1.
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Autosomal recessive predisposition was ranked first with 161 hits (see Suppl. Table
1). The gathered miR list includes multiple cancer types, multiorganelle-associated
diseases, and other disorders. The disease-miR interaction is ordered in ascending

order along with the P value and adj. Pval, as shown in Supplementary Table 1.

3.6. miR interacting gene set enrichment analysis

The graphical representation shown in Fig. 4A highlights those genes enriched based
on multiple pathways. Pathway enrichment led to the prediction of genes involved in
the DDR mechanism interacting with the other query genes present in multiple DDR
pathways based on WikiPathway 2021 Human, Reactome 2022, PFOCR pathways,
and KEGG 2021 Human pathways, as shown in the bar chart (see Fig. 4 A). The query
genes associated with multiple enriched DDR pathways can be found in
Supplementary Table 2 and are arranged in ascending order based on the combined
score. Enrichr KG provides pathway association data based on p values, g-values, z
scores, and combined scores to prioritize the genes involved in specific pathways
(John et al. 2023).

Further enrichment of the genes based on the FANTOM®6 subnetwork inferred
the genes associated with functional elements, including transcription and DEG
mechanisms. This was obtained by annotating long noncoding RNAs (IncRNAS) to
predict upregulated and downregulated DEGs. The blue lines in Fig. 4B linking the
genes refer to downregulated DEGs, red lines to upregulated DEGs (PCNA, DDB2,
FANCEF interacting with KD), and gray circles indicate successful knockdown (KD)
DEGs. The green lines connecting PCNA with PALB2 and RBBP8 with KD IncRNA
indicate the coexpressed genes. The orange lines in Fig. 4B specify protein—protein
interactions between the linked genes. We found that the BRCA1 and ATM genes had
the highest number of protein—protein interactions based on the network.

The results shown in Fig. 4C refer to palbociclib (blue circle) downregulating
multiple coexpressed genes by direct interaction (shown as blue lines). Orange circles
indicate consensus knockouts (KOs) based on LINCS L 1000 CRISPR KO consensus
Sigs prediction. The orange lines in Fig. 4C indicate the chemical compound (purple
circles) interactions leading to the upregulation of genes as obtained by reference to

the Proteomics Drug Atlas.
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3.7. Ligands

Among the 330 ligands searched from the PSRR web server
(https://rnadrug.shinyapps.io/PSRR/), with a score of >0.85. The compounds were

subjected to SWISSADME analysis to filter based on multiple druggable parameters,
resulting in 113 compounds. The obtained structures were then docked to be filtered
based on their binding energy scores. Forty-two compounds showed possible
interactions with binding energies >-5 kcal/mol. The top 13 compounds interacting with

prioritized miRs are shown in Table 4 and Table 5. (Kim et al., 2021)

3.7. Molecular Docking and Analysis

Docking studies between the mRNA-miR duplexes and target ligands were conducted
using AutoDock Vina. Since the binding site was not known, the grid box was adjusted
to cover the surface of the entire nucleic acid. Out of all the binding poses in each
simulation, the pose with the highest (most negative) binding energy was selected.
These results are shown in Table 5. The binding poses of interactions having a binding
energy > -8.5 kcal/mol visualized on PyMOL are shown in Fig. 5 (see also Table 5).
The list of hydrogen bonds between nucleotides and ligands with a distance of less
than 3 A was generated by Discovery Studio (Suppl. Table 3). These bonds indicate
good binding with the nucleotides. Binding energies of > -8.5 kcal/mol indicate strong
binding and high affinity. This indicates the inhibitory action of the mRNA/gene
interaction under consideration. It has been established that ligand-miR complexes
with higher binding scores are comparatively more highly stabilized than complexes
with lower binding scores. These predicted compounds are expected to have
downregulating effects, and because of their high binding score, they would indicate a

higher downregulation of the miRs.

4. DISCUSSION
Oncogenesis, metastasis, and resistance to particular therapies have all been linked
to miRs (Peng et al., 2013; Rani et al., 2013; van Schooneveld et al., 2015). miRs have
been found to inhibit the translation of RNAs encoding proteins involved in DDS and

DDR mechanisms; thus, more verified miR targets have to be discovered. Herein, we
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found drugs with the best DDR-associated miR binding properties. These include
kinase inhibitors, glucocorticoid steroids, and statins. These compounds are already
predicted to act as downregulators of miRs and therefore could serve as structural
platforms for the design of novel cancer therapeutics.

The compounds found in our study are all drugs that have already been
approved by regulatory agencies for other purposes and could thereby be repurposed
for use in the treatment of several cancers and deserve validation by further in vitro
and in vivo studies. For instance, downregulation of the BRCA1 and BRCA2 genes
leads to higher susceptibility to breast cancer (Venkitaraman, 2002). ERCC3 and
ERCC4 are essential genes for NER, and their downregulation has been shown to
lead to hepatocellular carcinoma (Xie et al., 2011). Downregulation of ATM is involved
in various cancers, including nasopharyngeal carcinoma (Bose et al., 2009). MLH1
and MSH6 downregulation has been linked to colorectal cancer (Edwards et al., 2009;
Hemminki et al.,, 1994), and RAD51 is downregulated in cancers and increases
sensitivity to tumors in the case of hypoxia (Bindra et al., 2004). Moreover, POLD1
downregulation has been linked to cognitive function impairment in cases of
Alzheimer’s disease (Gao et al., 2019; Song et al., 2015). The miRs found in this study
have been shown to downregulate these genes, which in many cases would lead to
cancer development.

Furthermore, PALB2 is involved in homologous recombination repair of double-
strand breaks, plays a crucial role as a tumor suppressor, and maintains genome
integrity. Mutations in PALB2 increase the risk of breast, pancreatic, and ovarian
cancers (Nepomuceno et al., 2017). PCNA is essential in DNA replication and NER
mechanisms by repairing DNA damage caused by exposure to UV light and
carcinogens (Essers et al., 2005). Downregulation/mutations in PCNA are highly
correlated with colorectal and breast cancer occurrence. RBBP8 has a fundamental
role in DNA replication, transcription, and DDR mechanisms (Mijnes et al., 2018).
These three genes (PALB2, PCNA, and RBBP8) are closely associated with BRCA1
and BRCAZ2, leading to breast, colorectal, and endometrial cancers.

Mechanistically, ATM is a gene encoding ATM serine/threonine kinase, a DDS
protein kinase that is activated in the presence of DNA strand breaks and hence is
essential to trigger the DDR process. miR-421 has been shown to regulate ATM by
binding to the 3’-UTR of ATM-encoding mRNA, which has been linked to increased

cell radiosensitivity (Hu et al., 2010). Further research has revealed that tumors such
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as neuroblastomas are accompanied by an upregulation of miR-421 or overexpression
of miR-24, which targets and downregulates histone H2AX expression, resulting in an
inefficient DDR process (Hu et al., 2010; Lal et al., 2009). Consequently, to prevent
carcinogenesis, it is necessary to find drugs that inhibit the regulatory action of miRs
on DDS and DDR protein expression.

The identified genes and miRs were queried using multiple platforms to predict
and annotate their involvement in interfering with DDS/DDR processes. NDEX IQuery
augmented the specific genes involved in the integrated networks by ranking the
genes based on multiple scores into multiple pathways, including intrinsic apoptotic
signaling pathway response to DNA damage, DNA damage checkpoints, mismatch
repair, double-strand break repair (DSBR), DSBR via homologous recombination,
interstrand cross-link repair, mitotic DNA integrity checkpoint, NER, DNA incision,
postreplication repair, telomere maintenance, and regulation of DDR. This is expected
to lead to an understanding of the involvement of these genes in specific pathways
and the interacting genes involved in specific DDS and DDR mechanisms.

Network analysis of query genes using miRNet leveraged miR-disease
associations by integrating the gene and disease information stored in multiple
databases and by incorporating transcription factor and single nucleotide
polymorphism data affecting the function of miRs. It facilitated the ranked miR
visualization, exhibiting their association with diseases based on information in the
DisGeNET database and multiple scoring. The range of disorders, diseases, and
cancer types was integrated into the disease-miR network (see Suppl. Fig. 1D).

Gene enrichment analysis is an important step in analyzing multiomics-based
experimental data sets. This enriched data facilitated the understanding of the specific
role of the genes involved in DDR mechanisms, as it collates the information linked to
the query genes from multiple databases and helps to visualize them in an infographic
(see Fig. 4A). It also highlights the gene—gene interactions, coexpressed genes,
upregulated/downregulated genes and transcriptome-associated DEGs (see Fig. 4B).
Furthermore, as shown in Fig. 4C, it augments the upregulated/downregulated genes
due to their interaction with specific chemical compounds based on color-coded lines.
This piece of information may be of specific interest to the researchers involved in drug
design and development.

The associations between the genes, pathways, drugs, and diseases can be

oriented based on the collating transcriptomics data using the Library of Integrated
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Network-Based Cellular Signatures (LINCS) portal. It provides information on assays,
cell types, and perturbagens based on varied links leading to the upregulation and
downregulation of genes. The green circles with pink-bordered circles indicate
coexpressed genes. Knowledge of the molecular mechanism by which small ligands
can act as perturbagens is crucial to understanding the cellular response to drugs.
LINCS L1000 builds a network based on comprehensive information on gene
expression and cellular processes exposed to a wide range of perturbagens. It
provides information on the upregulation or downregulation of the genes as an effect
of the perturbagen interaction. LINCS shows that the PAN3 (Up), CRIM1 (Up), POR
(Up), SLC1A6 (Up), and CTNNB1 (Down) genes are up/downregulated due to
perturbagens. For example, our data (Fig 4C) show that downregulation of
CTNNBL1 leads to inhibition of the Wnt/B-catenin signaling pathway by downregulating
the Axin2, LEF1, and CCND1 genes. In agreement with these data, Zhou et al.
reported that CTNNB1 knockdown leads to inhibition of H295R cell proliferation and a
decline in aldosterone secretion as a response of H295R cells to Ang Il by inhibiting
the Wnt/B-catenin signaling pathway. This indicates the importance of the Wnt/$-
catenin signaling pathway as a crucial target to reduce aldosterone secretion in the
therapeutics of aldosterone-producing adenomas (Zhou et al.,, 2020). A similar
enrichment using the Proteomics Drug Atlas 2023 (PDA-2023) prediction tool showed
the associations of the compounds involved in the downregulation of certain genes.
For instance, palbociclib downregulates several genes, including BARD1, PCNA,
BRCA1, MSH2, DDB2, FANCA, and BLM, as illustrated by the blue line in Fig 4C. In
addition, atosiban upregulates genes such as ERCC6, FAN1, BRCA2, and BARDL1.
Integrated database network-based predictions are gaining significance in the
discovery of novel therapeutics for diseases and cancers (Mitchell et al., 2023). PDA-
2023 has made a significant effort in collating proteome-wide effects in the form of
fingerprints belonging to 875 chemical compounds as perturbagens as a knowledge
base to understand the mechanism of action and drug repurposing.

Computational drug discovery (CDD) can reduce the time taken in the research
cycle and reduce the costs involved. Novel discovery of drugs and the development
process can cost up to a billion dollars (Myers & Baker, 2001) and can be costly and
time-consuming. Structure-based drug design (SBDD), ligand-based drug design

(LBDD), and sequence-based techniques are the three most common CDD
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approaches. There have been steadfast developments in CDD and high-throughput
screening, allowing access to gigantic libraries of compounds (ligands) to be screened
and synthesized in a short period (Tang et al., 2006), (Lahana, 1999; Lobanov, 2004).
CDD is the term used to represent the tools and libraries used to store, manage,
analyze, and model compound-target (protein/RNA) interactions. The use of these
tools has generally reduced costs by approximately 50% (Tan et al., 2010).

As a limitation of our study, we can mention that the docking methods used to
study protein—ligand interactions are thereby being modified (or new programs are
being created altogether) to model RNA-ligand interactions (Wehler & Brenk, 2017).
However, when transferring the procedures, there are several obstacles to consider.
For example, RNA molecules are strongly charged, resulting in strong ionic solvation
and interaction (N. Foloppe & Hubbard, 2006; Hermann, 2002; Thomas &
Hergenrother, 2008). At the binding site, water molecules and ions are frequently
detected. During docking, these must be considered because they may either mediate
or be displaced by the ligand. Thus, ligand binding might result in conformational
changes or induced fit movements, which must be taken into account when modeling
RNA-ligand interactions (Hermann, 2002).

Finally, depending on the selected descriptors and type specification, scoring
functions that were parameterized on protein—-ligand complexes (i.e., empirical and
knowledge-based scoring functions) must be reparameterized on RNA-ligand
complexes (Nicolas Foloppe et al., 2006). Considering these difficulties, researchers
have chosen to either adapt docking systems designed for protein—ligand docking to
RNA or build new methodologies and scoring functions. In one of the first applications
of RNA-ligand SBVS in the screening of ligands that prevented the formation of the
transactivation response (TAR) element RNA-Tat complex, Filikov et al. used modified
versions of DOCK and ICM (Filikov et al., 2000). In that study, the complex was
disrupted by three different compounds. In a later study, evaluation and docking were
improved (Lind et al., 2002). Remarkably, 11 ligands that bind to TAR were discovered
in this study; for some of them, cell activity could be shown, and nuclear magnetic

resonance was used to confirm binding to the intended binding site (Lind et al., 2002).

5. CONCLUDING REMARKS
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Our computational study showed the correlation between several DDS and DDR
genes and the effect of their downregulation on cell transformation. We also studied
the effect of gene silencing by miRs and their consequences, constructed the structure
of various miR-mRNA complexes, and used these structures to study the binding and
effects of ligands possibly downregulating these complexes. This binding reduces the
effect of gene silencing in essential genes for DDS and DDR processes. Our gene
enrichment analysis was effective in identifying the associations of genes and miR
associations in DDS and DDR signaling pathways, miR-disease interactions, gene—
gene interactions, and gene—ligand associations (leading to up/downregulation). The
predicted miRs may also serve as significant prognostic biomarkers and contribute to
future therapeutics. Interestingly, the 13 identified ligands through our docking studies
belong to classes of drugs that are approved as therapeutics. Data gathered from this
study will serve as a starting point for the repurposing of old drugs as novel
disease/cancer therapeutics.
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FIGURE LEGENDS
Figure 1. Workflow of the methodology

Figure 2. miR-mRNA complexes as modeled 3D structures. RNAComposer data
for A) BRCA1-24-3p, B) POLD1-24-3p, C) ABL1-203a-3p, D) ATM-203a-3p, E)
MSH®6-21-5p, F) ERCC3-192-5p, G) ERCC4-192-5p, H) BRCA1-146a-5p, I) BRCA2-
146a-5p, J) MLH1-155-5p, K) MSH6-155-5p, and L) RAD51-155-5p.

Figure 3. Oriented genes in networks associated with specific DNA damage
repair mechanisms: A) intrinsic apoptotic signaling pathway response to DNA
damage, B) DNA damage checkpoint, C) mismatch repair, D) double-strand break
repair (DSBR), E) DSBR via homologous recombination, F) interstrand cross-link
repair, G) mitotic DNA integrity checkpoint, H) nucleotide excision repair (NER), 1)
NER, DNA incision, J) postreplication repair, K) telomere maintenance, and L)
regulation of DNA repair.

Figure 4: MiR-interacting genes and gene set enrichment analysis (miRNet). A)
Bar chart representation of gene enrichment leading to participation of query genes
in multiple pathway databases; B) Circular representation of genes enriched for KD
DEGs, transcription factors, downregulated and upregulated DEGs, protein—protein
interactions, and coexpressed genes based on enrichment of multiple databases; C)
Chem_Compounds-genes interactions leading up/downregulation of genes predicted
by LINCs L 1000; blue lines correspond to downregulation, and orange lines indicate
upregulation of genes by the interactions.

Figure 5: Schematic representation of interacting ligands with the miRNA-
MRNA duplex with the best binding score. A) 192-5p-ERCC3 ligand 4, B) 155-5p-
RADS5L1 ligand 2, C) 21-5p-MSH6 ligand 2, D) 24-3p-BRCAL ligand 2, E) 203a-3p-
ABL1 ligand 6, and F) 203a-3p-ATM_2. G, H, I, J, K, and L show 2D interactions of
the ligands with binding site residues.

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1: Schematic representation of the miR-gene-disease
interaction networks. A) miR-gene interaction network of target genes, B) miRs
with highest betweenness scores oriented, C) augmented miR interaction with
genes, and D) miRNA-disease associations based on DisGeNET database data and
ranked by scores.

Supplementary Figure 2: Secondary structure generated using the RNAfold
Web Server of miRNA-mRNA duplexes. A) BRCA1-24-3p, B) POLD1-24-3p, C)
ABL1-203a-3p, D) ATM-203a-3p, E) MSH6-21-5p, F) ERCC3-192-5p, G) ERCC4-
192-5p, H) BRCA1-146a-5p, I) BRCA2-146a-5p, J) MLH1-155-5p, K) MSH6-155-5p,
and L) RAD51-155-5p.
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Table 1: List of genes involved in DDS/DDR processes and their specific functions

Sl.
No.

1.
2.
3.

© © N o v

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.

Gene

ERCCS8
POLD1
ERCC1

CCNH

XPA
CHD1L
ERCC4
DDB2
SUMO1

XPC
ACTB
PCNA
CuL4B
ERCC3
ERCC6
PARP1
ERCC5
EP300
ERCC2
WRN
POLE
BLM
RAD51C
ATR
RBBP8

ATM
BRCA1

Selected Functions

cellular response to DNA damage stimulus

DNA synthesis involved in DNA repair
un_bIe-strand break repair via nonhomologous end
joining

transcription initiation from RNA polymerase Il
promoter

nucleotide-excision repair, DNA incision

DNA repair

nucleotide-excision repair

UV-damage excision repair

positive regulation of proteasomal ubiquitin-dependent
protein catabolic process

UV-damage excision repair

regulation of cell cycle

mismatch repair

ribosome biogenesis

positive regulation of apoptotic process
transcription by RNA polymerase Il
apoptotic process

nucleotide-excision repair

positive regulation of transcription, DNA-templated
chromosome segregation

cellular response to DNA damage stimulus
DNA-dependent DNA replication

DNA repair

DNA repair

cellular response to DNA damage stimulus

DNA double-strand break processing involved in
repair via single-strand annealing

protein phosphorylation

response to ionizing radiation

PubMed

Reference ID

11782547
1730053
14690602

7533895

21148310
19661379
8797827

14751237
18408734

8077226

27153538
11005803
26711351
16914395
7664335

15565177
11259578
27256286
20797633
18203716
33051204
7585968

19451272
15538388
18716619

17694070
17525340
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28. BRCA2 double-strand break repair via homologous 21719596
recombination
29. NBN mitotic G2 DNA damage checkpoint signaling 11438675
30. RADS51D telomere maintenance 15109494
31. MRE11 cellular response to DNA damage stimulus 29670289
32. RADS50 telomere maintenance 10888888
33. POLH regulation of DNA repair 10398605
34. BRIP1 DNA damage checkpoint signaling 14576433
35. RTEL1 regulation of double-strand break repair via 18957201
homologous recombination

36. BARD1 cellular response to DNA damage stimulus 15905410
37. ABL1 DNA damage induced protein phosphorylation 18280240
38. UBE2T  DNA repair 16916645
39. FANCF protein monoubiquitination 24910428
40. FANCA  protein-containing complex assembly 9398857

41. FANCD2 response to gamma radiation 12874027
42. FAN1 DNA repair 20603073
43. FANCI positive regulation of protein ubiquitination 18029348
44, FANCC  DNA repair 1574115

45. FANCG mitochondrion organization 17060495
46. MSH6 mismatch repair 8782829

47. MLH1 mismatch repair 23603115
48. MSH2 postreplication repair 7923193
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Table 2: Unique miRs targeting queried DDS/DDR genes set with PubMed IDs

SI. No. miRNA_Target Gene PubMed_Igeference
1. hsa-let-7a-5p PARP1 28031413
2. hsa-miR-101-3p ATM 20617180
3. hsa-miR-101-5p ATM 20617180
4, hsa-miR-103a-3p RADS1 24088786
5. hsa-miR-106a-5p ATM 23857602
6. hsa-miR-107 RADS1 24088786
7. hsa-miR-1245a BRCA2 22158906
8. hsa-miR-125a-3p BRCA1 27693788
9. hsa-miR-146a-5p BRCA1, BRCA2 18660546,
10. hsa-miR-148b-3p MLH1 26759383
11. hsa-miR-150-5p EP300 23211718
12. hsa-miR-155-5p MLH1, MSH2, 20351277

MSH6, RADS1
13. hsa-miR-15a-5p BRCA1 19144710
14. hsa-miR-16-5p BRCA1 19144710
15. hsa-miR-17-5p BRCA2 26750490
16. hsa-miR-181a-5p ATM 24531888
17. hsa-miR-18a-5p ATM 21980462
18. hsa-miR-192-5p ERCC3, ERCC4 21672525,
19. hsa-miR-193b-3p RADS1 27225532
20. hsa-miR-203a-3p ABL1, ATM 18538733, 27542403
21. hsa-miR-20b-5p BRCA1 23945289
22. hsa-miR-21-5p MSH2, MSH6 22806311, 21078976
23. hsa-miR-216b-5p PARP1 28281524
24. hsa-miR-223-3p ATM 24606854
25. hsa-miR-24-3p BRCAIL, POLD1 19748357,
26. hsa-miR-26a-5p ATM 24211747
27. hsa-miR-29a-3p ABL1 23428668
28. hsa-miR-335-5p PARP1 27871924
29. hsa-miR-34a-5p RADS1 26670277
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30. hsa-miR-421 ATM 20080624
31. hsa-miR-498 BRCA1l 26933805
32. hsa-miR-644a ACTB 23091630
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Table 3: Dot-bracket notation and MFE calculations generated from the RNAfold
web server for secondary structures of the mMRNA-miR duplexes

mMRNA miRNA Dot Bracket Notation MFE*
(kcal/mol)
BRCA1 hsa-miR-24-3p HE((H((((m)Mm))m)» -11.3
POLD1 hsa-miR-24-3p (((E(HE(E@EOMMM) -11.4
ABL1 hsa-miR-203a-3p (- CCCCCCC--mmmmmMMN).... -12.2
ATM hsa-miR-203a-3p .......... (@)D s -7.6
MSH6 hsa-miR-21-5p () En) E9))))))E -9.6
ERCC3 hsa-miR-192-5p += (CCCCC-- CCCCCCCCCt--0mmmMM-- ) -24.4
ERCC4 hsa-miR-192-5p (@M -14.2
BRCA1 hsa-miR-146a-5p H{(E((@@EsmsmmMmNsm))’M)E -13.7
BRCA2 hsa-miR-146a-5p e CCCCCCCCCCEEEw= M- m.. -9.2
MLH1 hsa-miR-155-5p = CCCCCCCCCCcc--mmmm-N-)-.. -9
MSH6 hsa-miR-155-5p (e (H((e((o> -21.3
))))) ¥9)) ¥¥9)))))))))) BS)))))),
RAD51 hsa-miR-155-5p (M (o> -21.1

NN NIN)-IM))-----))-))))

(*) MFE, minimum free energy
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Table 4: Ligands targeting mRNA-miR duplexes obtained from PSRR web server

and PubChem.

Ligand No.

© 0 N O o~ WODN P

e e =
w N Rk O

Ligand Name

Cyclonite
Reversine
Trichostatin A
Dexamethasone
Betamethasone
Diflorasone
Fluorouracil
D-Galactose
Gemcitabine
Floxuridine
Atorvastatin
(3R,5S)-Atorvastatin
(3S,5R)-Atorvastatin

Ligand CID

8490
210332
444732

5743

9782

71415
3385
6036
60750
5790
60823
46780495
6093359
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Table 5: Docking scores (binding affinity) obtained from AutoDock Vina. (Ligand
Notation: miRNA_mRNA_Ligand No.)

SI. No Ligand Binding  SI. No Ligand Binding
Affinity Affinity
1 mir-192-5p-ERCC3_4 -9.8 16 192-5p-ERCC4_12 -8.3
2 155-5p-RAD51_2 -9.6 17 192-5p-ERCC4_13 -8.3
3 21-5p-MSH6_2 -9.6 18 155-5p-MLH1_13 -7.9
4 24-3p-BRCA1_2 -9.3 19 21-5p-MSH6_9 -1.7
5 203a-3p-ABL1_6 -9.2 20 155-5p-RAD51_9 -7.6
6 155-5p-MSH6_2 -9 21 24-3p-POLD1_3 -7.4
7 203a-3p-ABL1_5 -8.8 22 155-5p-MSH6_9 -7.2
8 155-5p-MLH1_11 -8.7 23 192-5p-ERCC3_9 -7
9 192-5p-ERCC4_11 -8.7 24 146a-5p-BRCA1_1 -6.9
10 203a-3p-ABL1_4 -8.7 25 192-5p-ERCC3_10 -6.9
11 155-5p-RAD51_11 -8.6 26 24-3p-BRCA1_3 -6.9
12 203a-3p-ATM_2 -8.6 27 203a-3p-ATM_1 -5.9
13 146a-5p-BRCA2_11 -84 28 24-3p-BRCA1_1 -5.8
14 155-5p-MLH1_12 -8.4 29 21-5p-MSH6_7 -5.2

=
o1

155-5p-MSH6_11 -8.3 30 203a-3p-ATM_7 5.1
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