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Abstract: Soybean expeller (SBE), a by-product of soybean oil extraction through the
extruding-expelling process, is widely used as a protein source in animal feed and soy-based
foods. This study evaluated fungal contamination and mycotoxin levels in SBE samples
from 11 extruding-expelling facilities in Argentina, assessing fungal load, moisture content
(MC), and mycotoxin profiles. Fungal biota was quantified through colony forming unit
(CFU) counts and identified via morphological analysis, while mycotoxins were quantified
using liquid chromatography and tandem mass spectrometry. CFU counts were low (0 to
4 CFU g−1 DM), with Penicillium spp. (28.0%) and Mucoraceae (family) (25.6%) being the
most frequently isolated genera. Deoxynivalenol (DON) and aflatoxins (AFB1, AFB2, AFG1,
and AFG2) were detected in 20% to 40% of the samples. The average concentration was
215.19 µg kg−1 for DON and 41.68, 0.39, and 0.34 µg kg−1 for AFB1, AFG1, and AFG2,
respectively. Although most mycotoxin concentrations were below regulatory limits, a few
samples exceeded the threshold for DON (8.6%) and AFB1 (2.9%). Co-occurrence of two
mycotoxins was observed in 60% of the samples. These results highlight the importance of
monitoring fungal contamination and mycotoxin levels to ensure the safety and quality of
SBE for feed and food applications.

Keywords: animal feed; extruding-expelling process; microbiological quality; soybean
by-product; toxigenic microbiota

1. Introduction
Soybean expeller (SBE), a by-product obtained during the extruding-expelling process

of soybean oil extraction [1], is highly valued as a protein-rich component in animal
feed and soy-based food products [2–5]. In Argentina, nearly one million tons of SBE
are produced annually [6] in 373 extruding-expelling facilities, primarily located in the
Pampa’s region [7]. The average composition of SBE in Argentina is 7.2% moisture, 44.2%
protein, and 8.1% residual oil [8,9], aligning with the values set by Standard XIX [10] for
commercialization. Despite its economics and nutritional importance, SBE is susceptible to
fungal contamination and mycotoxin accumulation, which can pose significant risk to both
animal and human health [11,12].
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Fungal contamination in soybean can occur during cultivation in the field, transporta-
tion, storage, and processing [13]. Under improper storage conditions—such as high rela-
tive humidity (>70%) and temperature [14–17]—fungus can proliferate in soybean seed and
expeller, leading to the production of mycotoxins and overall quality degradation [18–22].
Common mycotoxins associated with soybean products include deoxynivalenol (DON) and
aflatoxins (AFs), produced by fungal genera such as Fusarium and Aspergillus [23–26]. These
toxins are a major concern due to their adverse health effects and the lack of established
regulation limits in Argentina for food and feed applications.

DON is a mycotoxin produced by Fusarium culmorum and Fusarium graminearum,
commonly found in various cereal crops such as wheat, maize, barley, oats, and rye [27].
These fungi synthesize mycotoxins in field crops, leading to contamination at pre-harvest
stages. DON is a widespread contaminant in wheat, with a reported prevalence of 57%
in 11,444 tested samples globally [28]. At the cellular level, DON inhibits DNA, RNA,
and protein synthesis by targeting ribosomes, resulting in erythrocyte hemolysis [29]. Its
systemic toxic effects include feed refusal, reduced weight gain, gastroenteritis, diarrhea,
emesis, nutrient malabsorption, cardiotoxicity, teratogenicity, and immunotoxicity [30,31].

Aflatoxins are a class of mycotoxins produced by Aspergillus species, primarily As-
pergillus flavus and Aspergillus parasiticus [32]. These fungi are commonly found in soil and
various organic materials and are known to synthesize toxins during grain storage. While
A. flavus strains produce only aflatoxins B1 (AFB1) and B2 (AFB2), A. parasiticus strains can
synthesize AFB1, AFB2, G1 (AFG1), and G2 (AFG2) [33]. Notably, AFB1 is the most potent
hepatocarcinogen identified in mammals and is classified as a Group I carcinogen by the
IARC [30,34].

Aflatoxins are among the most extensively studied mycotoxins worldwide due to
their significant impact on food safety and health. They have been linked to various
diseases, including aflatoxicosis in livestock, domestic animals, and humans. Their potent
carcinogenicity in susceptible laboratory animals and acute toxicological effects in humans
have led to heightened global concern and regulatory attention [35,36].

Previous studies have documented mycotoxin contamination in soybean and related
by-products, such as soybean meal [19,37–39]; however, limited information is available
regarding mycotoxin levels specifically in SBE. Additionally, mycotoxigenic species be-
longing to the genera Alternaria, Fusarium, Penicillium, and Aspergillus have been reported
in both recently harvested and stored soybeans [19,22,40–43]. Despite the widespread
use of SBE as a feed ingredient, the relationship between fungal load, moisture content
(MC), and mycotoxin contamination in SBE remains poorly understood, making its mi-
crobiological safety a critical concern. However, no national or international standards
specifically regulate the microbiological quality or mycotoxin presence in SBE. In response,
major animal feed manufacturers have begun assessing microbiological quality based on
European regulations. Mycological criteria—such as the threshold of ≤104 CFU/g—are
currently established only for other soybean-derived products used in feed [44].

This study aims to address these gaps by evaluating the microbiological quality of
SBE obtained from various extruding-expelling facilities located in the Argentine Pampa’s
region by (1) quantifying and identifying the fungal biota, including filamentous fungi
and yeasts, present in SBE; (2) assessing the correlation between SBE MC and fungal
biota load; and (3) determining the presence of mycotoxins in SBE. The findings will
contribute to improving quality control practices and enhancing the safety of SBE for feed
and food applications.
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2. Materials and Methods
2.1. Sampling of Soybean Expeller

SBE samples were obtained during the 2015 and 2016 harvest seasons from 11
extruding-expelling facilities located in the Pampa’s region of Argentina, covering the
provinces of Buenos Aires (6), Santa Fe (2), Córdoba (2) and Entre Ríos (1). The 11 facilities
represent 3% of the extruding-expelling facilities of Argentina. In each facility, three to
eight separate SBE samples (obtained in three consecutive days, 5 kg each) were collected
directly from the screw press outlet (Figure 1) and placed in double hermetic plastic bags
to avoid moisture variations until use (n = 33). The initial sampling plan considered three
samples per facility; however, logistical factors allowed for additional sampling in some
locations, resulting in an unbalanced dataset, which was only used for mycotoxin analysis
(n = 41). Of each sample, approximately 4.5 kg were stored at 4 ◦C for fungal biota analysis,
following the same procedure as described by Castellari et al. [18]. This storage was for
preservation purposes, preventing fungal growth until analysis, which was conducted
within seven days. Additionally, 0.5 kg was stored at −18 ◦C for mycotoxin determination
and was analyzed within one month.
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Figure 1. Conceptual diagram of extruding-expelling process.

2.2. Moisture Content Measurement

The MC of each SBE sample was determined in triplicate with the oven-drying
method [45] at 103 ◦C for 72 h. Results were expressed on a dry basis (% d.b.).

2.3. Quantification and Identification Methods of Fungal Biota

Fungal biota (filamentous fungi and yeasts) was evaluated at the Soil and Food Micro-
biology Lab (FCA-INTA Balcarce, Balcarce, Argentina) by the method of serial dilutions.
Ten grams of each SBE sample was homogenized in 90 mL of peptone water solution (one g
casein peptone/L, Britania®, Ciudad Autónoma de Buenos Aires, Argentina) for 15 min at
120 rpm in an orbital plane shaker (BM021, BIOMINT, Florida Oeste, Argentina), with four
independent replicates. The 10th-fold serial dilution (10−1) method in a tube was used, and
0.1 mL aliquots from each dilution were inoculated in duplicate in Petri dishes with potato
dextrose agar (PDA, Britania®, Ciudad Autónoma de Buenos Aires, Argentina) at 2% and
0.1 g/L of chloramphenicol (Anedra®, Troncos del Talar, Argentina) to inhibit bacterial
growth. PDA with antibiotics medium was used for the cultivation and enumeration of
yeast and filamentous fungi (molds) from SBE [46]. After five to seven days of incubation



Agronomy 2025, 15, 807 4 of 17

at 28 ◦C, filamentous fungi and yeast colonies were counted, and the results expressed as
colony-forming units per gram of dry matter (CFU g−1 DM) [47].

The identification of fungal biota in SBE was performed in the Petri dishes based
on vegetative hyphae (in vitro culture medium: malt extract medium-MEA and su-
crose medium-CYA) and microscopic (Olympus BH2, PR, USA) (asexual spores and
sexual spores) characteristics [47,48]. The results were expressed as isolation frequency
(Equation (1)), defined as the percentage of samples in which each genus was detected, and
as relative density (Equation (2)), defined as the proportion of each genus isolated relative
to the total genus isolated at each specific extruding-expelling facility [49,50].

Isolation frequency(%) =
ns
N

× 100 (1)

where ns is the number of samples contaminated with a specific genus, and N is the total
number of samples.

Relative density(%) =
ni
Ni

× 100 (2)

where ni is the number of isolates belonging to a specific genus, Ni is the total number of
genus isolated from a specific extruding-expelling facility.

2.4. Mycotoxins Analysis

The mycotoxins analysis was carried out at the Institute of Food Technology (INTA
Castelar, Castelar, Argentina). The evaluated mycotoxins were AFB1, AFB2, AFG1, AFG2,
nivalenol (NIV), DON, 13 acetyl DON, 15 acetyl DON, ochratoxin A, and zearalenone. The
mycotoxin analysis was performed in SBE collected from all facilities except facilities 5
and 6, due to operational restrictions (n = 35). For mycotoxin analysis, 500 g from each
SBE sample was ground in a laboratory grinder (Fw-100, Arcano, Beijing, China) and
homogenized. The determination was carried out as described by Castañares et al. [51]
with some experimental modifications. Firstly, 10 g of each sample was suspended in
20 mL of extraction solvent (acetonitrile: water: acetic acid; 79:20:1) with the addition
of 2 g of NaCl. The samples were homogenized with Ultra-Turrax® (IKA Labortecknik,
Staufen, Germany) for 3 min, sonicated for 60 min, and centrifuged for 5 min at 3000 rpm
(LC-75R, Luguimac®, Buenos Aires, Argentina). A volume of 10 mL extract was transferred
into glass vials and evaporated to dryness at 45 ◦C under a stream of N2. The samples
were resuspended in 2 mL of acetonitrile:water (70:30). They were then diluted with
28 mL of ultrapure water and purified with an SPE C18 cartridge (Strata C18-E, 55 µm,
70A, 500 mg/6 mL, Phenomenex, Chesire, UK). The cartridge was washed with 2 mL of
methanol:water (1:99) and eluted with 1 mL of methanol:water (70:30). Finally, they were
filtered through a 0.2 µm polyvinylidene fluoride (PVDF) membrane and injected into a
liquid chromatogram/tandem mass spectrometer (LTQ-XL™ Linear Ion Trap Thermo, San
Jose, CA, USA). Chromatographic separations were performed with a C18 100 2.1 mm Hy-
persil™ ODS (Thermo Fisher, Waltham, MA, USA) (5 mm particle size) column. A solution
of ammonium formate (10 mM) and acetonitrile was used as a mobile phase. Samples
(10 µL) were analyzed at a flow rate of 0.2 mL/min at 45 ◦C. The mass-spectrometer acqui-
sition settings were electrospray ionization (ESI) negative or positive (Table A1), retention
time and abundance of the confirmation ion (Ion C) relative to that of quantification ion
(Ion Q) were used as identification criteria.

The quantitative determination was performed using the following Sigma-Aldrich
standards: B-trichothecene mix (part number: 34134), aflatoxin mix (part number:
CRM46303), ochratoxin A solution (part number: 34037), and zearalenone solution (part
number: 34126). Non-detected values were assumed as half the limit of detection (LOD),
and values below the limit of quantification (LOQ) were assumed as half the LOQ [52,53].
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2.5. Statistical Analysis

CFU counts and SBE MC data were analyzed as a completely randomized design
using the R software (version 4.3.0, 21 April 2023) [54]. Each facility was considered a
different treatment, and each sample (collected over three consecutive days) represents
an independent experimental unit. A non-parametric Kruskal–Wallis test was performed
for CFU data, followed by a Dunn’s test with Bonferroni correction (α = 0.05) [55,56]. In
addition, a Pearson correlation analysis was carried out between counts of CFU g−1 DM
and SBE MC.

Mycotoxin concentration in SBE samples from different extruded-expelling facilities
was characterized through descriptive statistics (means and standard deviation (SD) was
performed only with quantified samples). A Pearson correlation was performed to analyze
linear relationships between pairs of mycotoxins. All statistical analyses were performed
using the R software (version 4.3.0, 21 April 2023) [54].

3. Results
3.1. Quantification and Identification of Fungal Biota

The Figure 2 presents the mean fungal counts (CFU g−1 DM) alongside the mean
MC of SBE samples from different extruding-expelling facilities. Fungal counts in SBE
samples were low, with mean values ranging from 0 to 4 CFU g−1 DM. The highest average
was 1.66 ± 3.99 CFU g−1 DM (recorded in Facility 11), while the lowest average was
0.01 ± 0.03 CFU g−1 DM (Facility 3). The highest CFU g−1 DM values were 16.17, 15.36,
and 14.64 in one of the four replicates of samples corresponding to Facilities 8, 11, and 1,
respectively. No significant differences in CFU averages were found among the facilities
(p > 0.05 in the Dunn test).
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Figure 2. Relationship between average values of soybean expeller moisture content (SBE MC) and
counts of colony forming units (CFU g−1 DM) for different extruding-expelling facilities. The dots
represent the averages, and the bars, the standard deviation. R2 is the determination coefficient of the
fitted linear model. F1 to F11 corresponds to Facility 1 to 11, respectively.

Seven genera of filamentous fungi belonging to upper taxonomic classes were iden-
tified in the SBE samples, including Acremonium sp., Alternaria sp., Aspergillus spp., Cla-
dosporium sp., Eurotium sp., Fusarium sp. and Penicillium spp., as well as one genus from the
lower taxonomic class Mucoraceae (family). Figure 3 shows the macroscopic morphology
of some of these genera, which served as the basis for their identification. Due to unfore-
seen data loss, images for every detected genus could not be provided. Penicillium and
Mucoraceae were the most frequently isolated (28.0% and 25.6%, respectively), followed
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by Aspergillus (15.5%) and Cladosporium (14.3%). The isolation frequency of the remaining
fungi were below 10%, while the yeasts exhibited an isolation frequency of 11.9%. These
results indicate that no single genus predominated in the SBE samples.
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Figure 3. Macroscopic morphology of fungal colonies grown on 90 mm Petri dishes with MEA (a) and
CYA (b) media, along with reproductive structures and spores of the identified fungi (c): (1a,1b)
Fusarium sp.; (1c) asexual spores (optical microscope, 400×); (2a,2b) Aspergillus flavus; (2c) asexual
reproductive structures (optical microscope, 400×); (3a,3b) Penicillium sp.; (3c) asexual reproductive
structures (optical microscope, 400×); (4a,4b) Eurotium sp.; (4c) cleistothecia (optical microscope,
10×); (5a,5b) Acremonium sp.; (5c) asexual reproductive structures (optical microscope, 400×), black
arrows indicate conidiophores. Photographs were captured using an Olympus camera (850,000 pixels,
3× zoom) (CAMEDIA, Tokyo, Japan).

An analysis of the relative density of extruding-expelling facilities revealed that total
yeasts, Penicillium, and Mucoraceae were detected in the most of the facilities evaluated,
although the percentage in the composition of the total mycobiota was variable (Table 1).
Total yeasts were found in all facilities, with relative density values ranging from 0.5 to
100%. Penicillium was present in nine facilities, with values ranging from 1.9 to 93.8%,
and Mucoraceae was identified in eight facilities, with relative density values between 0.9
and 79%. Among potentially mycotoxigenic genera (Alternaria, Aspergillus and Fusarium),
Aspergillus was isolated in six facilities with relative density values ranging from 0.3% to
68.8%. Alternaria was identified in three facilities with values between 0.3 and 0.9%, while
Fusarium was isolated in only one facility with a relative density value of 46%.

Table 1. Relative density of mycotoxigenic fungi and total yeast in soybean expeller samples discrimi-
nated by extruded-expelling facilities.

Facility ID Alternaria
spp.

Aspergillus
spp.

Fusarium
spp.

Mucoraceae
(family)

Penicillium
spp.

Total
Yeasts Other

Facility 1 0.5 0.5 0 77.0 7.8 3.6 10.6

Facility 2 0 6.2 46.0 0.9 4.5 37.4 5.0

Facility 3 0 0 0 0 0 100 0

Facility 4 0 0 0 2.6 7.3 52.3 37.7

Facility 5 0 68.8 0 1.3 29.0 0.5 0.3

Facility 6 0 0 0 0 0 52.6 47.4



Agronomy 2025, 15, 807 7 of 17

Table 1. Cont.

Facility ID Alternaria
spp.

Aspergillus
spp.

Fusarium
spp.

Mucoraceae
(family)

Penicillium
spp.

Total
Yeasts Other

Facility 7 0.9 2.2 0 1.9 1.9 0.5 92.5

Facility 8 0.3 0.3 0 79.0 2.1 16.2 2.1

Facility 9 0 18.2 0 27.3 36.4 9.1 9.1

Facility 10 0 0 0 0 30.0 55.0 15.0

Facility 11 0 0 0 1.6 93.8 2.7 2.0
Note: relative density was expressed as percentage (%). Facility ID is extruding-expelling facility identification.

3.2. Relationship Between Soybean Expeller Moisture Content and Fungal Biota Load

The average MC of SBE ranged from 4.74% to 14.25% across the 11 extruding-expelling
facilities (Figure 2). Despite this variability, the fungal biota load, expressed as CFUg−1

DM, remained relatively constant, ranging from 0 to 4. No significant linear relationship
(p > 0.05) was found between CFU counts and SBE MC, as evidenced by the low Pearson
correlation coefficient (r = 0.039).

3.3. Detection and Quantification of Mycotoxins

Only DON and aflatoxins (AFs) were detected in the SBE samples (Table 2). DON
and AFB1 were quantified in 20.0% and 25.7% of samples, respectively, with average
concentrations of 215.19 µg kg−1 for DON and 41.68 µg kg−1 for AFB1 (Table 2). The
detected DON levels ranged from 1.50 µg kg−1 (quantification limit) to 2385.20 µg kg−1.
Among AFs, AFB1 exhibited the highest concentration, reaching 378 µg kg−1. AFG1 and
AFG2 were quantified in 40% of the samples but at low concentrations, with average values
of 0.39 µg kg−1 and 0.34 µg kg−1, respectively. AFB2 levels were below the quantification
limit. The other analyzed mycotoxins, including NIV, 13 acetyl DON, 15 acetyl DON,
ochratoxin A and zearalenone, were not detected.

Table 2. Mycotoxins concentration in soybean expeller samples from different extruded-expelling
facilities.

Facility ID Repetition DON
AFs

B1 B2 G1 G2

LOD (µg kg−1) 3 0.2 0.1 0.2 0.1

LOQ (µg kg−1) 10 0.3 0.2 0.3 0.2

Facility 1

1 nd <LOQ <LOQ 0.9 1.3

2 nd nd nd 0.5 0.6

3 nd nd nd nd nd

4 nd nd nd 0.3 <LOQ

5 nd <LOQ <LOQ 1.0 0.6

Facility 2

1 nd nd nd 0.7 0.9

2 nd <LOQ <LOQ 0.6 0.6

3 nd nd nd 0.5 0.6

Facility 3

1 nd <LOQ <LOQ nd nd

2 nd nd nd nd nd

3 nd <LOQ <LOQ nd 0.3
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Table 2. Cont.

Facility ID Repetition DON
AFs

B1 B2 G1 G2

Facility 5

1 nd 0.3 nd nd nd

2 nd 0.3 nd nd nd

3 nd <LOQ <LOQ nd nd

4 nd <LOQ <LOQ 0.4 0.6

5 nd nd nd nd nd

6 nd <LOQ <LOQ nd nd

7 nd <LOQ <LOQ nd nd

8 nd nd nd nd nd

Facility 7

1 nd <LOQ <LOQ 0.3 0.5

2 nd <LOQ <LOQ 0.7 0.9

3 nd <LOQ <LOQ 0.7 1.1

Facility 8

1 1038.4 159.0 nd nd nd

2 2385.2 256.5 nd nd nd

3 741.6 127.0 nd nd nd

Facility 9

1 nd <LOQ <LOQ 0.6 0.5

2 nd <LOQ <LOQ 0.7 0.6

3 nd <LOQ <LOQ <LOQ <LOQ

Facility 10

1 nd nd nd nd nd

2 nd <LOQ <LOQ 3.6 1.7

3 nd nd nd nd nd

Facility 11

1 529.2 378.0 nd nd nd

2 1573.8 231.8 nd nd nd

3 706.7 180.4 nd nd nd

4 514.6 122.0 nd nd nd

Minimum (µg kg−1) 1.50 0.10 0.05 0.10 0.05

1st Quartil (µg kg−1) 1.50 0.10 0.05 0.10 0.05

Median (µg kg−1) 1.50 0.15 0.05 0.10 0.05

Mean (µg kg−1) 215.19 41.68 0.07 0.39 0.34

3rd Quartil (µg kg−1) 1.50 0.21 0.10 0.57 0.60

Maximum (µg kg−1) 2385.20 378.00 0.10 3.55 1.74

Positives * 7 9 0 14 14

Percentage of positives (%) 20.0 25.7 0 40.0 40.0
Note: DON is deoxynivalenol, AFs is aflatoxins, LOD is limit of detection, LOQ is limit of quantification, nd is not
detected, <LOQ is less than limit of quantification, and * is samples with a mycotoxin concentration above the
limit of quantification.

Positive linear correlations were found between DON and AFB1 (0.918), AFG1 and
AFG2 (0.754), and between DON and AFB2 (0.736). In contrast, a negative correlation was
identified between AFB1 and AFB2 (−0.759) (Figure 4). Co-occurrence of two mycotoxins
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was observed in 60% of the analyzed samples. The combination of AFG1 and AFG2 was
found in 40% of the samples, while DON and AFB1 co-occurred in 20% of the samples.
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Figure 4. Correlation of mycotoxins concentrations in soybean expeller samples. Panels on the lower
left side show the distribution of concentrations (in µg kg−1) for each combination of two mycotoxins.
Panels in the diagonal show each mycotoxin. Panels on the upper right side show the correlation
coefficient for each combination of two mycotoxins. *** p < 0.001; * p < 0.05.

4. Discussion
4.1. Implications of Fungal Biota Quantification and Identification

The fungal counts reported in this study for SBE were low (ranging from 0 to
4 CFU g−1 DM). Currently, no specific regulations define maximum fungal load limits
for SBE, and the literature on CFU counts for soybean by-products, such as SBE, is scarce,
limiting comparative analyses. Nevertheless, some studies have reported CFU counts
for soybeans and soybean meal. For example, Good Manufacturing Practices (GMP 14)
recommend a maximum fungal load of 104 CFU g−1 DM for soybean meal [13]. The
CFU counts for SBE in this study were lower than those reported by Ghaemmaghami
et al. [38] (6 × 102 CFU g−1 DM) for soybean meal and pellets and by Egbuta et al. [57]
(106 CFU g−1 DM) for processed soybean, using similar CFU count analysis techniques.
Therefore, these results indicate that the SBE exhibits good mycological quality, making it
suitable for animal consumption.

The low CFU counts found in all SBE samples may be attributed to several factors. Gen-
erally, soybeans have lower microbial loads compared to other grains [19,58], which may be
related to their chemical composition, particularly their low carbohydrate content [59,60].
Additionally, the processes involved in converting soybeans into SBE likely reduce fungal
load [61]. Specially, the extruding-expelling process, which involves simultaneous pressure
and temperature treatments, is highly effective in reducing fungal contamination. During
extrusion, soybean seeds are processed through a continuous screw system that generates
frictional heat (110–150 ◦C) and high pressure (40 MPa) for a short time (20–30 s) [1,2].

The combined effect of heat and pressure significantly reduce fungal viability [38].
For example, Fusarium species, such as F. graminearum, do not resist pressures greater
than 1.01 MPa, while A. flavus and A. alternata are inhibited at pressures exceeding
0.505 MPa [62].

Temperature, by itself, also has an effect of microflora. In this study, the temperature
recorded in the extruding-expelling processes in the different facilities ranged from 125 ◦C
to 168 ◦C, significantly exceeding the temperature threshold (83◦ C for 7 s) required to
inactivate most mesophilic flora [63]. In consequence, the lack of correlation between SBE
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MC and normalized CFU in our samples (Figure 2) may be attributed to the effect of high
temperature/pressure treatment during the extruding process, which likely reduced the
CFU levels.

The most frequently identified fungal genera in SBE samples were Penicillium, As-
pergillus, Acremonium, Cladosporium, Eurotium, Alternaria, and Mucoraceae (family). These
genera are consistent with those previously reported in soybean, although their isolation
frequencies varied [13,22,43]. Differences in isolation frequencies may be attributed to
variations in the fungal composition of soybean seed [64] and in the conditions of the
extruding-expelling process [38], as mentioned above (high temperature and high pres-
sure) [1,2].

The low occurrence of field fungi, such as Fusarium and Alternaria, could be explained
by the low MC of the soybean before processing. Chiotta et al. [65] found that Fusarium and
Alternaria were the most common fungi in recently harvested soybeans, whereas Aspergillus
and Penicillium, which thrive under lower relative humidity, were more prevalent during
storage. Barros et al. [40] reported that, during storage, the diversity of fungal genera
decreased, with xerophytic genera (Aspergillus and Eurotium) becoming dominant, while
field fungi such as Fusarium disappeared.

The hygienic quality of feed and food products must be ensured through proper sani-
tary conditions. Fungal presence is a recognized indicator of feed hygiene [66]. However,
in Argentina, no specific regulations set fungal load limits for feed.

Field observations showed that surveyed extrusion-expelling facilities lack strict sani-
tation protocols, likely because most produce expeller for feed rather than food. However,
facilities processing SBE for food adhere to strict hygiene regulations [67]. Despite this,
extrusion effectively reduces fungal contamination, ensuring a microbiologically safe prod-
uct. This treatment significantly impacts the viability of both somatic and reproductive
fungal structures [68,69]. Previous studies [38,66,70] also found that extrusion significantly
reduces microbial loads in pellets, aligning with our findings.

4.2. Implications of Soybean Expeller Moisture Content on Fungal Biota Load

The SBE MC showed significant variability across facilities (Figure 2). Some facilities
produced by-products with MC below the safe storage MC, while others exceeded it [71],
increasing microbiological risks during storage and posing potential safety concerns for
feed and food applications. This variability can be attributed to differences in the raw
material MC [72] and the conditions of the extruding-expelling process [2]. The SBE MC
observed in this study, ranging from 4.74% to 14.25%, aligns with previous reports from
Argentine facilities [8,9] and complies with the maximum permitted MC of 14.3% (12.5%
w.b.) established by the XIX standard for commercialization in Argentina [10].

These results suggest that, within the tested MC range, fungal proliferation is not
only influenced by MC, indicating that additional factors may contribute to the observed
variability in fungal biota load among facilities. One possible explanation for the absence
of correlation between SBE MC and CFU in our samples might be the high-temperature
heat treatment during extruding process, which likely reduces CFU levels by adversely
affecting most mesophilic flora, as reported in previous studies [62,63].

4.3. Assessment of Mycotoxins Contamination and Its Implications in Soybean Expeller

No studies reporting mycotoxin levels in SBE were identified. However, the presence
of mycotoxins produced by Fusarium, Alternaria, and Aspergillus in soybean seeds and
by-products, such as soybean meal, has been documented [25,65,73].

In this study, DON, AFB1, AFG1, and AFG2 were the only mycotoxins quantified
in SBE, with detection frequency ranging from 20 to 40% of analyzed samples (Table 2).
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Similar mycotoxins were reported by Abia et al. [74] in soybean meal, though with differing
occurrence rates. While DON, AFB1, and AFG1 were detected, AFB2, AFG2, and ochratoxins
were absent. Soybeans do not provide a favorable matrix for fungal growth due to their
low MC and composition, particularly their high protein/carbohydrate ratio [75]. For
this reason, reports of mycotoxins in soybeans are scarce in Argentina, and the detected
concentrations are variable.

Low levels of AFs and high levels of DON were detected in soybean samples by Barros
et al. [13], while Oviedo et al. [76] identified alternariol and alternariol monomethyl ether.
D’Espósito et al. [77] found a higher incidence of AFB1 (26.66%, 1.44–7.43 µg kg−1) than
DON (6.66%, 297–490 µg kg−1) but in soybean samples obtained from silo bags. Compared
to SBE samples in this study, AFB1 incidences were similar, while DON incidences were
lower. However, the DON and AFB1 concentration ranges in SBE were significantly higher
(Table 2).

DON is commonly associated with Fusarium species, which produce the toxin in the
field [78,79]. Reports from Argentina (Córdoba province) confirm the presence of F. gramin-
earum and DON during the grain filling and ripening of soybean under high humidity
conditions [65,80]. AFs are significant food and feed contaminants produced mainly by A.
flavus (producing AFB) and A. parasiticus (producing both AFB and AFG) [73,81–83]. Only
25–40% of A. flavus strains produce AFs [84]. AFB1, AFG1, and AFG2 were quantified in
SBE samples at varying concentrations and frequencies (Table 2). AFB1 was quantified in
25.7% of the SBE samples, with no direct correlation to the low relative density of Aspergillus
spp. (Table 1). Greco et al. [79] reported AFs in 50% of feed samples containing SBE, with a
mean concentration of 2.82 µg kg−1, significantly lower than the mean concentration in
this study (10.62 µg kg−1).

The presence of AFG1 and AFG2 in SBE samples, not previously reported, suggest
contamination of A. parasiticus, despite its absence in these samples. AFG concentrations
were lower than AFB, indicating A. flavus as a likely contributor, given its adaptation to
temperate conditions [85].

Mycotoxin contamination does not always correlate with fungal isolation, as toxins can
persist after fungal growth ceases due to unfavorable conditions [79]. Industrial processes,
such as extrusion, can reduce mycotoxin concentrations [23,86]. However, the effect on
each mycotoxin can be different. While DON degrades above 150 ◦C [44] to 180 ◦C [87–89],
AFs are thermally stable, decomposing only at temperatures from 237 ◦C (AFG) to 306 ◦C
(AFB) [90]. Consequently, the temperatures reached during the extrusion process likely
influenced the observed mycotoxin level in the SBE [91].

Notably, a significant positive correlation was observed between DON and AFB1,
as well as between AFG1 and AFG2. Conversely, a significant negative correlation was
found between DON and AFB2 and between AFB1 and AFB2 (Figure 4). Co-occurrence of
mycotoxins was noted in 60% of SBE samples, with 40% showing AFG1 and AFG2, and 20%
showing DON and AFB1 (Table 2). Such co-occurrence aligns with studies indicating fre-
quent multi-mycotoxin contamination in raw materials and feed ingredients [39,52,57,92].

DON and AFs concentration in SBE highlights a potential risk to animal and human
health. In 8.6% of the samples, DON level exceeded the European Union threshold of
750 ppb (or 750 µg kg−1) for feed ingredients [93]. For AFs in food and feed ingredients,
the accepted levels are 20 and 300 µg kg−1, respectively [94]. In the present study, the
mean levels of AFB1, AFG1, and AFG2 were 41.70, 0.39, and 0.38 µg kg−1, respectively.
These levels exceeded the specification for food but fell below the specification for feed.
However, AFB1 concentrations also surpassed food safety limits in isolated cases, reaching
378 µg kg−1 (2.9% of samples). Since there are no local regulations in Argentina regarding
mycotoxin levels in SBE, the results were compared with international standards and
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regulations to assess their safety and quality. This comparison ensures that the findings
align with widely recognized guidelines, helping to establish a clearer context for SBE
usage in the industry.

Given widespread use of SBE in feed and food formulations, these findings under-
score the need for systematic monitoring and adherence to Good Manufacturing Practices
(GMP). This study provides clear evidence of raw material (soybean) contamination with
mycotoxigenic fungi and their associated mycotoxins, either in the field or during storage.
While fungal presence is controlled during the extruding process, as previously explained,
mycotoxins are not inactivated during processing. Consequently, the final product may
remain contaminated, posing potential health risks to animals consuming SBE directly or
as a component of feed formulations. Implementing GMP measures, including drying
soybeans, optimizing storage conditions, and regular facility cleaning [95], is critical for
minimizing fungal growth and mycotoxin contamination [96–98]. However, the facilities
analyzed in this study currently lack mycotoxin control measures, further emphasizing the
need for preventive strategies to ensure the safety and quality of soybean by-products for
industrial use.

5. Conclusions
The low CFU counts observed in SBE samples suggest that the product is generally of

good quality for animal consumption. No correlation was found between the SBE MC and
the CFU of fungal biota, probably due to the heat treatment applied during the extruding
process. Penicillium and Mucoraceae (family) were the most frequently isolated fungal
genera, among five others. While the concentrations of DON and AFs (B1, B2, G1, and G2)
in the SBE were generally low, some samples exceeded established regulatory limits for
food and feed. This suggests that, although thermal treatment during extrusion reduces
fungal load, it might not be sufficient to substantially lower mycotoxin concentration.
Notably, 60% of SBE samples presented a co-occurrence of at least two mycotoxins.

These findings emphasize the critical importance of monitoring and controlling the
SBE MC during storage and conducting regular mycotoxin testing in both whole soybeans
and the resulting SBE to ensure safety and quality. Furthermore, the detection of mycotoxins
exceeding regulatory thresholds in some SBE samples underscores a potential risk to both
animal and human health, emphasizing the need for stringent quality control measures.
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Abbreviations
The following abbreviations are used in this manuscript:

SBE Soybean expeller
MC Moisture content
CFU Colony forming unit
DON Deoxynivalenol
AF Aflatoxin
d.b. Dry basis
w.b. Wet basis
DM Dry matter
PDA Potato dextrose agar
LOD Limit of detection
LOQ Limit of quantification
ANOVA Analysis of variance
SD Standard deviation
GMP Good Manufacturing Practices

Appendix A

Table A1. List of analytes determined in the negative or positive ionization mode and parameters for
mass-spectrometry.

Analyte Name Ionization Precursor Ion (m/z) Ion Species Product Ion (m/z)
Collision Cell

Ion Q Ion C

DON ESI+ 297 [M+H]+ 249 231 39
Nivalenol ESI- 311 [M−H]− 183 281 39

13 acetil DON ESI+ 339 [M+H]+ 231 213 39
15 acetil DON ESI+ 339 [M+H]+ 321 137 39

Nivalenol ESI- 371 [M+OAc]− 311 281 45
AFB1 ESI+ 313 [M+H]+ 284 241 25
AFB2 ESI+ 315 [M+H]+ 286 259 28
AFG1 ESI+ 329 [M+H]+ 243 200 25
AFG2 ESI+ 331 [M+H]+ 313 245 28

Note: Ion C is cualification product ions, Ion Q is quantification product ions, ESI is electrospray ionization,
[M+H]+ is protonated adduct, [M−H]− is deprotonated adduct, and [M+OAc]− is acetate adduct.
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