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Localization of negative energy and the Bekenstein bound
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A simple argument shows negative energy cannot be isolated far away from positive energy in
a conformal field theory, and strongly constrains its possible dispersal. This is also required by
consistency with Bekenstein bound written in terms of positivity of relative entropy. We prove a
new form of Bekenstein bound based on monotonicity of relative entropy, involving a “free” entropy
enclosed in a region which is highly insensitive to space-time entanglement, and show it further
improves the negative energy localization bound.

Introduction.— Due to Lorentz symmetry and the ex-
istence of a fundamental state, energy is always posi-
tive in quantum field theory (QFT) [1]. However, en-
ergy density can take negative values if it is compen-
sated by the presence of positive energy in other regions
of the space. In fact, in any QFT there are necessar-
ily some states having negative energy density [2]. This
is a purely quantum phenomenon which in general is
not expected to survive the classical limit. For exam-
ple, the classical energy density for a free scalar field

T 00(x) = 1

2

(

φ̇2 + (∇φ)2 +m2φ2
)

is positive definite. In

the process of quantization the subtraction of zero point
energy renders the energy density operator indefinite.
Various energy conditions, stating generically the pos-

itivity of some combinations of the stress tensor com-
ponents, have found important applications in classical
gravity. For example, strong energy condition is related
to the singularity theorem for cosmological solutions [3],
and null energy condition is an assumption of Hawking’s
area theorem, implying black hole horizon area increases
with time [4]. Quantum violation of the null energy
condition is then necessary for black hole evaporation.
Enough negative energy is also required for the existence
of traversable wormholes and time-machines [5]. More
recently, in the context of holographic models, energy
conditions on a classical bulk space-time have been re-
lated to properties on the boundary QFT such as strong
subadditivity of entanglement entropy [6] and the renor-
malization group irreversibility (c-theorem) [7].
In connection with these applications, it is of great in-

terest to know how much negative energy density quan-
tum mechanics can support in violation of the classi-
cal energy conditions. While an answer to this question
in general curved space is out of sight, some important
progress have been made in Minkowski space [8].
A quantum energy inequality is generically a bound

on a combination of expectation values of the stress ten-
sor components weighted by some space-time function.
Several of these bounds have been worked out in the lit-
erature [9] (see also [8] and references therein). However,
most of the known examples apply only to free fields, and
typical quantum energy inequalities do not constrain the
spatial distribution of negative energy but assume the
form of a bound on the possible duration in time of the

negative energy density at a specific point in space (see,
however, [10]). We show below that a simple argument
for conformal field theories (CFT) provides us with a
generic constraint on the spatial distribution of negative
energy. More precisely, negative energy appears to be
confined to live near positive energy and has to be less
disperse than positive energy.
As argued by Ford [11], constraints on the availability

and manipulation of negative energy are necessary for
the validity of the second law of thermodynamics. For
example, dropping negative energy on a black hole could
reduce its size and entropy without a compensation in the
emitted entropy through increased Hawking radiation.
Interestingly, a thought experiment involving black

holes and the generalized second law (GSL) also gives
place to the Bekenstein bound [12],

SA ≤ 2π REA , (1)

where SA and EA are the entropy and energy of any
object which can be enclosed in a region A of circum-
scribing radius R. Since quantum mechanical entropy is
positive, this would mean that energy contained in a re-
gion cannot be negative. Of course, this is not strictly
correct, and the reason is that the quantities involved in
(1) have to be defined with some care in QFT. For exam-
ple, entanglement entropy of vacuum fluctuations across
the boundary gives an infinite contribution to the bare
entropy of a region. A naive interpretation of (1) also
seems to indicate there should be a bound on the num-
ber of field species, while this is not implied by the GSL,
as was widely discussed in the literature [13–15].
A well defined quantum version of Bekenstein bound

requires we write the left hand side of (1) as a subtraction
∆SA = S1

A−S0
A between the entropy S1

A = −trρ1A log ρ1A
of the state of the object ρ1A reduced to region A and
the entropy of the vacuum state S0

A = −trρ0A log ρ0A in
the same region [15, 16]. This eliminates the ultraviolet
divergent terms of the entropy which are artificially pro-
duced by localization, and also solves the species problem
[13, 15]. Additionally, the product 2πER on the right
hand side of (1) has to be written in terms of the mod-
ular Hamiltonian HA = − log(ρ0A) corresponding to the
reduced density matrix of the vacuum in A. The relation
between HA with energy and size is clarified if we take A
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to be the half space x1 > 0. In this case HA is given by
the generator of boost symmetry inside A, for any QFT
and space-time dimension d,

HA = 2π

∫

x1>0

dd−1x x1 T 00(x) . (2)

Hence, taking into account expression (2), a natural
quantum interpretation of (1) reads [16]

∆SA ≤ ∆〈HA〉 , (3)

where ∆〈HA〉 = tr(ρ1AHA) − tr(ρ0AHA) is the variation
of the expectation value of the modular Hamiltonian be-
tween the object state and the vacuum state. In the form
(3), the bound is valid for any region A (not necessarily
the half space) and for any “object” state ρ1, due to the
positivity of relative entropy

S(ρ1A|ρ
0
A) = tr(ρ1A log ρ1A−ρ

1
A log ρ0A) = ∆〈HA〉−∆SA ≥ 0

(4)
between the object’s state and vacuum state, both re-
duced to A. Relative entropy S(ρ1|ρ0) is a central quan-
tity in quantum information theory, which essentially
measures distinguishability between two states.
The bound (3) is free from divergences and holds uni-

versally. Its validity depends on quantum mechanics and
relativity, and therefore it is not a new constraint for flat
space physics coming from black holes, as was originally
thought.
Eq. (3) allows (in contrast to the naive interpretation

of (1)) for negative values on both sides of the inequality.
This is because the expectation value of (2) can be neg-
ative for some states. In this case, negative energy in A
must be accompanied by a decrease of the entanglement
entropy of the state with respect to the entanglement
entropy of the vacuum.
However, consistency of the inequality (3) and the one

corresponding to the complementary region Ā, requires
some constraint on the distribution of negative energy,
as was recently suggested [17]. Following this idea, we
find here a new quantum version of Bekenstein bound
(i.e. different from (3)) which is also universally valid
and involves only positive quantities on both sides of
the inequality. This form of Bekenstein bound improves
our bound on negative energy localization coming purely
from conformal symmetry arguments.
A positive symmetry generator.— In a Lorentz covari-

ant theory we can unitarily transform the Hamiltonian
with a boost to any operator of the form Pµa

µ, with aµ a
vector in the future light cone. This immediately tell us
these operators are positive definite, since they have the
same spectrum as the Hamiltonian. In a CFT Lorentz
group is part of a larger group of conformal transforma-
tions, which move the Hamiltonian in a larger cone of
positive operators.
Then, let us make a conformal transformation of the

Hamiltonian. To keep the result as much symmetric as

possible, consider first transforming with the conformal
transformation Î = R.I, where R is a spatial reflection
and I is the coordinate inversion xµ′ = xµ

x2 . The spatial
reflection R is necessary to make R.I belong to the con-
formal group connected to the identity. The composite
coordinate transformation Î−1.δt.Î, where δt is a time
translation of small amount δtµ ≡ (δt, 0, 0, 0) is, to first
order in δt,

xµ′ ≃ xµ + x2 δtµ − 2xµ(δtαxα) . (5)

We can read off the generator G implementing this con-
formal transformation looking at the effect on the points
of the surface x0 = 0,

G =

∫

dd−1x |~x|2T 00(x) . (6)

Hence, we have for the quantum operators G = Î†.H.Î,
and G is positive definite.
A straightforward examination of the general form of a

conformal generator shows the most general one written
only in terms of the energy density (i.e. not involving the
momentum density T 0i) that we can get from a conformal
transformation of P 0 is a linear combination with positive
coefficients of the Hamiltonian and the translates of G.
Negative energy localization.— The positivity of G

means a “moment of inertia” of the energy density is
positive. We have for the expectation values in any state

∫

dd−1x |~x− ~x0|
2〈T 00(x)〉 ≥ 0 . (7)

The most constraining bound follows minimizing (7) over
the position of ~x0.
In order to clarify the meaning of (7) for the energy

distribution let us call the total positive energy E+ and
the absolute value of the negative energy E−,

E± =

∫

dd−1x θ(±〈T 00(x)〉) |〈T 00(x)〉| . (8)

Then, we have for the total energy E = E+ − E− ≥ 0.
We also define the positive and negative energies center
of mass ~x± as

~x±E± =

∫

dd−1x~x θ(±〈T 00(x)〉) |〈T 00(x)〉| , (9)

and the mean square size r± of the positive and negative
distributions as

(r±)
2E± =

∫

dd−1x |~x− ~x±|
2 θ(±〈T 00(x)〉) |〈T 00(x)〉| .

(10)
Then, taking into account that the ~x0 which minimizes

(7) is

~x0 =
E+~x+ − E−~x−

E
, (11)
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we get the following bound

|~x+ − ~x−|
2 ≤ E

E+r
2
+ − E−r

2
−

E+E−
. (12)

In particular, the intrinsic size of negative energy “mo-
ment of inertia” is bounded by the one of positive energy

E−r
2
− ≤ E+r

2
+ . (13)

From (12) positive and negative energies cannot be sepa-
rated too much. For example, if we take a small negative
energy density region r− ≪ r+, and a small amount of

negative energy, E− ≪ E+, we have |~x+−~x−| .
√

E
E

−

r+.

Positivity from relative entropy.— The connection of
the positivity of G with relative entropy comes through
the fact that in CFT the modular Hamiltonian for a
spherical region in the vacuum state is proportional to
the generator of conformal transformations that keep the
sphere fixed [18]. The modular Hamiltonian for a sphere
A of radius R is

HA = 2π

∫

|~x|≤R

dd−1x
R2 − |~x|2

2R
T 00(x) , (14)

while for the complementary region Ā (the space outside
A) it is

HĀ = 2π

∫

|~x|≥R

dd−1x
|~x|2 −R2

2R
T 00(x) . (15)

For the sake of the argument, let us first think in more
general terms, and take an arbitrary region A in a general
QFT, not necessarily a conformal theory. Let us call the
operator

ĤA = HA −HĀ = − log(ρ0A)⊗ 1 + 1⊗ log ρ0Ā (16)

the full modular Hamiltonian of A. Writing the vacuum
state in Schmidt decomposition across the tensor product
HA ⊗HĀ, a direct calculation shows

ĤA|0〉 = (HA −HĀ)|0〉 = 0 . (17)

Let us now consider another global state ρ1 differ-
ent from the vacuum and also a smaller region B ⊆ A.
The relative entropy between ρ1 and ρ0 in a region X is
S(ρ1X |ρ0X) = ∆〈HX〉 −∆SX , and it is both positive and
monotonically increasing with the region size [19]. From
monotonicity we have

∆〈HA〉 −∆SA ≥ ∆〈HB〉 −∆SB , (18)

and also

∆〈HB̄〉 −∆SB̄ ≥ ∆〈HĀ〉 −∆SĀ . (19)

Property (17) gives 〈HA〉
0 = 〈HĀ〉

0 and 〈HB〉
0 =

〈HB̄〉
0. Since the vacuum state is pure, we also have

S0
A = S0

Ā
and S0

B = S0

B̄
. Then, adding (18) and (19) we

get

〈ĤA − ĤB〉
1 ≥ S1

A − S1
B + S1

B̄ − S1

Ā ≡ 2Sf(A,B) . (20)

In this inequality the vacuum is present only through
the definition of the modular Hamiltonians. The com-
bination of entropies in the right hand side, which for
later convenience we have called 2Sf(A,B), is always
positive as a consequence of weak monotonicity property,
S(X)+S(Y ) ≥ S(X−Y )+S(Y −X) applied to X = A,
Y = B̄ [20]. This inequality is in turn a well known di-
rect consequence of strong subadditivity of the entropy.
Hence, as (20) is valid for any ρ1, the difference ĤA−ĤB

for B ⊆ A is a positive operator [21].

Coming back to the case of spheres in a CFT, we can
choose A to be a sphere of radius R1 and B a concentric
smaller sphere of radius R2, with R2 < R1. Using (14)
and (15) we get

π

2
(R1 −R2)

(

〈P 0〉+ 〈G〉/(R1R2)
)

≥ Sf (A,B) > 0 .

(21)
Taking the limit R2 → 0 we recover the positivity of G
in equation (6).
A new quantum Bekenstein bound.— Inequality (20)

is our proposal for a new, universally valid, quantum
Bekenstein bound. To see how this compares with the
original formulation (1), let us apply (20) to the case of
two half-spaces included into one another, i.e. A is the
region x1 > 0, B is given by x1 > L > 0, and the region
A− B is a strip of width L. Using (2) we get

π LE ≥ Sf (A,B) =
1

2
(S(x1 > 0)− S(x1 > L)

+S(x1 < L)− S(x1 < 0)) . (22)

In the classical limit, this strongly resembles Beken-
stein original formulation (1). To have a feeling of the
entropic quantity Sf (A,B) on the right hand side, one
can imagine evaluating it for a thermal gas at high tem-
perature. Then, while most of the contribution of the
entanglement around the boundaries cancel out in the
combination, Sf (A,B) will capture exactly the extensive
entropy of the gas inside A but outside B. This is the
reason we have inserted a factor 2 in our definition of
Sf (A,B) in (20). Note also that for a pure global state
S(X) = S(X̄), and Sf (A,B) ≡ 0. Then, Sf (A,B) does
not capture the entropy in the strip A−B produced by an
entangled pair of particles, one of which is in A−B and
the other is outside it. Hence, we are lead to interpret
the quantity Sf (A,B), to a certain extent, as a “free” (or
“global”) entropy located in between the boundaries of
A and B.
In this sense it is clarifying to write the entropy of the

global state as coming from partial tracing over a hidden
sector ℵ which is used to purify it, i.e ρ1 = trℵ|ψ〉〈ψ|, for
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some vector |ψ〉 in H ⊗ ℵ. Using this representation we
can write

Sf (A,B) =
I(A,ℵ)− I(B,ℵ)

2
, (23)

where I(X,Y ) = S(X) + S(Y ) − S(X ∪ Y ) is the mu-
tual information between X and Y . Hence, Sf(A,B)
is approximately extensive and depends only on A − B
to the extent that I(X,ℵ) is approximately extensive
for spatial regions X . This representation also shows
Sf (A,B) is in fact monotonically increasing with the
size of A − B because mutual information is a mono-
tonically increasing quantity. Moreover, it trivially sat-
isfies a partial form of extensivity: If C ⊂ B we have
Sf (A,C) = Sf (A,B) + Sf (B,C).
While the general aspect of (22) is similar to Beken-

stein’s original formulation, there are also some inter-
esting differences. For example, the strip-like region has
now L as a minimal size of the region rather than the cir-
cumscribing diameter in the original formulation of the
Bekenstein bound (in this respect our bound is similar
to the proposal of [22]). Also, in the left hand side we
have now the global energy E instead of a measure of the
energy in a region.
The new formulation (22) (or more generally (20)) has

also some remarkable differences with respect to the first
quantum version (3) of Bekenstein bound. First, (22) is
about energy and entropies in one state, rather than the
difference between two states as in (3). Mathematically,
(22) comes from a very different inequality: Monotonicity
of relative entropy, rather than from positivity of relative
entropy as it was the case of (3). Finally, in contrast to
(3), both sides of the new inequality are now positive.
Entropy and negative energy distribution.— We now

use again the inequality (20) for two spheres in a CFT,
but since we want to have a bound in terms of the op-
erator G alone, and not containing a contribution of the
Hamiltonian as in eq. (21), we are forced to use spheres
located at different times. We take as A a sphere of ra-
dius R1 at time t = −R1, centered at the spatial origin,
and as B another sphere of radius R2 < R1 centered
at the origin but lying at time t = −R2 (see figure 1).
Hence, A and B lie in the past light cone.
The conformal current that gives the conformal gener-

ator corresponding to ĤA is

Jµ
A = 2πT µβxβ + T µβ

(

cαxαxβ −
1

2
cβx

αxα

)

(24)

with cβ ≡ (2π/R1, 0, ..., 0). The current Jµ
B follows from

Jµ
A by replacing R1 by R2. Hence, in this case the bound

is written

〈ĤA − ĤB〉 =

∫

dd−1x (J0
A − J0

B) (25)

= π

(

1

R2

−
1

R1

)
∫

|~x|2 〈T 00(x)〉 ≥ 2Sf(A,B) .

t=0

B

A
R

R2

1

FIG. 1: Two spatial spheres A of radius R1 and B of radius
R2 located on the past light cone. Sf (A,B) is a measure of
entropy crossing the null cone in between the boundaries of
A and B.

In particular, choosing the center of spatial coordinates
at the point ~x0 in (11), we get

(E+r
2
+ − E−r

2
−)−

E+E−

E
|~x+ − ~x−|

2

≥ max
R1,R2,R1>R2

(

2R1R2

(R1 −R2)π
Sf (R1, R2)

)

.(26)

Therefore, entropy makes the localization bound more
restrictive. This is quite natural from the point of view of
the original motivation on negative energy bounds based
on the second law [11]: A pure state with negative en-
ergy which merges with a thermal state decreases its en-
ergy, and consequently the phase space available, possi-
bly reducing the entropy and violating the second law.
In this sense, matter with negative energy but positive
entropy could only worsen the problem, since the second
law would be violated by a larger amount. However, en-
tanglement entropy between the negative energy source
and the positive energy reservoir is clearly not an addi-
tional problem, since this entropy disappears once they
have merged; in other terms, this entanglement entropy
is not considered in the balance of entropy for the global
initial and final states in the second law. This is re-
flected in that the specific entropic quantity that enters
the bound does not feel spatial entanglement.
As a final comment, the existence of a quantum Beken-

stein bound based on monotonicity of relative entropy
suggests this property is important for the validity of the
GSL. In fact such connection has been pointed out in the
literature [23].
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