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Abstract

A delicate balance in gene expression, a process highly
controlled by post-transcriptional gene silencing mediated by
miRNAs, is vital during plant growth and responses to stress.
Within the miRNA biogenesis pathway, HYL1 is one of the most
important proteins, initially recognized for its role as a cofactor of
DCLA1. Yet, HYL1’s functions extend beyond miRNA processing,
encompassing transcriptional regulation and protein translation
between other recently discovered functions. This review
comprehensively examines our current knowledge of HYL1
functions in plants, looking at its structure, the complex
biochemistry behind it, and its involvement in a variety of cellular
processes. We also explored the most compelling open ques-
tions regarding HYL1 biology and the further perspectives in its
study. Unraveling HYL1 functional details could better under-
stand how plants grow, face environmental stresses, and how
the miRNA pathway adapts its outcome to the plant growing
conditions.
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Introduction

MicroRNAs (miRNAs) constitute a class of small non-
coding RNAs that play pivotal roles in regulating gene
expression throughout plant development and in response
to various stresses. These molecules, approximately 21
nucleotides (nt) in length, originate from long RNA pre-
cursors known as pri-miRNAs, which are transcribed by
RNA polymerase II (Pol II) from ‘MIRNA genes [1,2].
What makes pri-miRNAs unique long-noncoding RNAs is
their capacity to adopt a self-complementary structure
resembling a hairpin recognized by the miRNA processing
complex. Recognition of specific features within this
structure initiates processing, primarily by DICER-
LIKE1 (DCL1), which undergoes successive cleavage
steps to produce a mature miRINA/miRNA* duplex. The
mature miRNA guides an Argonaute (AGO) protein,
causing the sequence-specific silencing of target mRINAs.
In plants, this interaction often leads to AGO-mediated
cleavage of the target mRNA, although translational in-
hibition is also observed, and in some cases, miRNAs can
even trigger DNA methylation [1,3]. The mechanism of
RNA-dependent gene silencing mediated by miRNAs is
conserved across all eukaryotic lineages.

Although DCL1 is the main enzyme responsible for
processing miRNA precursors, a plethora of co-factors
have been identified to assist this process either in a
tissue/condition-specific manner or more constitutively
[1,2]. Among the best-characterized cofactors of DCL1,
we find SERRATE (SE) and HYPONASTIC LEAVES 1
(HYL1), also known as Double-stranded RNA-Binding
protein 1 (DRB1), which have long been associated with
miRNA biogenesis. While SERRATE has been known for
a long time to participate in several biological processes
besides miRNA biogenesis [4], HYL1 was only proposed
as a DCL1-cofactor for several decades. However, in
recent years, an increasing body of evidence indicates
that HYL.1 presents broader activities in the miRNA
pathway beyond its function in assisting DCL1 and even
functions completely independent of this regulatory
pathway. In this review, we discuss current and historical
knowledge about the functions, regulation, structural
(Box 1), and evolutionary (Box 2) features of HYL.1 both
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Box 1. Structural Features of HYL1

At the protein level, HYL1 possesses two double-stranded RNA-binding domains (dsRBD) toward its N-terminal region, a nuclear
localization signal (NLS) in the middle [56], and an intrinsically disordered region composed of six nearly identical repetitions of 28 amino
acids near its C-terminus.

The dsRBD domains, crucial for interaction with RNA, adopt an a3 structure [51,52]. The protein exhibits similar affinity for pri-miRNAs,
miRNA precursors (pre-miRNA), and miRNA duplexes, suggesting that once bound to a pri-miRNA, HYL1 remains associated with the
miRNA encoding region during most of the miRNA lifecycle [52]. dsRBD1 shows a higher affinity for dsRNA than the second domain
[51,52]. Within this domain, specific amino acids in helix 1, the 31-p2 loop, and the 33-¢.2 loop are essential for the interaction with dsRNA
[51]. However, further investigation revealed that the $1—2 loop in dsRBD1 is dispensable for HYL1 activity and has minimal influence on
RNA-binding affinity [53]. Nonetheless, the presence of the second dsRBD is critical for the precise and strong interaction between the first
dsRBD and dsRNA. In contrast to dsRBD1, the second dsRBD exhibits notable differences in its shape from the canonical dsRBD, and its
primary function is associated with protein—protein interactions [52].

Since the divergence of mosses from seed plants, a strong interaction between HYL1 and DCL1 exists [54]. Although the interacting regions
of both proteins have been identified, there are discrepancies in the reported results [54,55]. While the dsRBD2 was unequivocally
identified as the docking point in HYL1, two independent reports differ on whether the first dsRBD of DCL1 or its DUF283 domain is
involved in the interaction [54,55]. It is plausible that both interaction points contribute to the functional association of HYL1-DCL1 in vivo.

Regarding the C-terminal intrinsically disordered region, it was shown to be nonessential for HYL1 function during miRNA biogenesis [56].
However, it is indispensable for HYL1 homodimer formation [57]. The high amino acid conservation between repetitions, despite the
variable number of repetitions depending on the plant species [14], and the phosphorylation potential of this region [14], suggest its
functionality, although its specific role remains unknown. It is possible that the dimerization of HYL1 through the C-terminal domains or
interaction with other proteins, processes potentially regulated by phosphorylation, control some of the HYL1 functions not related to
miRNA processing. Unraveling the function of this domain of HYL1 poses an interesting question to answer in the near future.

Box 2. Conservation Features of HYL1

Besides HYL1, Arabidopsis thaliana contains five other related DOUBLE-STRANDED RNA BINDING proteins (DRB 2 to 5 and DRB7).
HYL1 and DRB4 play crucial roles in assisting DCL1 and DCL4 during miRNA and trans-acting small-interfering (tasiRNA) biogenesis
respectively [8,12]. DRB2, acts as a dual regulator of miRNA processing in specific tissues, such as the shoot apical meristem [58]. This
regulation can be either synergistic or antagonistic to canonical miRNA biogenesis, depending on the pri-miRNA structure, although the
precise mechanism underlying this regulation remains unclear [58]. DRB2 also appears to have an antagonistic role with DRB4 in
producing PollV-dependent siRNA [59]. DRB2, DRB3, and DRB5 have a high amino acid sequence identity and similar expression
patterns in the shoot apical meristem; however, DRB3 and DRBS5, unlike DRB2, are located in the cytoplasm instead of the nucleus [58].
Despite this, DRB2, DRB3, and DRB5 have a strong genetic interaction and seem to function in the same non-canonical miRNA pathway
[60]. DRB7 was recently identified as a new member of this protein family in Arabidopsis thaliana. It is involved in the easiRNA pathway,
negatively impacting the accumulation of DCL3-dependent siRNAs [61]. DRB7 competes with DCL4 for DRB4 binding to form a complex
that specifically sequesters long dsRNA precursors to repress siRNA production by preventing their access and processing by the siRNA
machinery [62]. Understanding the specifics of this non-canonical pathway is crucial for unraveling the functional significance of each DRB
protein, its potential crosstalk with well-established pathways, and its impact on gene expression and plant development.

Unlike plants, miRNA biogenesis in animals occurs in the nucleus and cytoplasm [63]. Within the nucleus, the RNase type Ill Drosha
processes pri-miRNAs into pre-miRNA by cleaving at the base of pri-miRNA, a process assisted by Pasha (DGCRS8 in vertebrates) [64].
The processed pre-miRNA is subsequently exported into the cytoplasm and further processed by Dicer in association with other double-
stranded RNA binding proteins such as loquacious (Logs), transactivation response element RNA-binding protein (TRBP), and protein
activator of the interferon-induced protein kinase (PACT) [64]. The differences in miRNA biogenesis between animals and plants and the
absence of HYL1 homologs in bilaterian animals have led to the historical belief that HYL1 evolved independently in these two groups.
However, homologs for HYL1 and SE were recently reported in the sponge Amphimedon and Nematostella vectensis [65,66], suggesting
the presence of an HYL1-like protein in the last common ancestor of plants and animals. These findings challenge the notion of convergent
evolution. These discoveries introduce an intriguing evolutionary connection between plants and cnidarians, adding a layer of complexity
to our comprehension of microRNA pathways. It proposes the potential for a common evolutionary origin between plants and animals,
reshaping our understanding of these molecular processes.

within and outside the miRNA pathway. We also explore ~ HYL1 functions in miRNA biogenesis:
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protein and the most compelling questions and future ~ HYL1 was discovered over 20 years ago when it was
perspectives in its study. linked to the response of Arabidopsis thaliana plants to
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abscisic acid, auxin, and cytokinin [5]. Those first re-
ports showed that /4y// mutants exhibited a pleiotropic
phenotype characterized by shorter stature, leaf hypo-
nasty, delayed flowering, reduced fertility, impaired
apical shoot development, and altered root growth [5].
Shortly afterward, HYLL1 was associated with miRNA
production [6,7] by interacting with DCL1 [8] within
D-bodies [9,10]. Consistently, /4y// mutants exhibit
reduced levels of mature miRNAs, associated with
clevated levels of unprocessed pri-miRNAs and de-
regulation of miRNA-targeted mRNAs [6,7,12]. Early
biochemical research on HYL1 revealed that its inter-
action with DCL1 promotes miRNA processing accu-
racy [11,12] and strand sorting [13,14]. However, later
studies showed that DCL1-mediated miRNA process-
ing could efficiently occur independently of HYL1, at
least under low-temperature conditions, while some pri-
miRNAs appear to be naturally independent of this
protein for still unclear reasons [15,16]. The tempera-
ture effects over the folding structure of the pri-
miRNAs likely dictate the requirement of HYL1
during miRNA processing. Furthermore, a genetic
screen identified a point mutation in the DCL1
encoding gene, rendering the protein independent from
HYL1 activity during miRNA processing [17]. These
results suggest that HYLL.1 may act by controlling DCI.1
structure, allowing proper pri-miRNA  processing.
Alternatively, this point mutation in the DCL1 could
potentially lead to improved stabilization of pri-miRNAs
upon binding. As a result, DCLL1 becomes less reliant on
HYL1 during miRNA processing. Still, new evidence
suggests that HYLL1 not only acts in the miRNA pathway
by modulating DCL1 activity but also at other levels.
For example, a recent study found that HYL1 is asso-
ciated with Pol II independently of DCL1 and SE,
controlling the transcription initiation and elongation of
MIRNA genes [18] (Figure 1a). This discovery implies
that HYL1 may already be associated with miRNA loci
during pri-miRNA transcription, helping the processing
complex assemble around nascent pri-miRNAs as soon
as the stem-loop structure forms, explaining the effi-
cient co-transcriptional processing of many miRNAs
[19] (Figure 1d). In agreement, HYLL1 was found to
associate with MIRNA loci by recognizing and binding
nascent pri-miRNAs [20]. This association, along with
the interaction with the HIGH EXPRESSION OF
OSMOTICALLY RESPONSIVE GENES 15 (HOS15)/
HISTONE DEACETYLASE9 (HDA9) complex, pro-
motes deacetylation and repression of specific MIRNA
loci, providing feedback regulation of miRNA expression
under ABA treatment [20] (Figure 1c). Furthermore,
HYL1 association with pri-miRNAs, relying on protein
homo-dimerization [21], also protects them from
nuclear exosome-mediated decay [22] (Figure le).
However, in the absence of the homolog of the yeast
Al-alpha2 repressing protein (AAR2), HYLL1 may also
cause the degradation of pri-miRNAs through an un-
known mechanism [23]. Although apparently
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contradictory, these reports show that HYL1’s function
within the miRNA processing complex extends beyond
controlling DCL1 processing accuracy and directly af-
fects the homeostasis and turnover of pri-miRNAs.

HYL1 is also a key player in the processing of non-
chromatin-associated pri-miRNAs, also refer as post-
transcriptional processing. Such processing likely
occurs within nuclear speckles known as D-bodies
where HYL1 was shown to participate in miRNA
processing and to mobilize, associated with the mature
miRNA duplexes, outside these nuclear speckles once
processing is completed [24] (Figure 1d). Several pro-
teins, including DEAD-box helicases RCF1, RH6, RHS,
and RH12, the THO/TREX complex, enhance HYL.1’s
affinity for pri-miRNAs, promoting D-bodies formation
and miRNA processing [25—28]. Interestingly
FORKHEAD-ASSOCIATED DOMAIN 2 (FHAZ2) also
boosts HYL.1’s affinity for pri-miRNAs, but in this case
miRNA processing is impaired as the consequence of a
paralleled reduction in DCL1 affinity for pri-
miRNAs [27].

After pri-miRNA processing, miRNA/miRNA* duplexes
are released from the D-bodies; they remain bound to
HYL1 [24,29]. It remains unclear whether this holds
true for both co- and post-transcriptionally processed
miRNAs. Possibly before exiting the D-bodies, SE re-
leases the miRNA duplex, facilitating the interaction of
the miRNA/miRNA* duplex with HUA ENHANCER1
(HEN1) to catalyze the 2’-O-methylation of the
miRNA duplex’s 3’ ends [29,30] (Figure 1f). The dy-
namics of these steps regarding where they happen are
still unclear. In a final nuclear step, CONSTITUTIVE
ALTERATIONS IN THE SMALL RNAs PATHWAYS9
(CARP9), through interaction with HYLL1, mediate the
transfer of the miRNA duplex to AGOI1, facilitating
nuclear export of miRNA [31,32] (Figure 1g). As AGO1-
loaded miRNAs appear to act only cell-autonomously
[33—35], it is unclear which and how miRNAs are
selected to be transferred to AGO1 and which remain
and move to the cytoplasm unloaded. A large pool of
AGO1-unloaded miRNAs exists in the cytoplasm [36]
and is thought to be responsible for the non-cell-
autonomous functions of miRNAs. Whether these
miRNAs exit the nucleus still associated with HYL1,
which localizes in both the nucleus and cytoplasm, and
whether HYLL1 has any role during miRNA systemic
movement is unknown and worth studying in the future
(Figure 1h). Cytoplasmic HYL1, interacting with
ALTERED MERISTEM PROGRAM1 (AMP1) and
AGOL1 in the endoplasmic reticulum, regulates miRNA-
mediated inhibition of mRNA translation by facilitating
the distribution of AGO1 in polysomes [37] (Figure 11).
One open question here is whether this function is
achieved by assisting miRNA-loaded AGO1 or directly
through HYL.1 association with miRNAs. If this is the
case, the nuclear association of HYLL1 with the mature
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HYL1 functions throughout the cell. HYL1 can associate with Pol Il to regulate MIRNA and non-MIRNA gene transcription (a). Through this interaction,
HYL1 impairs TPL repressor complex activity, thereby promoting the transcription of non-miRNA genes (b). Under ABA treatment, HYL1 interaction with
Pol Il acts as a scaffold recruiting the HDA9/HOS15 complex to the associated loci, triggering histone deacetylation and the repression of gene
expression (c). In turn, the binding of HYL1 to nascent pri-miRNAs promotes the assembly of the processing complex and facilitates the co-transcriptional
processing of miRNAs by interacting with DCL1 and SE, increasing the processing accuracy (d). Additionally, HYL1 binding with pri-miRNAs protects
them from nuclear RNA exosome-mediated degradation (e). Within D-bodies, miRNA/miRNA* duplexes remain associated with HYL1 and SE after
processing, leaving these speckles still bound to HYL1, further allowing their interaction with HEN1 to undergo the 2’-O-methylation of the 3’ end of the
miRNA duplex (f). Mature miRNAs associated with HYL1 interact then with CARP9, facilitating the transfer of the miRNA duplexed to AGO1, which retains
the guide strain and exits the nucleus already loaded with the miRNA where it targets mRNA for their silencing (g). HYL1 shuttles to the cytoplasm.
Whether free, associated with a mature miRNA duplex, or interacting with AGO1 is unclear (h). In any case, cytoplasmic HYL1 can interact with AGO1

Current Opinion in Plant Biology 2024, 80:102546 www.sciencedirect.com


www.sciencedirect.com/science/journal/13695266

miRNA duplex gains relevance in the cytoplasm. Then,
it would also be important to study whether this fraction
of cytoplasmic HYL1-associated miRNAs remains
double-stranded or a strand is discarded, paralleling
RISC maturation.

The reports discussed in this section demonstrate that
HYL1 acts in the miRNA pathway from as early as
MIRNA transcription to as late as cytoplasmic trans-
lation repression of miRNA targets, making this protein
one of the most important players in this pathway and a
potential regulatory hub for miRNA-mediated
gene silencing.

Homeostasis and turnover of HYL1

The homeostasis, activity, and turnover of HYL1 are
greatly controlled by its subcellular distribution, which
appears to depend on its phosphorylation, although other
post-translational modifications still to be identified
likely have similar regulatory effects. While the nuclear
import of HYL.1 from the cytoplasm was attributed to the
importin KARYOPHERIN ENABLING THE TRANS-
PORT OF CYTOPLASMIC HYL1 (KETCH1) [38],
how it is exported to the cytoplasm is unknown, although
it may involve the EXPO1 complex, which participates in
AGOL1 nuclear export [31], in the hypothetical case that
HYL1 exit the nucleus associated with AGO1 (Figure 2).
The functions of HYL1 in the nucleus were largely
studied, including most of the activities described in the
previous section. Conversely, the roles of HYL1 in the
cytoplasm are largely unknown besides the previously
mentioned regulation of miRNA-mediated translation
inhibition in the ER. Nevertheless, cytoplasmic HYL1
undergoes proteolytic degradation, particularly during
darkness [39,40]. During this process, CONSTITUTIVE
PHOTOMORPHOGENIC 1 (COP1), which is located
in the cytoplasm during the day, protects HYL1 from
degradation by interacting with the protease HYL1-
CLEAVAGE SUBTILASE 1 (HCS1), preventing its
interaction with HYL1 [41]. During the night or
extended periods of insufficient light, COP1 moves into
the nucleus, leaving HCS1 free to interact with the
cytoplasmic fraction of HYL1 and trigger its degradation
[40,41]. Additionally, HYLL1 degradation in the cytoplasm
is promoted by AAR2 but this process seems to be in-
dependent of light or dark conditions [23]. Buffering the
day/night miRNA regulation, FHAZ2, which is unstable
during the night, inhibits miRNA biogenesis by inter-
acting with DCLI1, preventing its association with pri-
miRNAs. However, FHA2 also interacts with HYL1,
enhancing its affinity for pri-miRNAs. This opposite
effect over the pri-miRNA affinity of DCL1 and HYL1
controlled by FHAZ is intriguing [27] (Figure 2).

Canonical and non-canonical functions of HYL1 Gonzalo etal. 5

Interestingly, although miRNA biogenesis is impaired at
night due to active degradation of HYL.1, a large pool of
this protein remains sequestered in the nucleus in an
inactive state [39]. Such nuclear isolation prevents
HCS1-mediated degradation of HYL1, forming a reserve
pool of inactive protein that can be quickly reactivated
when light becomes available [39]. Phosphorylation of
HYL1, which prevents its nuclear export but renders the
protein inactive, at least in its miRNA processing
functions, contributes to this protection [14,39].

Until now, phosphorylation is the only characterized
post-translational modification of HYL1. It affects its
activity during miRNA processing, stability, subcellular
localization, capacity to interact with other proteins
and RNA, and formation of D-bodies. Several proteins
and phosphatases, including PROTEIN PHOSPHA-
TASE 4 (PP4), SUPPRESSOR OF MEK 1 (SMEK1),
AARZ2, REGULATOR OF CBF GENE EXPRESSION 3
(RCF3), and C-TERMINAL DOMAIN
PHOSPHATASE-LIKE 1 (CPL1), promote HYLI1
dephosphorylation, activating the proteins [14,23,42,43].
Conversely, FYVE DOMAIN PROTEIN REQUIRED
FOR ENDOSOMAL SORTING 1 (FREE1), which
negatively affects CPL1 activity, MAP PROTEIN
KINASE 3 (MPK3), which phosphorylates HYL.1’s Ser42
in a non-canonical site, and SNF1-RELATED PRO-
TEIN KINASE 2 (SnRK2) trigger HYL.1 phosphorylation
and its inactivation/degradation [[44—47] (Figure 2)].

HYL1, like many miRNA-biogenesis-related proteins,
responds to ABA-signaling, and its mutants are insensi-
tive to this phytohormone [5]. Notably, several proteins
that control HYLL1 homeostasis also respond to ABA
signaling, suggesting that HYL.1 can be a regulatory hub
for ABA-mediated miRNA regulation. Such regulation
may play a critical role during ABA-mediated develop-
mental adaptations and physiological processes
controlled by ABA, such as seed germination, a process
altered in HYL1 mutants [5].

It is not all about miRNAs: non-canonical
functions of HYL1

Except for carly reports describing the discovery of
HYL1, all studies about this protein during the last 20
years explored HYL.1 within the orbit of its functions in
the miRNA pathway. Recently, new evidence has
emerged pointing to unexpected functions of this pro-
tein in processes unrelated to its canonical actions in the
miRNA pathway. For example, HYL.1 activity, but not
DCL1 or SE, was associated with developmental
reprogramming during skotomorphogenesis [48,49]. It
was found that a pool of phosphorylated HYL.1 affects

and AMP1 to promote miRNA-mediated translational inhibition by altering the distribution of AGO1 in polysomes (i). Blue areas of the image denote HYL1
activities strictly related to DCL1-mediated miRNA processing; green areas represent functions related to the miRNA pathway but not necessarily miRNA
biogenesis; while orange areas indicate potential functions outside the miRNA pathway.
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Figure 2
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Keeping the Balance: regulation of HYL1 turnover. In the nucleus, HYL1 undergoes phosphorylation by kinases SnRK2 and MPKS, rendering it
inactive in miRNA processing. A consortium of proteins, including PP4, SMEK1, RCF3, AAR2, and CLP1, collaborates to ensure sustained levels of
active, dephosphorylated HYL1. Among these, CPL1 activity is negatively modulated by FREE1. FHA2, stable in light conditions, binds to HYL1, reducing
its affinity for dsRNA and diminishing pri-miRNAs processing efficiency. The shuttling of HYL1 between the nucleus and cytoplasm is orchestrated by
KETCH1, facilitating HYL1 import into the nucleus and likely EXPO1 complex in HYL1 export, potentially in conjunction with AGO1. In the cytoplasm,
during daylight, COP1 interacts with HCS1, a protease, inhibiting HYL1 degradation. Conversely, in the absence of light, COP1 translocates to the
nucleus, triggering HCS1-mediated HYL1 degradation. AAR2 also contributes to HYL1 degradation but in a light-independent manner. In addition to its
role in inhibiting miRNA processing, HYL1 phosphorylation hinders its cytoplasmic export, leading to the formation of a nuclear pool of inactive protein

protected from dark-induced degradation.

the stability of ELONGATED HYPOCOTYL 5 (HY5),
a key regulator in photomorphogenic growth [48].
Complementation experiments using a truncated
version of HYL1 containing only the first double-
stranded RNA binding domain (dsRBD) showed that
mutant plants expressing this version of HYLL1 do not
present miRNA biogenesis defects but still show aber-
rant  development  during  skotomorphogenesis,
suggesting that the second dsRBD domain is required
for such HYL.1 function [48]. Similarly, in 4y// mutants,
the auxin gradient controlling apical hook elongation is
affected in a miRNA-independent manner [49].

HYL1 controls miRNA abundance at the transcriptional
level by controlling MIRNA encoding genes expression
[18,20]. Notably, this function extends beyond MIRNA
genes by regulating other coding genes. HYL1 interac-
tion with Pol II and certain transcription factors of the
TOPLESS family results in altered expression of many
non-miRNA genes in /y// mutants, an alteration not
paralleled in dc/l or se mutants, showing its indepen-
dence from the miRNA pathway [18] (Figure 1b).

Following the role of HYL1 in skotomorphogenesis, a
gene ontology analysis showed that genes regulated by
HYL1 are commonly related to light signaling and
chloroplasts [18]. Although these regulatory effects are
likely caused by the interaction of HYL1 with tran-
scription factors or nascent RNA molecules, it was re-
ported that the C-terminal intrinsically disordered
region of HYLL1 has DNA-binding capacity, potentially
allowing it to act as a transcription factor directly [50].
However, this last HYL1 capacity needs further confir-
mation using an  vivo experimental setup.

Conclusions and open questions

During the past decade, HYL1 progressively left its
status as a dedicated DCIL.1 cofactor to become a central
component of the entire miRNA regulatory pathway,
prompting numerous research endeavors to explore its
potential as a regulatory hub for miRNA activity. How-
ever, many questions remain unanswered. For instance,
the precise mechanisms underlying HYL1’s involve-
ment in the various processes it influences remain
elusive. Even in its well-studied role as a DCL1 cofactor,
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the exact biochemical mode of action of HYLL1 remains
largely unknown. Furthermore, in the future, it will be
crucial to discover which cellular receptors and signal
transduction pathways control HYL1’s phosphorylation,
especially during stressful conditions. The association of
HYL1 with miRNA duplexes opens the possibility that
this protein contributes to the subcellular and non-cell-
autonomous distribution of miRNAs. However, this is a
completely unexplored hypothetical scenario that re-
quires further investigation. Exploring the biochemical
and molecular consequences of HYL1 interactions with
other proteins, such as COP1, CARP9, AGO1, or AAR2,
may shed light on its functional mechanisms and sta-
bility. The structural features of HYL1, particularly its
intriguing and functionally elusive C-terminal domain,
hold promise for understanding HYL.1 conservation and
its non-canonical functions. By deciphering these puzzle
pieces, we can gain insights into HYL1’s role in plant
growth and stress response and potentially unravel clues
to explain the divergence in miRNA pathways between
plants and metazoans.
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