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ABSTRACT 

Trichomoniasis, caused by the parasite Trichomonas vaginalis, is the most common non-viral 

sexually transmitted infection. Current treatment relies exclusively on 5-nitroimidazole drugs, 

with metronidazole (MTZ) as the primary option. However, the increasing prevalence of MTZ-

resistant strains poses a significant challenge, particularly in the current absence of alternative 

therapies. Several studies have revealed that the development of metronidazole resistance in 

T. vaginalis is linked to genomic and transcriptional alterations. Given the role of epigenetic 

regulation in controlling gene expression, we investigated whether targeting histone 

deacetylase (HDAC) enzymes could influence drug resistance. Treatment of an MTZ-resistant 

strain (B7268) with the HDAC inhibitor, trichostatin A (TSA), in combination with MTZ 

enhanced drug sensitivity and induced significant genome-wide transcriptional changes, as 

revealed by RNA-seq analysis. To identify drug-related genes epigenetically silenced in the 

resistant strain but highly active in a sensitive strain, we compared the expression levels of 

the genes affected by TSA and MTZ treatment with their baseline expression profiles in both 

resistant and sensitive strains. This analysis identified 130 candidate genes differentially 

expressed in the sensitive strain NYH209, less expressed in the resistant B7268 strain, that 

exhibited significant expression changes upon TSA and MTZ treatment. Functional validation 
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involved transfecting the B7268 strain with plasmids encoding four individual candidate genes: 

a thioredoxin reductase (TrxR), a cysteine synthase (CS), and two genes containing Myb 

domains (Myb5 and Myb6). Overexpression of three of these genes resulted in a marked 

reduction in MTZ resistance, demonstrating their role in modulating drug sensitivity. Our 

findings identified three novel genes that modulate drug resistance in T. vaginalis. This study 

reveals a previously unknown epigenetic mechanism underlying drug resistance and 

highlights the therapeutic potential of targeting epigenetic factors, such as HDACs, to 

overcome resistance and improve treatment efficacy. 

 

INTRODUCTION 

Eukaryotic microbial pathogens are major contributors to global morbidity and mortality. While 

drug therapies have proven effective against many infections, the emergence of drug 

resistance underscores the urgent need for alternative treatments. Protozoan infections, in 

particular, face growing drug resistance challenges, partly due to unsupervised treatments 

and the misuse of chemoprophylaxis. Resistance in the anaerobic protozoan Trichomonas 

vaginalis was first reported in 1962 [1] and has continued to rise [2]. This parasite causes 

trichomoniasis, the most prevalent non-viral sexually transmitted disease, with an estimated 

276 million new cases annually [3]. Although infections are generally mild or asymptomatic, 

disease can manifest vaginitis or urethritis as well as infertility, preterm delivery and premature 

rupture of membranes if acquired during pregnancy [4]. Furthermore, T. vaginalis has also 

emerged as an important cofactor in amplifying human immunodeficiency virus (HIV) 

transmission and has been linked to increased risk of malignant cervical and prostate cancers 

[5–8]. 

The 5-nitroimidazole drugs, particularly metronidazole (MTZ) and tinidazole, are the only 

approved treatments for trichomoniasis with metronidazole being the most widely prescribed 

[9]. MTZ functions as a prodrug, requiring reduction of its nitro group to exert its antimicrobial 

effects [2]. It damages DNA, forms protein adducts and induces oxidative stress by depleting 

thiol pools [10]. However, MTZ resistance has emerged, affecting approximately 10% of 

infections in the U.S [9]. Resistance mechanisms fall into two categories: aerobic resistance, 

associated with oxygen stress responses, and anaerobic resistance, linked to hydrogenosome 

metabolism deficiencies [11]. Aerobic resistance involves enhanced activity of oxygen-

scavenging enzymes (e.g., superoxide dismutase, flavoprotein oxidases), which protect the 

parasite from oxidative stress. In this context, oxygen serves as the preferred electron 

acceptor, preventing MTZ reduction and activation in hydrogenosomes [10, 12, 13]. Anaerobic 
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resistance, on the other hand, arises from downregulation of hydrogenosome enzymes such 

as pyruvate:ferredoxin oxidoreductase (PFOR) and ferredoxin (Fd) [12–14], critical for MTZ 

activation. Interestingly, certain proteins, such as flavin reductase 1 (FR1), are implicated in 

both resistance types, as they are often absent or downregulated in both aerobic and 

anaerobic metronidazole-resistant isolates [10, 12]. MTZ resistance studies have primarily 

focused on candidate genes related to oxygen scavenging and hydrogenosome metabolism 

[12, 15–18]. Despite significant progress, disruptions in known genes associated with MTZ 

resistance do not fully explain this phenomenon in all isolates. Large-scale genetic analyses 

have revealed specific single nucleotide polymorphisms associated with resistance [15], while 

changes in gene expression have also been implicated [17, 19–21]. In agreement, 

transcriptomic studies in Entamoeba histolytica further support the association between MTZ 

resistance and transcriptional changes [22]. 

Addressing drug resistance remains a significant therapeutic challenge. Over the past decade, 

epigenetic strategies have shown promise in overcoming drug resistance in cancer, 

particularly with epidrugs—compounds targeting epigenetic modulators [23–25]. These 

agents can reverse resistance phenotypes by reactivating or silencing aberrantly regulated 

genes [26]. A recent survey of drug resistance in cancer cells showed that an inhibition of 

histone deacetylases (HDAC) activity could prevent the development of drug resistance [27]. 

Inhibiting HDAC enzymes promotes accumulation of the acetylated form of histone proteins, 

ultimately leading to less-condensed packaging of genes in chromatin which may lead to the 

re-expression of silenced genes. HDAC inhibitors (HDACIs) have great potential for treating 

cancers, immunological diseases and other conditions [28, 29] as they can block 

angiogenesis, arrest cell growth and lead to differentiation and apoptosis in tumor cells [30]. 

While HDACIs are extensively studied in cancer, their role in drug resistance in infectious 

diseases is less understood. Leveraging insights from cancer, epidrugs may offer novel 

therapeutic options for parasitic diseases. Previous findings demonstrated that histone 

acetylation influences both transcription and pathogenesis in T. vaginalis [31, 32]. Specifically, 

treating a poorly adherent strain of T. vaginalis with the HDACi Trichostatin A (TSA) increased 

H3KAc and chromatin accessibility around transcription start sites, upregulating genes 

involved in adherence [31]. Recognizing the pivotal role of chromatin and histone acetylation 

in orchestrating drug resistance in cancer cells and considering the influence of histone 

acetylation on gene regulation in T. vaginalis, we hypothesized that HDACs contribute to MTZ 

resistance in this parasite. Studies in related protozoa, such as Plasmodium falciparum and 

Trypanosoma spp., have linked HDAC activity to drug resistance and persistence [33–35]. For 

example, HDACs in P. falciparum mediate silencing of drug transport genes, reducing drug 

uptake [36] while in T. brucei, they regulate telomeric silencing of variant surface glycoprotein 
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(VSG) expression sites, facilitating immune evasion and resistance [37]. HDAC inhibitors, 

including TSA and suberanilohydroxamic acid (SAHA), have been shown to induce global 

histone hyperacetylation, reactivating silenced genes and disrupting resistance mechanisms 

in P. falciparum and other protozoa [33, 34, 38].  

Our findings reveal a novel epigenetic mechanism involving histone acetylation in modulating 

MTZ resistance in T. vaginalis. Treatment of a T. vaginalis strain resistant to MTZ (B7268) 

with a HDAC inhibitor (trichostatin A) and MTZ led to increased drug sensitivity and significant 

genome-wide transcriptional alterations analyzed by RNA-seq. To identify drug-related genes 

epigenetically silenced in the resistant strain but highly active in a sensitive strain, we 

compared the expression levels of the genes affected by TSA and MTZ treatment with their 

baseline expression profiles in both resistant and sensitive strains. This analysis identified 130 

candidate genes differentially expressed in the sensitive strain NYH209, less expressed in the 

resistant B7268 strain, that exhibited significant expression changes upon TSA and MTZ 

treatment and might be involved in regulation of drug resistance. Functional validation of some 

of these genes involved transfecting the B7268 strain with plasmids encoding four individual 

candidate genes: a thioredoxin reductase (TrxR), a cysteine synthase (CS), and two 

containing Myb domains (Myb5 and Myb6). Overexpression of three of these genes resulted 

in a marked reduction in MTZ resistance. Our findings identified three novel genes that 

modulate drug resistance in T. vaginalis. Understanding these mechanisms reveals a 

previously unknown epigenetic mechanism underlying drug resistance but also opens new 

avenues for designing effective antiparasitic therapies. 

 

MATERIALS AND METHODS 

Parasites, cell cultures, and media 

Trichomonas vaginalis strains BRIS/92/STDL/B7268 [39, 40], SD7 [41], CDC1132 (MSA1132; 

Mt. Dora, Fla, USA 2008) [42] and NYH209 (ATCC 50146) [44] were cultured in Tryptose 

Yeast Maltose (TYM) medium [43] supplemented with 10% fetal equine serum and 10 U/ml 

Penicillin/Streptomycin. B7268 strain was obtained from a Brisbane patient with refractory 

infection that displays both high aerobic and anaerobic resistance to metronidazole [40]. All 

parasite strains were grown at 37°C and passed daily.  

Metronidazole susceptibility assay and trichostatin-A treatment 

The MTZ susceptibility of T. vaginalis was determined by microscopy using a standard 

minimum lethal concentration (MLC) protocol under aerobic conditions. 2×105 parasites/ml 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.07.631743doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.07.631743
http://creativecommons.org/licenses/by/4.0/


from the log-phase of growth were exposed to serial dilutions of metronidazole (from 0 to 400 

µg/ml) (Sigma-Aldrich). MTZ was dissolved in DMSO for preparation of stock solutions. The 

control tube (0 µg/mL MTZ) received an equivalent volume of DMSO to match the maximum 

DMSO volume used in the treatment. The final volume for each MTZ concentration was 

calculated to ensure the DMSO concentration did not exceed 0.1% (v/v). The tubes were 

incubated aerobically for 48 h and examined with an inverted microscope at 40x magnification 

for motile trichomonads. The lowest drug concentration at which no motile parasites were 

observed was recorded as the MLC. The failure of non-motile trichomonads to proliferate 

following reinoculation into drug-free medium served as confirmation of the end points. Assay 

were performed four times. The cell density of B7268, CDC1132 and SD7 parasites previously 

treated with 100 nM Trichostatin A (TSA) for 16 hours was monitored for 48 hours after 

treatment with different concentrations of MTZ compared to the cell density of untreated 

control.  

RNA-seq of T. vaginalis  

Trichomonas vaginalis strain B7268 treated with TSA (100 nM), with metronidazole (MTZ; 5 

µg/ml), or with a combination of TSA and MTZ, as well as untreated parasites as control were 

sequenced in triplicates. Total RNA was extracted from ~5 × 106 T. vaginalis according to the 

protocol outlined in the Total RNA Purification Kit (Norgen Biotek Corp.) following the 

manufacturer's instructions. RNA quality and quantity were assessed using an Agilent 

Bioanalyzer with RNA integrity numbers (RINs) of >7 for all samples. The mRNA libraries were 

paired-end (100 bp) sequenced with Illumina using TruSeq Stranded mRNA (Macrogen, Inc). 

Transcriptome analyses 

After sequencing, 20–26 million reads were generated per RNA-seq library. For quality control 

of the paired-end sequencing data, the software FastQC [44] was used. The adapter sequence 

content was identified and trimmed using Trimmomatic [45]. Then, HISAT2 [46] was used to 

align the RNA-seq data sets to the G3 reference genome sequence, and the results showed 

an overall alignment rate of >90% for all libraries. In order to quantify the counts read for each 

gene, featureCounts [47] was used with default parameters. Principal components analysis 

was carried out to evaluate the variation through biological replicates. Using DESeq2 package, 

it was possible to identify up- and down-log2 fold changes in gene expression [48]. Differential 

gene expression and dispersion were examined using MAplot and plotDispEsts functions, 

respectively. Only changes where |log2FC| > 1 and padj < 0.05 were considered significant. 

Using the results command from DESeq2, the expression patterns of the three treatments 

(B7268-MTZ, B7268_TSA, and B7268_TSA+MTZ) were compared pairwise against the 
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control group. In the same way, the comparison between NYH209 vs B7268 was obtained, in 

order to identify the genes differentially expressed in a susceptible strain to MTZ. NYH209 

sequencing dataset were obtained from Sequence Read Archive (SRA) in online repositories 

(BioProject accession code PRJNA1188544). For the final list of candidates genes a Gene 

Ontology (GO) enrichment analysis was carried out using the TrichDB database of open 

access [49]. P-value ≤ 0.05 was considered significantly enriched. 

Parasite viability assays 

Parasite viability was analyzed using the fluorescent exclusion dye propidium iodide. For this 

purpose, wild-type B7268 (control) as well as B7268 parasites treated with 100 nM of TSA for 

16 h treated were labeled with propidium iodide (PI, 20 μg/ml) at 4°C for 10 min. PI 

fluorescence associated with non-viable cells was measured by flow cytometry (at λ = 544/602 

nm) on FACSCalibur (Becton–Dickinson) and analyzed using Flowing software version 2.4.1 

(Perttu Terho, Turku Centre for Biotechnology, Finland; www.flowingsoftware.com). Four 

independent experiments were performed. 

Plasmid construction and exogenous expression in T. vaginalis 

Master-Neo-(HA)2 plasmids [50] containing one candidate gene each (TrxR, CS, Myb5, Myb6) 

were purchased from GeneScript (USA). Electroporation of T. vaginalis strain B7268 was 

carried out as described previously [50] with 50 µg of circular plasmid DNA. Parasites were 

transfected in parallel with an empty plasmid (EpNEO) to be used as control. Transfectants 

were selected with 100 µg/ml G418 (Sigma). 

Immunolocalization experiment 

Parasites were incubated at 37°C on glass coverslips for 4 h. The parasites were then fixed 

and permeabilized in cold methanol for 10 min. The cells were washed and blocked with 5% 

fetal bovine serum (FBS) in phosphate buffered saline (PBS) for 30 min, incubated with a 

1:500 dilution of anti-HA primary antibody (Covance, Emeryville, CA, USA) diluted in PBS plus 

2%FBS, washed and then incubated with a 1:5000 dilution of Alexa Fluor-conjugated 

secondary antibody (Molecular Probes). The coverslips were mounted onto microscope slips 

using ProLong Gold antifade reagent with 4′, 6′-diamidino-2-phenylindole (Invitrogen). 

Fluorescence parasites were visualized using a Zeiss Axio Observer 7 (Zeiss) microscope. 

 

RESULTS 

Treatment with the histone deacetylase inhibitor TSA overcome metronidazole drug 

resistance in T. vaginalis 
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We hypothesize that administering epigenetic drugs capable of influencing chromatin 

compaction could restore sensitivity to metronidazole (MTZ) in drug-resistant parasites. This 

approach may involve reactivating silenced genes implicated in the development of MTZ 

resistance. To test this hypothesis, we treated a highly resistant T. vaginalis strain (B7268) 

[40] with the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) and evaluated the 

resistance levels to MTZ using a standard minimum lethal concentration (MLC) protocol under 

aerobic conditions. Resistant parasites were pretreated with 100 nM TSA for 16 hours, 

followed by MTZ treatment for 48 hours. This concentration of TSA has previously been shown 

to increase H3KAc, relax the chromatin and modulate gene expression in T. vaginalis [31]. As 

shown in Figure 1A, TSA pretreatment effectively restored metronidazole sensitivity in 

resistant B7268 parasites without compromising survival in MTZ-untreated cells. This 

sequential treatment with an epigenetic drug sensitized refractory B7268 parasites, 

overcoming MTZ resistance in T. vaginalis. To further validate these findings, we tested the 

efficacy of TSA and MTZ sequential treatment in drug-sensitive T. vaginalis strains SD7 and 

CDC1132 (Fig. 1B). Although the effect was more pronounced in drug-resistant parasites, 

TSA treatment also influenced drug sensitivity in the SD7 and CDC1132 strains. These results 

underscore the potential of epigenetic modulation as a promising strategy to reverse MTZ 

resistance in T. vaginalis. By targeting drug resistance mechanisms through chromatin 

remodeling, epigenetic drugs may offer a novel therapeutic approach to combatting resistant 

T. vaginalis infections. 

 

Histone acetylation and transcriptomic insights into MTZ resistance modulation  

Histone acetylation is a well-documented mechanism that relaxes chromatin structure, 

enabling transcription factors to enhance gene expression [51]. To examine the molecular 

basis for the effect of TSA in modulation of MTZ resistance, we conducted whole-

transcriptome RNA-seq analysis of the T. vaginalis B7268 resistant strain under different 

treatment conditions: untreated control, TSA (100 nM), MTZ (5 µg/ml), and sequential TSA 

and MTZ treatment (Fig. 2A). TSA treatment decreased the parasite growth rate without 

affecting viability (Fig. 2B). Libraries were sequenced in triplicates, and PCA revealed clear 

separations between treatments, with PC1 and PC2 accounting for 59% and 20% variance, 

respectively, excluding experimental variations among replicates (Fig. 2C). The transcriptome 

analysis showed that TSA-treated parasites displayed a closer similarity to sequential TSA 

and MTZ-treated parasites than to MTZ-treated or untreated controls (Fig. 2C and 3D). To 

identify those genes whose expression is most strongly associated with changes in MTZ 

resistance due to TSA treatment, we compared each of the treatments (TSA, MTZ or 
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sequential treatment with TSA and MTZ) with the corresponding gene expression in untreated 

B7268 parasites (control) (Supplementary Table 1). The results showed marked changes in 

gene expression (≥ or ≤ 2X) in control cells compared to parasites following treatment with 

MTZ (Fig 3A), with TSA (Fig 3B) or sequential treatment with TSA and MTZ (MTZ_TSA) (Fig 

3C). Specifically, treating B7268 resistant parasites with MTZ showed marked changes in 

gene expression: 2867 up-regulated and 1725 down-regulated genes upon treatment (Fig 3A). 

As expected, the number of genes overexpressed upon TSA treatment (3192 genes) is higher 

than the number of repressed genes (1349) (Fig 3B), indicating that HDAC inhibition acts 

primarily by promoting the transcription of a set of genes. When parasites are sequentially 

treated with TSA and MTZ, 3293 upregulated and 2088 downregulated genes were detected 

when compared to untreated control cells (Fig 3C). The heatmap of differentially expressed 

genes revealed a distinct gene expression pattern between treated and untreated groups (Fig 

3D). When comparing the upregulated genes in each of the treatments (TSA, MTZ or 

sequential treatment with TSA and MTZ), all three treatments shared 1479 upregulated genes 

(Fig 3E).  

Histone acetylation, a well-established mechanism for relaxing chromatin structure and 

augmenting gene expression [30]. Considering this, we focused on identifying genes whose 

expression was modulated by TSA-induced chromatin changes and potentially associated 

with MTZ resistance. We selected two groups of upregulated genes: (1) genes upregulated in 

both TSA and TSA+MTZ treatments (1172 genes) and (2) genes exclusively upregulated in 

TSA+MTZ treatment (292 genes), resulting in 1464 candidate genes (from now named 

candidate genes) (Fig. 3E). The 1464 candidate genes were manually grouped by their 

common function to have an overview of which processes are influenced by the presence of 

TSA and MTZ (Table 1 - Supplementary table 2). Gene Ontology analysis indicate that most 

significantly enriched terms identified in the displayed genes included those related to cell 

adhesion, DNA-binding transcription factor activity, and peptidase activity, as well as genes 

involved in transmembrane transport processes, such as drug transmembrane transporters 

(Fig. 3F). Previously identified genes involved in MTZ activation, such as thioredoxin 

reductase (TVAGG3_0315040) and nitroreductase genes (TVAGG3_0444150, and 

TVAGG3_0873820), were significantly upregulated in TSA+MTZ-treated parasites, supporting 

their role in MTZ sensitivity (Supplementary Data 2). Furthermore, proteins from the diflavin 

flavoprotein A 2-related family, flavodoxin-like fold, and flavoprotein family 

(TVAGG3_0421620, TVAGG3_0583440, TVAGG3_0080430) were also upregulated in 

MTZ_TSA group. Notably, redox-related proteins like flavodoxins and hydrogenosomal 

enzymes (e.g., PFOR and Fd) showed varied expression, suggesting a complex interplay in 

resistance mechanisms. One Fd and three PFOR genes (TVAGG3_0476390, 
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TVAGG3_0282970, TVAGG3_0890230, TVAGG3_0998520) were downregulated in both 

MTZ_TSA and TSA groups, meaning that the transcription of these genes seems to be not 

regulated by histone acetylation.  

Differences in gene expression among MTZ-resistant relative to MTZ-sensitive T. 

vaginalis strains 

To identify transcriptional changes naturally associated with MTZ-resistance, we performed 

RNA-seq analysis in two different T. vaginalis strains: a MTZ resistant (B7268) and a MTZ 

sensitive (NYH209) strains (Fig. 4). PCA was conducted to examine the relationship between 

the samples, showing a clear distinction between treatments (PC1, 95% and PC2, 4% 

variance) and accounting for minimal experimental variation among replicates (Supplementary 

Fig. 1). Our results detected 3750 differentially expressed genes (DEGs) (adjusted p-values ≤ 

0.05) (Fig 4), including 1857 genes more expressed in NYH209 sensitive strain and 1893 

genes more expressed in the B7268 resistant strain (Fig 4A; Supplementary Table S3). As we 

proposed that genes involved in drug resistance might be epigenetically silenced in a resistant 

strain, we analyzed the genes differentially expressed in the sensitive strain NYH209 

compared to the resistant strain B7268. GO analysis of differentially expressed genes 

demonstrated that genes more expressed in NYH209 are associated with the activation of 

many different pathways, including cellular and metabolic process, nuclear division, DNA 

recombination, among others (Fig 4B). In contrast, genes more highly expressed in B7268 

were linked to pathways such as sulfur metabolic process, ribosome biogenesis, and tRNA 

metabolic process (Fig 4B). 

By intersecting the 1464 candidate genes that were influenced by TSA and MTZ treatment 

and the 1857 genes differentially expressed in NYH209 sensitive strain, we identified 130 

genes potentially epigenetically silenced in B7268 but activated by TSA treatment (Fig 5A and 

Supplementary Data 4). These genes, involved in processes like sulfur metabolism, amino 

acid biosynthesis, and transmembrane transport (Fig 5B), likely contribute to MTZ resistance 

modulation.  

 

Overexpression of candidate genes in a highly resistant isolate B7268 significantly 

decrease MTZ resistance 

To validate the involvement of the 130 epigenetically silenced genes in drug resistance 

modulation in B7268, we selected four candidate genes for functional analysis: cysteine 

synthase (CS, TVAGG3_1045730), thioredoxin-disulfide reductase (TrxR, 
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TVAGG3_0315040), and two Myb-like domain-containing proteins, Myb5 

(TVAGG3_0792760) and Myb6 (TVAGG3_0427690) (Figs. 6 and 7). Transcriptional profiling 

revealed that these genes exhibited low expression levels in untreated B7268 parasites as 

well as those treated with MTZ (Fig. 6). However, treatment with TSA or TSA+MTZ 

significantly upregulated their expression (Fig. 6). In contrast, the naturally sensitive strain 

NYH209 consistently showed high expression of these genes (Fig. 6), supporting the 

hypothesis that epigenetic silencing in the resistant strain contributes to reduced MTZ 

sensitivity. 

To test whether exogenous expression of these four candidate genes in the highly resistant 

B7268 strain would confer an MTZ-sensitive phenotype, the genes were cloned into episomal 

expression vectors under the control of a strong promoter and transfected independently as 

C-terminal HA-tagged fusion proteins. Immunofluorescence assays confirmed that all four 

proteins are localized to the cytosol in transgenic cells (Fig. 7A). Functional analysis revealed 

that overexpression of CS and TrxR in B7268 significantly reduced MTZ resistance, 

decreasing the minimum lethal concentration (MLC) from 350 µg/ml to 116.7 µg/ml (p < 

0.0001). Overexpression of Myb5 also reduced resistance, with an MLC reduction to 216.7 

µg/ml (p = 0.0083). Conversely, overexpression of Myb6 had no significant effect, as the 

resistance level remained similar to that of the control strain transfected with the empty vector 

(EpNEO) (Fig. 7B). 

 

These findings confirm the functional roles of TrxR, CS, and Myb5 in modulating MTZ 

resistance and suggest that their epigenetic silencing in the resistant strain B7268 is a key 

mechanism underlying the development of drug resistance. 

DISCUSSION  

Metronidazole (MTZ) resistance in T. vaginalis is a complex and multifactorial process, with 

several mechanisms contributing to its development. Clinical resistance has been indirectly 

linked to reduced activity of oxygen scavenging enzymes, such as flavin reductase and 

thioredoxin reductase (TrxR), which can elevate intracellular oxygen levels and impair MTZ 

activation [10, 12]. While this mechanism is well-documented in vitro in strains with aerobic 

resistance [11], clinical resistance more frequently involves mutations or enzymatic 

dysfunctions in hydrogenosomal activation pathways, such as ferredoxin and nitroreductases 

[15, 16]. Additionally, MTZ resistance has been associated with single nucleotide 

polymorphisms (SNPs) across 72 genes [15], including some functionally characterized drug 

resistance genes like pyruvate:ferredoxin oxidoreductase [15] or nitroreductase genes [16]. 
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Now, our study demonstrates for the first time that epigenetic regulation also contribute to 

modulate MTZ resistance in T. vaginalis. Using trichostatin A (TSA), an inhibitor of histone 

deacetylase (HDAC), we observed significant genome-wide transcriptional changes and 

increased MTZ sensitivity in a highly resistant strain. These findings align with previous studies 

highlighting the role of epigenetic regulators, such as DNA methylation and histone 

acetylation, in modulating gene expression in T. vaginalis [31, 52, 53]. Similar effects have 

been observed with Resveratrol, a natural polyphenolic compound known to elicit diverse 

epigenetic modifications such as alterations in DNA methyltransferases, HDACs, and lysine-

specific demethylase [54]. This compound has previously demonstrated its ability to induce 

antiparasitic activity through the modulation of gene expression and hydrogenosomal 

dysfunction in T. vaginalis [55]. Similarly, there is evidence that chromatin structure plays a 

vital role in the acquisition and maintenance of anti-fungal resistance in Candida spp. Various 

chromatin modifiers have directly implicated in the ability of Candida spp. to survive in the 

presence of anti-fungal drugs [56]. For instance, the deletion of the Rpd3/Hda1 family of 

histone deacetylases in C. albicans sensitizes the yeast to fluconazole, itraconazole, and 

voriconazole [57]. Consistently, the removal of the Histone Acetyltransferase Hat1 achieves 

the reverse, increasing C. albican’s azole resistance [58]. These parallels suggest that 

chromatin modifiers are critical in drug resistance mechanisms across various pathogens and 

highlight the promising role of HDACs as novel drug targets for combating parasitic infections. 

Considering that TSA treatment reduces drug resistance and that increased histone 

acetylation generally enhances gene expression, we propose that certain genes may be 

epigenetically silenced in the resistant strain. Specifically, treatment of a highly resistant T. 

vaginalis strain (B7268) with TSA or TSA+MTZ led to the upregulation of 1,464 genes, 

including those involved in transcriptional regulation, oxidoreductase activity, and redox 

homeostasis. Among these, 130 candidate genes were also differentially expressed in the 

sensitive strain NYH209. We hypothesize that some of these genes, epigenetically silenced 

in the resistant B7268 strain, play a role in modulating MTZ resistance. Supporting this 

hypothesis, overexpression of three candidate genes—cysteine synthase (CS), thioredoxin 

reductase (TrxR), and Myb5—in the resistant strain partially restored MTZ susceptibility, 

demonstrating their involvement in resistance modulation. Redox balance plays a pivotal role 

in MTZ activation. A clear connection between metronidazole resistance and redox enzymes 

has been previously reported for E. histolytica and T. vaginalis [59]. Indeed, total insensitivity 

to metronidazole can be rapidly induced in T. vaginalis by treatment with diphenylene 

iodonium (DPI), which inhibits all flavoenzymes in the parasite, including TrxR, thereby 

blocking the activation of MTZ [60]. An evident candidate enzyme in this regard is TrxR, 

functioning as a central redox regulator governing numerous processes, with a pivotal role in 
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the reduction of peroxiredoxin via thioredoxin [59]. Also, TrxR was proposed as a target of 

metronidazole in T. vaginalis as 5-nitroimidazoles can form covalent adducts with cysteines in 

TrxR and inhibit the enzyme’s activity [10]. Similarly, nitroreductases (ntr4) have presented 

mutations associated with the development of resistance in T. vaginalis parasites [16, 61]. In 

addition, the redox equilibrium in the cell is not only shaped by redox enzymes but also by low 

molecular mass thiols and cysteine, synthesized by cysteine synthase, that constitute the main 

cellular redox buffers in T. vaginalis [59, 62]. Resistant strains often exhibit metabolic trade-

offs, one potential adaptive mechanism involves the downregulation of cysteine synthase, 

which may reduce the levels of intracellular cysteine, the precursor for thiol-based molecules 

critical for detoxifying reactive oxygen species (ROS). As the decrease in cysteine and thiol 

availability could avoid the formation of covalent adducts with activated MTZ, it also comes at 

the cost of impaired thiol-based ROS neutralization, forcing resistant strains to rely on 

alternative antioxidant systems such as SOD or peroxiredoxins [13, 63–65]. Thus, the 

downregulation of cysteine synthase represents a striking example of how resistant T. 

vaginalis strains may exploit a delicate balance between reducing thiols to evade drug toxicity 

and maintaining sufficient oxidative stress defense. These findings lay the groundwork for 

further research into the role of specific T. vaginalis genes in the development of drug 

resistance, including novel candidates such as Myb5, a Myb-like DNA-binding domain-

containing protein, whose contribution to resistance development has not been suggested 

previously in T. vaginalis. In this sense, the role of Myb proteins has been proposed in cancer 

drug resistance [66]. Future studies should focus on elucidating the mechanisms by which 

these genes influence drug resistance and explore whether the simultaneous reconstitution of 

multiple silenced genes could further enhance MTZ susceptibility. 

Our findings suggest that epigenetically silenced genes significantly contribute to MTZ 

resistance in T. vaginalis. A deeper understanding of these newly identified mechanisms will 

provide better insights into the development of novel drug targets and potentially lead to more 

efficient treatment options. Targeting HDAC enzymes as parasitic drug therapies is a 

promising strategy. Evidence from Plasmodium falciparum and Trypanosoma brucei shows 

that resistance mechanisms maintained through a coordinated interplay of acetylation, 

methylation, and chromatin remodeling processes rather than relying on a single epigenetic 

mechanism [33, 34, 36, 38]. These studies also lay the foundation for further examinations of 

newly identified genes and pathways that can be investigated to formulate new treatments, 

particularly for patients who have developed MTZ resistance. 
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FIGURE LEGENDS 

 

Figure 1: A. B7268 sensibilization to MTZ upon TSA co-treatment. B. The sensibilization to 

MTZ upon TSA co-treatment was also observed in CDC1132 and SD7 T. vaginalis strains.  

For each strain four independent experiments were conducted. Data are expressed as 

concentration of MTZ [μg/ml] for which the parasites were no longer viable ± standard 

deviation of the mean. Student T-tests (α=0.95) were used to determined significant 

differences between treatments. (Signif. codes: ns = P-value > 0.05,   * = P-value ≤ 0.05, ** = 

P-value ≤ 0.01, *** = P-value ≤ 0.001, **** = P-value ≤ 0.0001) 

 

Figure 2: A. RNA-seq experimental Design. The RNA-seq experiment was designed with four 

treatment groups: (1) untreated B7268 parasites control, (2) B7268 was treated with 100 nM 

Trichostatin A (TSA), (3) B7268 was treated with 5 μg/ml metronidazole (MTZ) and (4) B7268 

was treated with 100 nM TSA for 16 h followed by a treatment w 5 μg/ml metronidazole 

(TSA+MTZ). All samples, including controls, were prepared for sequencing at the same time, 

40 hours after the start of the experiment. B. Viability of B7268 parasites upon treatments with 

TSA [100 nM], MTZ [5 μg/ml] and TSA [100 nM] MTZ [5 μg/ml] were analyzed by flow 

cytometry using propidium iodide. Data are expressed as mean values ± standard deviation 
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of four independent experiments. ANOVA followed by Tukey’s post hoc test (α=0.999) was 

used to determine significant differences. 

 C. Principal components analysis of the four treatment groups and its replicates based on 

normalized gene read counts. The x-axis represents principal component one (PC1) and 

explains 59% of the variation, while the y-axis represents principle component two (PC2), and 

explains 20% of the variation.  

Figure 3: Volcano plot distributions of differentially expressed genes (DEGs) obtained from 

RNAseq analysis of B7268 treated with MTZ vs Control (A), B7268 treated with TSA vs Control 

(B) and B7268 treated with MTZ and TSA vs Control (C). The selective condition to determine 

DEGs was defined as |log2FC| > 1 and p-value adjusted < 0.05. (D) Heatmap displaying 

normalized expression of DEGs obtained throughout the different treatments. Each horizontal 

line representing an individual gene. Color gradient represents the expression level. (E) Venn 

diagram showing the number of up-regulated genes shared by the three comparisons. The 

genes of interest are highlighted in bold. (F) Gene ontology enrichment analysis of molecular 

function for genes of interest. 

 

Figure 4: A. Volcano plot distribution of diffrenetially expressed genes (DEGs) obtained from 

RNAseq analysis of B7268 and NYH209 T. vaginalis strains. DEGs was defined as |log2FC| 

> 1 and p-value adjusted < 0.05. B. Gene ontology enrichment analysis of molecular function 

for DEGs genes for each strain (left: B7268 and right: NYH209). 

 

Figure 5: A. Overlap between the more expressed genes in the MTZ-susceptible strain 

(NYH209) and the 1464 candidates genes plotted as Venn diagram. B Gene ontology 

enrichment analysis of biological processes for the 130 genes shared by NYH209 and the 

candidates genes. 

 

Figure 6: The figure displays the genome browser screenshots of normalized read coverage 

for six genes: cysteine biosynthetic process (TVAGG3_1045730), protein ubiquitination 

(TVAGG3_0534480), transcription inititiator DNA-binding domain Idb family 

(TVAGG3_0649430), thioredoxin-disulfide reductase (TVAGG3_0315040) and two RNA 

polymerase II transcription regulator recruiting proteins (TVAGG3_0792760 and 

TVAGG3_0427690). RNA-seq analysis of each gene expression profiles for B7268 strain 

under different treatments (top) as well as comparison with the correspondent gene 

expression in a sensitive strain (bottom). Each panel represents a gene locus, with shaded 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.07.631743doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.07.631743
http://creativecommons.org/licenses/by/4.0/


regions indicating annotated coding sequences. Y-axis values correspond to normalized read 

counts 

Figure 7. A. Subcellular localization of four selected putative genes involved in modulation of 

drug resistance: cysteine biosynthetic process (CS, TVAGG3_1045730), thioredoxin-disulfide 

reductase (TrxR, TVAGG3_0315040) and two RNA polymerase II transcription regulator 

recruiting proteins (Myb5, TVAGG3_0792760 and Myb6, TVAGG3_0427690). Cells 

expressing C-terminal HA-tagged versions of the indicated gene were stained for 

immunofluorescence microscopy using a mouse HA-tagged antibody. The nucleus (blue) was 

also stained with 4-,6-diamidino-2-phenylindole. B. The level of MTZ resistance of parasites 

from the B7268 strain transfected with CS, TrxR, Myb5 and Myb6 was assessed and 

compared with parasites transfected with empty plasmid (EpNEO). Four independent 

experiments were performed. Data are expressed as -fold increase compared with empty 

plasmid control ± the standard deviation of the mean. 
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