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Abstract. We study a population involved in a cyclic game of three strategies – the rock-paper-scissors
game – whose agents interact through groups of three individuals (triplets), considering the possibility that
two weak agents cooperate and beat a strong one. In a wide range of parameters the system presents a
stable heteroclinic cycle, which implies that in a finite population some of the strategies become extinct and
others survive. We find that the cooperation within triplets only benefits the survival of the strategy if the
cooperation probability is above a certain threshold. We study the survival probabilities of the different
strategies as a function of the cooperation parameters through a analytic approximation and compare
with simulations, obtaining a good agreement. Results are generalizable to other systems with heteroclinic
cycles.

1 Introduction

The use of a graph or network for the representation of a
pattern of interactions is a widespread paradigm in sev-
eral branches of science. This representation, which as-
sumes pairwise interactions, is useful to describe a vari-
ety of systems whose dynamical properties are affected
by the structural characteristics of their interaction pat-
terns [1–3]. However, there are systems where the basic
interactions occur in groups of other sizes (triplets, quar-
tets, etc.) and not just in pairs [4,5]. An example of this
situation is the process of opinion formation or decision
making in groups of people, where the evolution of in-
dividual opinions is driven by the collective exchange of
views rather than by discussions in pairs, and is affected
not only by the size of the group but also by its internal
dynamics [6]. While an interaction network is specified by
the list of all the pairs of interacting agents, a possible rep-
resentation of those more complex structures is through
a list of all the groups of different sizes present in the
population.

These complex interactions that occur in larger groups
also appear naturally, for example, as agreements or dis-
putes between companies in an economical context, where
they can be modeled using tools from game theory. In this
sense it is important to understand the effects of these
non-binary interactions in the collective behavior of social
and economical systems where these coalitions, that al-
lowed new strategies to the agents involved, are likely to
happen.

In this work we study a population where agents
adopting one of three possible strategies interact in
groups of three agents (triplets), that are distributed
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homogeneously over the population. The three strategies
exhibit cyclic dominance, which makes this kind of dynam-
ics known as rock-paper-scissors games [7,8]. Such cyclic
interactions have been observed in physical [9] and in bi-
ological systems, the mating strategies of side-blotched
lizards being one of the most well-known example [10].
Other instances are the overgrowth of certain marine
sessile organisms [11], the competition between mutant
strains of yeast [12], and possible cyclic interactions be-
tween outlaw genes [13].

A special aspect of the rock-paper-scissors game
dynamics is the occurrence of stable heteroclinic cy-
cles [14,15], which induce oscillatory orbits of increasing
size, and the permanence of the system near pure states
(with all agents in the same strategy) for increasingly long
periods. In finite systems this behavior eventually leads to
the extinction of a strategy and the temporal survival of
the others; as one of the two remaining strategies domi-
nates the other, finally just one survives. In the present pa-
per, we focus the attention on how the cooperation within
triplets affect the survival probability of a specific strat-
egy. In the next section, we introduce our evolutionary
model for interactions in pairs and triplets. Numerical sim-
ulations for the time evolution, the survival probabilities
and the initial conditions dependence are presented in Sec-
tion 3. The mean field approach is studied in Section 4,
whereas an analytic approximation of the survival proba-
bilities is provided in Section 5. Results are discussed in
the last section.

2 The model

In the rock-paper-scissors game each agent i selects one of
three strategies (si = 0, 1, 2), which dominate each other
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Fig. 1. Diagram of the cyclic dominance between the three
strategies. Strategy 0 beats 1, 1 beats 2, and 2 beats 0.

cyclically (Fig. 1). In the traditional model with binary
interactions, two agents are selected at random from the
whole population. As a result, the pairs {0, 1} and {1, 0}
become {0, 0}, {1, 2} and {2, 1} become {1, 1}, and {2, 0}
and {0, 2} become {2, 2}.

In our version, on the other hand, agents interact in
triplets, allowing us to explore richer dynamics in addition
to the cyclic dominance of the strategies. In particular, we
implement a process of cooperation within each triplet,
where two agents with the same strategy can overcome
the third one even if the latter adopts a stronger strategy.
The third agent thus changes strategy to that of the two
cooperators. For each strategy, we introduce a probability
that agents form alliances, so that agents with a specific
strategy may be more prone to cooperate than others. In
this new context, we study if local cooperation results into
a global benefit for the spread of a strategy, and how the
asymmetry in the cooperation affects the asymptotic state
of the population.

Considering a population of size N , we choose three
agents at random at each evolution step. If all three agents
have the same strategy or all have different strategies,
their strategies are not changed. If two of the agents have
a strategy that dominates over that of the third agent,
the latter adopts the strategy of the other two agents. For
example, the triplet {1, 1, 2} becomes {1, 1, 1}. Finally, if
two of the agents possessing a weak strategy face a strong
agent, the weak agents can cooperate with a certain prob-
ability and beat the strong agent. For example, the triplet
{1, 2, 2} becomes {2, 2, 2} with a given probability r2. The
whole set of possible transitions is

{0, 0, 1} → {0, 0, 0} with pt = 1

{0, 1, 1} → {0, 0, 1} with pt = 1 − r1

{1, 1, 1} with pt = r1

{1, 1, 2} → {1, 1, 1} with pt = 1

{1, 2, 2} → {1, 1, 2} with pt = 1 − r2

{2, 2, 2} with pt = r2

{2, 2, 0} → {2, 2, 2} with pt = 1

{2, 0, 0} → {2, 2, 0} with pt = 1 − r0

{0, 0, 0} with pt = r0 (1)
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Fig. 2. Fractions of the population adopting each of the three
strategies as function of time (strategy 0 in dotted line, 1 in
continuous line and 2 in dashed line), displaying the two typical
behaviors of the system. In the upper panel the parameters are
r0 = 0.12, r1 = 0.09, and r2 = 0.15 while in the lower panel
r0 = 0.60, r1 = 0.45, and r2 = 0.75. In both cases we consider a
total population of N = 900 and the initial condition n0 = 0.1,
n1 = 0.7, and n2 = 0.2.

where pt stands for the transition probability. The sys-
tem possesses cyclic symmetry only when the cooperation
probabilities are all equal.

3 Simulations

Numerical simulations of the model with triplets are per-
formed according to the game rules presented in the pre-
vious section. Figure 2 shows the fractions ni of the to-
tal population (in this case, N = 900) with each of the
strategies as a function of time, for two representative
choices of the cooperation probabilities and the same ini-
tial conditions. The variables ni are restricted to the sim-
plex n0 + n1 + n2 = 1, ni ≥ 0. In the simulations, the
time unit corresponds to one interaction per agent on the
average.

The cases shown in Figure 2 represent the two typical
behaviors observed in our system. In the upper panel, the
fractions ni perform oscillations of increasing amplitude,
and eventually reach one of the three possible pure states,
with all the agents having the same strategy. In the lower
panel, on the other hand, the evolution falls rapidly into
one of the pure states. As we shall see in the following
section, in the continuous version of the system these be-
haviors correspond, respectively, to the presence of a sta-
ble heteroclinic cycle and to the existence of one or more
stable pure states. In the numerical simulations, the sys-
tem ends up in an absorbing state in both cases. The final
pure state is generally observed for all sets of cooperation
probabilities. The only exception occurs when ri = 0 for
all i, in which case the system performs oscillations whose
amplitude depends on the initial condition.

As it becomes clear from our analysis of the contin-
uous version of the model (see next section) the falling
of the system to different absorbing states at finite times
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Fig. 3. Survival probabilities computed from simulations as a
function of the cooperation parameter r, with r0 = 4

5
r, r1 =

3
5
r, r2 = r, and a total population of N = 9 × 103. For each

value of r, we took 104 initial conditions uniformly distributed
on the simplex. The vertical dashed lines represent the values
of the cooperation parameters used in simulations of Figure 2.

is to be ascribed, in numerical simulations, to finite-size
fluctuations. It is therefore important, for finite N , to de-
termine the probability that the system ends in each pure
state, as a function of the cooperation probabilities and
the initial condition. In this sense, we proceed to measure
the survival probability of each strategy over an ensemble
of initial conditions taken from the whole simplex.

To explore the space of cooperation probabilities we
vary them jointly, maintaining the ratios r0/r2 and r1/r2

fixed, and studying the survival probabilities as a function
of r2 = r ∈ [0, 1]. Then, for different values of the ratios
r0/r2 and r1/r2, we analyze the possible behaviors of the
system in the entire parameter space.

Figure 3 shows simulation results for the survival prob-
abilities ps

i (i = 0, 1, 2) as a function of r, with r0/r2 = 4/5
and r1/r2 = 3/5. In this case, maximal cooperation oc-
curs between agents with strategy 2, followed in order by
0 and 1. For 0 ≤ r ≤ 1/2, the survival probabilities vary
smoothly, starting from the symmetric situation where all
of them equal 1/3 for r = 0. In this parameter range,
rather surprisingly, the strategy with maximal coopera-
tion (2) does not have the largest survival probability [16].
It is rather the strategy that dominates over the most co-
operative agents (1) which has the largest chance to be-
come the absorbing state. The qualitative behavior of the
system is the same as in the upper panel of Figure 2, ex-
hibiting oscillations of increasing amplitude. For r > 1/2,
on the other hand, the behavior of the system changes,
falling rapidly into one of the pure absorbing states as
shown in the lower panel of the same figure.

Another aspect to consider from Figure 3 is that the
survival probabilities for strategies 1 and 2 display a sharp
variation for r ≈ 0.5 (r2 ≈ 0.5), whereas for strategy 0
it maintains a smooth behavior in the same region. This
critical value of the cooperation parameter, above which
the survival probability of strategies 1 and 2, respectively

Fig. 4. Initial conditions on the simplex that lead to each
final pure state (state 0 in brown, 1 in grey and 2 in black).
Cooperation parameters are r0 = 0.8r, r1 = 0.6r and r2 = r.
The total population size is N = 9 × 103. The black crosses
stands for the initial conditions taken for Figure 2.

decreases and increases, represents a threshold from which
alliances benefit the strategy that cooperates – in this
case, strategy 2. Within each triplet, it becomes more
likely than not that two agents possessing strategy 2 ally
to overcome an agent with strategy 1. The same effect
is observed for the survival probabilities of strategies 0
and 2 when r ≈ 0.63 (r0 ≈ 0.5), and for 0 and 1 when
r ≈ 0.83 (r1 ≈ 0.5). In general, thus, we find that the
survival probability for i increases, while for (i − 1)3 it
decreases, above ri = 0.51. As we shall see in the next
section, these sharp changes in the survival probabilities
are related to the stabilization of a pure state.

Additionally, we have studied which initial conditions
over the simplex lead to each of the final absorbing states.
Figure 4 shows results for three values of r. The color of
each dot indicates the pure state reached from that ini-
tial condition, with brown for strategy 0, grey for strat-
egy 1, and black for strategy 2. Parameters are r0 = 0.8r2,
r1 = 0.6r2, N = 9×103 and the total number of initial con-
ditions is 4×105. Regions of different colors are separated
by spiral-like curves. Due to finite-size fluctuations, how-
ever, the boundaries are noisy. This effect of fluctuations is
enhanced as r decreases and the cooperation probabilities
become mutually similar. In this case, different strategies
are less distinctive from each other, and the regions lead-
ing to each pure state tighten.

1 Due to the cyclic nature of our system, we use the notation
(j ± 1)3 for addition and subtraction modulo 3. The index
(j + 1)3 refers to strategy 0 when j = 2, while (j − 1)3 refers
to strategy 2 when j = 0.
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For r = 0.75, which implies r0 = 0.6 and r2 = 0.75
(both above the threshold at 0.5), we find that most of
the initial conditions end up in one of two pure state, 0
or 2, depending on the location of the initial condition on
the simplex. The temporal evolution for the simulations
with r = 0.75 corresponds to a rapid fall into an absorbing
state.

4 Mean field approach

Before starting a mean field analysis of the system with
triplets, we first study the case with pair interactions. If
the pair {i, (i+1)3} becomes {i, i} with probability γi > 0
per time unit, the evolution equations for the fractions ni

of the population in each strategy are

ṅ0 = γ0n0n1 − γ2n0n2

ṅ1 = γ1n1n2 − γ0n1n0

ṅ2 = γ2n2n0 − γ1n2n1 (2)

that can be reduced to a system of two equations, given
that n0 + n1 + n2 = 1.

This dynamical system possesses four fixed points: the
three vertices of the simplex, corresponding to the pure
states, and an interior fixed point located at (n∗

0, n
∗
1, n

∗
2)

where n∗
i = γ(i+1)3/

∑
j γj . The vertices are saddle points

while the interior fixed point has marginal stability (its
eigenvalues are pure imaginary). The orbits are cycles
around the interior fixed point and the size of the cycles
is determined by the initial condition.

In the case of the system with triplets, fixing γi = 1
for all i and including the cooperation parameters ri, the
equations for the fractions ni are

ṅ0 = n2
0n1 + (1 − 2r1)n0n

2
1 − (1 − 2r0)n2

0n2 − n0n
2
2

ṅ1 = n2
1n2 + (1 − 2r2)n1n

2
2 − (1 − 2r1)n2

1n0 − n1n
2
0

ṅ2 = n2
2n0 + (1 − 2r0)n2n

2
0 − (1 − 2r2)n2

2n1 − n2n
2
1. (3)

These equations have seven fixed points. Three of them
are the vertices of the simplex whose coordinates, written
as (n0, n1, n2), are (1, 0, 0), (0, 1, 0) and (0, 0, 1). The ver-
tex that correspond to the pure state i is stable if ri > 1/2;
otherwise, it is a saddle point. There are three other points
that depending on the parameters lay on the edges of the
simplex, in which case they are saddles, or on the prolon-
gations of such edges, in which case they are stable. How-
ever, in this last case, these stable points are never reached
when starting with an initial condition on the simplex, as
we show below. The coordinates of these points are(

1
2r0

, 0, 1 − 1
2r0

)

(
1 − 1

2r1
,

1
2r1

, 0
)

(
0, 1 − 1

2r2
,

1
2r2

)
. (4)

Finally there is an interior fixed point which is in gen-
eral an unstable focus (we omit the complicated analytic
expression of its coordinates).

If ri = 0 for all i, the system of differential equa-
tions (3) is equivalent to equations (2) (with γi = 1 for
all i), i.e. the orbits are cycles.

Generally, the dynamical system defined by equa-
tions (3) possesses two typical behaviors depending on the
cooperation parameters. If 0 < ri < 1/2 for all i, the sys-
tem has no stable fixed point on the simplex and exhibits a
stable heteroclinic cycle, which implies that all the orbits
are attracted to this cycle. We recall that a heteroclinic
cycle is a collection of trajectories that links sequences of
equilibria via saddle-sink connections, i.e. through the sta-
ble/unstable manifolds of the fixed points [7]. In our case,
the heteroclinic cycle coincides with the boundary of the
simplex, so that it is formed by the saddle points located
at the vertices and by the edges of the simplex which are
along the stable/unstable manifolds of these saddle points.
The trajectories approach the boundary and spend longer
and longer periods of time in the neighbourhood of the
vertices, being not able to leave the simplex if starting
with an initial condition on its interior.

The other typical behavior of the system occurs when
ri > 1/2 for one or more strategies. When this happens,
the pure state i located at a vertex of the simplex becomes
stable, and trajectories lead to a rapid fall to this absorb-
ing state. At the same time a saddle point appears on the
edge that connects the vertex i with (i − 1)3. The unsta-
ble manifold of this saddle point is along the edge, and
the basin of attraction of the pure state i increases at the
expense of that of (i − 1)3. Within this parameter range,
the system behaves differently, depending on how many
pure states are stable. If only one of the strategies satisfy
ri > 1/2, then the corresponding pure state i is stable and
most orbits go to this vertex (there are three such regions,
one for each i). If two strategies satisfy ri > 1/2, two ver-
tices of the simplex are stable and the remaining strategy
is the less likely to be observed in the asymptotic state
(again, there are three such regions). Finally, if ri > 1/2
for all i, the three pure states are stable and the probabil-
ities of ending in each pure state when initial conditions
are taken at random from the simplex are proportional to
the size of the corresponding basins of attraction.

Connections with finite populations

In this subsection we compare results from the numerical
simulations of a population of agents with the analysis
of the differential equations of the corresponding mean
field approach. As triplets in the simulations are chosen
homogeneously over the population, the numerical results
converge to those obtained in the mean field analysis when
the size of the population tends to infinity. Considering a
finite population, on the other hand, some discrepancies
emerge between the two approaches.

In particular, oscillations of increasing amplitude in
the numerical system are related to the presence of a stable
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heteroclinic cycle of the corresponding differential equa-
tions. However, in the simulations the orbit eventually
reaches the boundary, i.e. one of the three strategies disap-
pears due to fluctuations and, with two strategies left, the
dominant strategy eventually becomes the only survivor.
This effect is observed in Figure 2 (upper panel), where
oscillations of increasing amplitude reach the boundary of
the simplex, leading strategy 1 to extinction. Strategy 2
being the dominant of the two remaining strategies, it is
the survivor.

Another link with the stochastic simulations is the ap-
pearance of sharp changes in the survival probabilities
when ri ≈ 0.5, as shown in Figure 3. From the mean field
analysis, we see that these changes in ps

i (r) and ps
(i−1)3

(r)
correspond to the stability change of the pure state ni = 1
from saddle to stable fixed point, i.e. to the appearance of
a basin of attraction for strategy i.

In Section 3 we calculated the survival probabilities
for each strategies through simulations of the stochastic
model. An alternative way to obtain these results is to
perform a numerical integration of the differential equa-
tions given by equation (3). In the first place, we establish
a cutoff c as a density below which we consider a strategy
extinct (in a finite system this parameter should equals
1/N). From an initial condition we integrate the equa-
tions up to the time when, for some i, ni < c, i.e. when
the orbit is very close to the edge {(i−1)3, (i+1)3} of the
simplex. At this point, we declare the strategy i extinct.
To decide which of the two remaining strategies will sur-
vive we have to consider two possible scenarios. If there
is a saddle point on that edge (r(i−1)3 > 1/2) and if the
orbit ended in the segment that joints the saddle with the
vertex (i−1)3 (n(i−1)3 > 1/2r(i−1)3), the strategy (i−1)3
will survive. Otherwise the strategy (i + 1)3, which is the
dominant of the two remaining strategies, will survive.

Another possible approach to obtain the survival prob-
abilities is to use an approximation of the orbit when it is
close enough to the boundary of the simplex. This can be
done only when trajectories are attracted to the boundary,
i.e. when the heteroclinic cycle of the corresponding mean
field equations is stable. We study this approximation in
the next section, and compare it with the simulations and
with the numerical integration of equation (3).

5 Survival probabilities

As advanced, we wish here to evaluate analytically which
strategy will survive in a finite population when the corre-
sponding dynamical system possesses a stable heteroclinic
cycle. As we previously observed, the initial conditions
that reach the different pure states are typically strongly
mixed and, due to stochastic fluctuations, the final state
for a fixed initial condition is not unique. Therefore when
using the corresponding dynamical system to calculate the
survival probabilities, we will assume that these probabil-
ities are obtained from the evolution of several initial con-
ditions taken at random from the simplex (more precisely,
uniformly distributed on the simplex).
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Fig. 5. Fractions of the population adopting each of the differ-
ent strategies, on logarithmic scale, as a function of time for a
specific selection of cooperation parameters obtained through
the evolution of the dynamical system. We link the probabil-
ity of extinction of certain strategy to the difference between
the logarithm of a minimum of that strategy and the loga-
rithm of the minimum of the previous strategy that reached
a minimum (with the proper normalization). The horizontal
line at ni = 10−3 corresponds to the cutoff for a population of
N = 103. In this case, the strategy plotted in continuous line
will go extinct as ni < 1/N for that strategy.

Firstly, we plot the evolution of the dynamical system
when the heteroclinic cycle is stable in a specific case to
see what relationship exist between the finite system and
the corresponding mean field model.

Figure 5 shows the fractions ni of the population
adopting each of the different strategies, on logarithmic
scale, as a function of time obtained through the evolu-
tion of the dynamical system for a specific selection of
cooperation parameters. Let us assume that in the corre-
sponding finite system we are working with a population
of size N , so when ni ≈ 1/N the strategy i will go extinct
due to fluctuations (see horizontal line plotted in Fig. 5
at ni = 10−3). Thereby taking these previous ideas as a
guide, we will associate the probability of extinction pe

i ,
starting from random initial conditions, with the differ-
ence between the logarithm of a minimum of that strategy
and the logarithm of the minimum of the previous strat-
egy that reached a minimum (with the proper normaliza-
tion). Considering which of the two remaining strategies is
the dominant, we can calculate the survival probabilities:
ps

i = pe
(i−1)3

.
We assume we are in the region of the parameter space

where the orbit circles many times before reaching the
boundary of the simplex due to fluctuations, which in our
case is equivalent to ask the cooperation parameters ri

to be small. Under this condition the trajectory can be
approximated taking local coordinates in the manifolds
directions and linearizing the right-hand side of equa-
tions (3) [7]. Focusing on what we are interested, the orbit
approximation establishes that the distance to the bound-
ary of the simplex x changes to xσi when the trajectory
goes near the vertex i (far from the vertex, x changes
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lineally). The exponent is σi = μi/λi, where (−μi) is the
eigenvalue of the stable manifold of vertex i, that as we
previously stated is a saddle, while λi is the eigenvalue of
the unstable manifold (in our case, σi = 1/(1 − 2ri)).

Using the approximation previously described and con-
sidering that going from the vertex i to (i− 1)3 (the time
evolution has the opposite sense of circulation to the domi-
nance) the orbit reaches a minimum of n(i+1)3 , we proceed
to calculate the extinction probabilities. At first we start
at a minimum of n1, then we go through a minimum of n0,
then through a minimum of n2 and finally we reach an-
other minimum of n1, so that the distance to the boundary
changes as:

x → xσ2 → xσ2σ1 → xσ2σ1σ0 . (5)

From this last equation we observe that the orbit ap-
proaches to the boundary if σ2σ1σ0 > 1, which is the
stability condition of the heteroclinic cycle. The total dif-
ference between the logarithm of the minima of n1 is
Δ = log(xσ2σ1σ0)− log(x) = (σ2σ1σ0 − 1) log(x), so when
we start from a minimum of n1 the extinction probabili-
ties are:

p
(1)
0 =

σ2 − 1
σ2σ1σ0 − 1

p
(1)
2 =

σ2(σ1 − 1)
σ2σ1σ0 − 1

p
(1)
1 =

σ2σ1(σ0 − 1)
σ2σ1σ0 − 1

. (6)

However, we can also start from a minimum of n2 or n0.
Taking average of these three cases we obtain the proba-
bilities of extinction pe

i due to fluctuations, which have a
direct connection with the survival probabilities ps

i as we
previously stated

pe
0 = ps

1 =
(1 + σ0 + σ0σ1)(σ2 − 1)

3(σ0σ1σ2 − 1)

pe
1 = ps

2 =
(1 + σ1 + σ1σ2)(σ0 − 1)

3(σ1σ2σ0 − 1)

pe
2 = ps

0 =
(1 + σ2 + σ2σ0)(σ1 − 1)

3(σ2σ0σ1 − 1)
. (7)

If σi < 1, keeping σ2σ1σ0 > 1, it implies that the strategy
(i− 1)3 will not survive, and only the other two strategies
have a chance to outlive. In this case, the survival prob-
abilities should be calculated again and will have minor
modifications (in our model this is not possible because it
requires that ri < 0).

In general, if we consider that the cooperation param-
eters are varied jointly as previously stated (r0/r2 and
r1/r2 fixed with r2 = r), in the limit r → 0 we obtain:

ps
0 ≈ r1∑

j rj
+ O(r)

ps
1 ≈ r2∑

j rj
+ O(r)

ps
2 ≈ r0∑

j rj
+ O(r) (8)
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Fig. 6. Survival probabilities, as a function of r, obtained from
simulations (symbols), from the approximation given by (9)
(black lines) and from the integration of the mean field dif-
ferential equations (brown lines). We used r0 = 2

3
r, r1 = 1

3
r,

r2 = r and a total population of N = 9 × 104.

so the survival probability of a strategy is directly asso-
ciated to the cooperation parameter of the correspond-
ing dominated strategy, turning in our case strategy 1 the
more likely to survive as we chose r2 = max{r0, r1, r2}. As
we can see, when r → 0 we do not recover the symmetric
case where all probabilities are the same (p = 1/3).

To analyze how the equations given by (7) work in a
particular case, we vary the cooperation parameters keep-
ing a fixed ratio between them so that r1 = 1

3r, r2 = r and
r0 = 2

3r. With this choice, the survival probabilities are

ps
1 =

27 − 24r + 8r2

54 − 66r + 24r2
≈ 1

2
+

r

6
+

7r2

54

ps
2 =

9 − 14r + 4r2

27 − 33r + 12r2
≈ 1

3
− r

9
− 11r2

81

ps
0 =

9 − 14r + 8r2

54 − 66r + 24r2
≈ 1

6
− r

18
+

r2

162
. (9)

These equations hold only for 0 < r < 1/2 where the
heteroclinic cycle is stable. We compare these results with
simulations and with those obtained through numerical
integration of the equations given by (3).

Figure 6 shows the survival probabilities as a func-
tion of r, obtained from simulations, from the heteroclinic
cycle approximation given by (9) and from the integra-
tion of the mean field differential equations (3) for each
of the strategies. There is a good agreement between the
simulations and mean field integration, and also with the
analytic approximation (in the range of r where it is valid).
In the limit r → 0, the simulations deviate from the other
two curves and go to the symmetric case where all prob-
abilities are equal (ps

i = 1/3). This can be understood
considering that for small values of r the difference be-
tween the minima of nj(t) become smaller and any fluctu-
ation due to the finite size of the population may make it
disappear (this effect is clearly not included in the mean
field integration nor in the analytic approximation). Sharp
changes in the probabilities are observed for r = 0.5 and
r = 0.75, which as we already studied are caused by the
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Fig. 7. Survival probabilities as a function of the cooperation
parameter r obtained from simulations (symbols) and from the
approximation given by (9) (lines). We used r0 = 2

3
r, r1 = 1

3
r

and r2 = r. To study the effect of population size, we con-
sidered N = 9 × 103 and N = 9 × 105. For each value of r,
104 initial conditions were taken (uniformly distributed on the
simplex).

appearance of a stable point on the vertex of the simplex,
and by the increase of its basin of attraction.

Figure 7 shows the effect of increasing the population
size (from N = 9 × 103 to N = 9 × 105) for small val-
ues of the cooperation parameter r. The points obtained
from simulations approach the analytic approximation as
N grows, but convergence is slow.

6 Discussion

We have studied a system where agents adopting one of
three possible strategies interact in a cyclic game. The
basic interaction events occur in triplets, which allowed
us to consider cooperation amongst weak agents with the
same strategy when facing a strong agent. The system was
analyzed by numerical simulations and by a mean field ap-
proach, which gives a correct description as the triplets are
homogeneously distributed through the population. The
focus was placed on studying the survival probabilities of
the different strategies as a function of the cooperation
parameters.

An interesting fact is that cooperation within triplets
of agents possessing the same strategy results in a final and
global benefit of another strategy, in particular the one
that dominates the first strategy. This conclusion, how-
ever, is valid only for low levels of cooperation. When the
cooperation exceeds a specific threshold, enough to create
a stable pure state, it becomes beneficial to the strategy
that adopts it.

Secondly, we remark the importance of obtaining
the survival probabilities of each strategy as a func-
tion of the properties of the heteroclinic cycle derived
from the corresponding dynamic system, in particular the
eigenvalues of the fixed points that form such cycle. We are

able to make predictions of the asymptotic behavior of the
system only from the basic parameters of the dynamic, in
this case the cooperation parameters. Moreover, this ana-
lytic approximation is easy to generalize to other system
with planar heteroclinic cycles which is a robust behavior
in biological and game theory models that possess some
kind of symmetry or constraint.

Even when triplets interactions are not as frequent as
binary ones, they may have an important role. For ex-
ample if we consider a rock-paper-scissors game played in
pairs in a homogeneous population, a model often used
for biological systems, the collective response corresponds
to oscillations, as we showed in Section 4. But if triplets
interactions are introduced with a small probability, the
system eventually goes to one of the pure states, changing
the qualitative behavior of the population. So neglecting
these complex interactions, even when they are rare, it
may lead to wrong conclusions.

An interesting aspect to study in future works is how
topology affects the results obtained. This generalization
can be approached along two directions. In the first place,
by considering complex triplets networks with different
properties and, on the other side, by implementing this
model on a population where the interactions occur in
groups of different sizes (pairs, triplets, quartets, etc.).
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