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Abstract We provide an evolutionary game-theoretical formulation for a model of resource
allocation—the Colonel Blotto game. In this game, two players with different total resources
must entirely distribute them among a set of items. Each item is won by the player that
assigned higher resources to it, and the payoff of each player is the total number of won
items. Our evolutionary formulation makes it possible to obtain optimal strategies as the
equilibrium states of a dynamical process. At the same time, it naturally requires considering
a population of players—whose strategies evolve by imitation and random fluctuations—
thus better approaching a realistic situation with many economic agents. Results show, in
particular, how agents with low total resources manage to maximize their winnings in spite
of their intrinsically disadvantageous condition.

Keywords Socio-economic dynamics · Evolutionary games · Resource management

1 Introduction

Resource allocation is a basic ingredient in the management of a broad class of economic
systems, whereby resources are distributed among different components and/or stages of a
process in order to—hopefully—maximize its yield. The complexity of resource allocation
recognizes at least two origins, involving competition at different levels. Internally to the
process, it is necessary to decide how to divide and where to assign the available resources
to improve efficiency as much as possible. Externally, such decision may be modulated by
the existence of other economic actors engaged in similar activities, thus competing with
each other. For instance, with the aim of increasing profits, a company elaborating an edible
product—hamburgers, say—must make a decision as to whether raise or lower the quality
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of meat, or to finance better publicity, or to improve its distribution network, and this de-
cision must necessarily take into account the corresponding strategies of other hamburger
producers.

However, the problem of resource allocation is not limited to the purely economic do-
main. Just to give a familiar example, the number of hours per week a scientist decides
to devote to each one of his/her collaboration projects—taking into account the finiteness
of the available time, the intrinsic difficulty of each project, and its foreseen impact in the
community—is a problem of exactly the same kind. Within a different realm, biological evo-
lution optimizes reproductive success by allocating the resources of an organism, in intra-
specific competition with its likes, either increasing the probability of mating by a more
efficient courtship, or making the number of offsprings larger, or enhancing dedication to
parental care, among many other strategies.

Due to the role of competition in the process of resource allocation, game theory provides
a natural frame to give the problem a mathematical formulation. A classical, well-studied
setting is the Colonel Blotto game. In this auction-like game, two players must distribute
their total resources among a fixed number of items. Each item is won by the player who
allocated the higher amount for it, and the player’s total payoff is the number of won items.
An interesting aspect of this game is that it allows considering non-identical players, i.e.
players with different total resources, and thus analyzing how optimal strategies are adapted
to the disparate situation of each opponent. The fancy name of Colonel Blotto’s comes from
a setup of the game where two armies must distribute their forces among a certain number
of battlefields.

Apparently, the first version of the Colonel Blotto game was formulated by the famous
French mathematician Émile Borel in 1921 [1], and optimal strategies for the case of three
items and identical players were found by Borel and Ville several years later [2]. In 1950,
Gross and Wagner provided a solution for an arbitrary number of items and identical players,
and a solution for two items and non-identical players [3]. Much more recently, variants of
the game were solved in more general situations [4], and applications to real-life problems
such as electoral campaigns [5–7] appeared. Roberson found the first complete solution to
the original Colonel Blotto game for arbitrary number of items and non-identical players—
which we partly review in our Sect. 2.1—just a few years ago [8]. Golman and Page dis-
cussed the possibility of attaining mixed strategies through dynamic learning, numerically
implemented using the replicator dynamics [9]. These, and a few further contributions [10,
11], were recently summarized and reviewed [12].

In this paper, we put the Colonel Blotto game in the framework of evolutionary game
theory. In contrast with traditional game theory, its evolutionary version regards optimized
strategies as the result of a dynamical process where players tend to maximize the individual
winnings by modifying their own strategies as the process goes on [13, 14]. This scenario is
inspired in biological (Darwinian) evolution, where strategies vary from parents to their de-
scendence by genetic mutations under the pressure of natural selection. Evolutionary game
theory, thus, has the advantage of highlighting the role of change with adaptation, oppo-
site in a sense to the static view of strategy optimization adopted by the traditional theory.
Additionally, evolutionary game theory naturally leads to considering a whole population
of players engaged in the same game—with a multitude of agents able to adopt different
strategies, which compete with each other—and is therefore better adapted to provide real-
istic models of social phenomena.

In the next section, we first review previous results for optimal strategies in the Colonel
Blotto game with two players, as provided by traditional game theory. We then generalize
these results to a population of players of two types, with low and high total resources, where
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each player can confront an opponent of either type. In Sect. 3 we introduce the evolutionary
model and present numerical results which validate the assumptions of our previous analyti-
cal study. Numerical simulations of the evolution process make as well possible to determine
what strategies are actually adopted for parameter sets where more than one analytical solu-
tion coexist. Finally, we discuss a few generalizations—which emphasize the robustness of
the main conclusions—and summarize our contribution.

2 Optimal Allocation Strategies in the Colonel Blotto Game

2.1 The Two-Player Game

In the traditional formulation of the Colonel Blotto game [8], two players A and B have
total resources XA and XB , respectively. Without generality loss, we take XA ≤ XB . Both
players must distribute their whole resources among m items. The items are equivalent to
each other, in the sense that the players do not have a priori preferences as to which item
should be assigned more resources. Let x

j

A and x
j

B be the resources allocated by each player
to item j (j = 1, . . . ,m). The player’s payoffs, πA and πB , are respectively given by the
fraction of items for which x

j

A > x
j

B and the fraction of items for which x
j

B > x
j

A, namely,

πA,B = 1

m

∥
∥
{

j/x
j

A,B > x
j

B,A

}∥
∥, (1)

where ‖ · ‖ indicates cardinality. As x
j

A,B varies continuously over the interval [0,XA,B]
for all j , the marginal cases with x

j

A = x
j

B can be disregarded. Since πA + πB = 1 for any
resource distribution, this is a constant-sum game. For this kind of game, optimal strategies
coincide with Nash equilibria, where each player’s payoff is maximized given the strategy
of the opponent.

If XB > mXA, the game has a set of trivial optimal strategies, with x
j

B = XB/m for
all j . In this situation, player B always wins all items (πB = 1). On the other hand, when
XB < mXA Nash equilibria do not correspond to pure strategies, i.e. to strategies where a
fixed resource amount is allocated to each item [8]. Under this condition, in fact, any pure
strategy is outdone by another pure strategy where resources are taken from a single item
and distributed among the others. In this case, optimal strategies are mixed, and probabilities
are assigned to each possible resource distribution for each player.

Let Pi(x
1
i , . . . , x

m
i ) be the probability distribution for the set of resources {x1

i , . . . , x
m
i }

allocated by player i ∈ {A,B}. We denote by P
j

i (x
j

i ) the marginal probability distribution
for the resources allocated to item j ,

P
j

i

(

x
j

i

) =
∫

dx1
i · · ·

∫

dx
j−1
i

∫

dx
j+1
i · · ·

∫

dxm
i Pi

(

x1
i , . . . , x

m
i

)

, (2)

and F
j

i (x
j

i ) the corresponding cumulated distribution,

F
j

i

(

x
j

i

) =
∫ x

j
i

0
dxP

j

i (x). (3)

The expected contribution to each player’s payoff from item j , π
j

A,B , is the probability that
the corresponding allocated resources are larger than those of the opponent, i.e.

π
j

A,B =
∫ XA,B

0
dxP

j

A,B(x)

∫ x

0
dx ′P j

B,A

(

x ′) ≡
∫ 1

0
F

j

B,AdF
j

A,B. (4)

The expected total payoff is πA,B = m−1
∑

j π
j

A,B .
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The maximization of πA,B with respect to the marginal distributions P
j

A,B(x), which de-
termines the Nash equilibria, must be performed with the condition that the sum of the allo-
cated resources equals the total resources XA,B . In terms of the distributions, this condition
reads

XA,B =
∑

j

∫ XA,B

0
dxxP

j

A,B(x) ≡
∑

j

∫ 1

0
xdF

j

A,B. (5)

Introducing Lagrange multipliers λA,B , it is possible to write the two Lagrangians [4, 8]

LA,B = 1

m

∑

j

∫ 1

0
F

j

B,AdF
j

A,B + λA,B

(

XA,B −
∑

j

∫ 1

0
xdF

j

A,B

)

, (6)

whose joint extremization with respect to the set of cumulative distributions F
j

A and F
j

B

provides the optimal strategies, as solutions of the corresponding Euler–Lagrange equations.
For m � 1—a limit to which we stick from now on—the result for the marginal probabil-

ity distributions can be expressed in a particularly compact form by introducing the rescaled
variables u

j

A,B = (2XB/m)−1x
j

A,B and the total resource ratio α = XA/XB (≤ 1). It reads
[8]

PA(uA) = (1 − α)δ(uA) + αU(uA;0,1) (7)

and

PB(uB) = U(uB;0,1). (8)

Because of the a priori equivalence of all items, these distributions are the same for all j =
1, . . . ,m. For the sake of clarity, thus, we have dropped the index j . In the above expressions,
δ(u) is Dirac’s delta and U(u;u1, u2) = 1 for u ∈ (u1, u2) and 0 otherwise.

In terms of the original variables xA,B , for non-zero allocated resources—specifically,
for xA �= 0—the two distributions are flat, and differ from zero up to a cutoff at xA,B =
2XB/m. In the optimal strategy, therefore, every positive amount of allocated resources, up
to a maximum of 2XB/m, is equally probable for both players. The delta-like first term in
the right-hand side of Eq. (7), however, represents a finite probability that player A allocates
no resources to one or more items. This is due to the relative disadvantage of A, whose total
resources are less than those of B , and is thus forced to resign winning some of the items
in order to get a maximal payoff. The average payoffs of the two players are, respectively,
〈πA〉 = α/2 (≤ 1/2) and 〈πB〉 = 1 − α/2 (≥ 1/2). As expected, PA ≡ PB for α = 1, i.e.
when XA = XB and the two players become indistinguishable from each other.

2.2 A Population Playing the Game

Our aim is now to extend the above results for two players to the case of a population formed
by players of two types, A and B . The total resources per player are XA and XB , respectively,
with XA ≤ XB . Each member of the population is allowed to play the game against an
opponent of any type. There are, therefore, three possible kinds of matches: A vs. A, A vs. B ,
and B vs. B . For a given player, we denote by ε and 1− ε the probabilities that the opponent
is, respectively, of the same type and of different type. The game rules are the same as before,
namely, the total resources of both players are distributed among all items, and each item is
won by the player who allocated the largest amount.

To find the optimal strategies in this case, it would be in principle necessary to con-
sider that each player in the population may have a different strategy, described by its own
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Fig. 1 Schematic four-player representation of the whole population. Each player, of type A or B , confronts
a player of the same type with probability ε and a player of different type with probability 1 − ε

marginal probability distribution. This would lead to the formidable problem of simultane-
ously optimizing as many strategies as the population size. Instead of dealing with this, we
make in the following a drastic simplification of the problem. Its validity is later verified by
means of numerical simulations, as explained in Sect. 3.

We represent the whole population as a set of just four players, A1, A2, B1 and B2, the
former two belonging to type A and the latter two to type B . Figure 1 schematizes their
possible interactions, with the corresponding probabilities. Assigning cumulative probabil-
ity distributions F

j

A1
, F

j

A2
, F

j

B1
, and F

j

B2
to the resources allocated by each player to item j ,

it is straightforward to realize that the two Lagrangians in Eq. (6) are now replaced by four
Lagrangians, introducing four Lagrange multipliers:

LA1,B1 = 1

m

∑

j

∫ 1

0

[

(1 − ε)F
j

B1,A1
+ εF

j

A2,B2

]

dF
j

A1,B1

+ λA1,B1

(

XA,B −
∑

j

∫ 1

0
xdF

j

A1,B1

)

(9)

and

LA2,B2 = 1

m

∑

j

∫ 1

0

[

(1 − ε)F
j

B2,A2
+ εF

j

A1,B1

]

dF
j

A2,B2

+ λA2,B2

(

XA,B −
∑

j

∫ 1

0
xdF

j

A2,B2

)

. (10)

The resulting Euler–Lagrange equations must be solved taking into account the sym-
metry between players of the same type. They yield three different solutions, which in the
following we label I, II, and III. Like in the two-player game, the index j can be dropped
because of the mutual equivalence of the m items.

Using again the rescaled variables uA,B = (2XB/m)−1xA,B , the total resource ratio
α = XA/XB (≤ 1), and the function U(u;u1, u2) defined just below Eq. (8), the marginal
probability distributions in solution I read

P I
A(uA) = U [uA;0, ε(1 − α)]

ε[1 − ε(1 − α)] + [α − ε(1 − α)]U [uA; ε(1 − α),1 − ε(1 − α)]
[1 − 2ε(1 − α)][1 − ε(1 − α)] (11)

and

P I
B(uB) = U [uB; ε(1 − α),1 − ε(1 − α)]

1 − 2ε(1 − α)
. (12)

This solution is non-negative for α − ε(1 − α) ≥ 0. The average payoffs are 〈πA〉 =
α/2[1 − ε(1 − α)] and 〈πB〉 = 1 − α/2[1 − ε(1 − α)].
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Fig. 2 Upper panels: Shaded zones show the domains in the parameter space (ε,α) where the solutions I, II,
and III, given by Eqs. (11) to (15), are respectively well defined. Lower panels: Examples of the corresponding
marginal probability distributions PA(uA) (/-dashed) and PB(uB) (\-dashed) for each solution, at the points
of parameter space marked with a dot in the upper panels

Solution II is given by

P II
A (uA) = U(uA;0, α)

α
(13)

and

P II
B (uB) = [2α − 1 + ε(1 − α)]U(uB;0, α)

α[α + ε(1 − α)] + U [uB;α,α + ε(1 − α)]
ε[α + ε(1 − α)] . (14)

It is non-negative for 2α−1+ε(1−α) ≥ 0, and the average payoffs are 〈πA〉 = 1−1/2[α+
ε(1 − α)] and 〈πB〉 = 1/2[α + ε(1 − α)].

Finally, solution III is

P III
A (uA) = U(uA;0, α)

α
, P III

B (uB) = U(uB;α,1 − α)

1 − 2α
. (15)

It is positive and well-defined for α < 1/2, and 〈πA〉 = ε/2, 〈πB〉 = 1 − ε/2.
The distributions in the three solutions are piecewise constant. The upper panels in Fig. 2

show the domains in the parameter space (ε,α) where each solution is well defined. Note
that these domains overlap with each other over respectably large zones. Even more, just
below α = 1/2 and for moderate values of ε there is a zone where the three solutions coex-
ist. The lower panels of the same figure show examples of the three solutions for selected
parameter sets.

In the three solutions, the renormalized resource variables uA,B are divided into two
ranges—the same for the two variables—within which the two marginal probability distri-
butions PA,B are uniform. Solution I is characterized by the fact that A-players allocate both
low and high resources, while B-players allocate high resources only. For a given A-player,
a low resource allocation is convenient to maximize the payoff when competing against a
player of the same type, while higher resources are necessary against B-players. It is inter-
esting to note that solution I reproduces the distributions obtained for two players in Sect. 2.1
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in the limits ε → 0 (when the opponents are players of different types only) and for α → 1
(when the two types of player become indistinguishable from each other), but not for ε → 1
(when the opponents are always of the same type).

Solution II is, in a sense, symmetric to solution I. In this case, A-players always choose to
allocate low resources. B-players, on the other hand, allocate both low and high resources.
The former optimize their payoff when playing against A-players, while the latter are nec-
essary when playing against each other. This solution approaches the distributions obtained
in Sect. 2.1 for ε → 1, and for α → 1, but not for ε → 0.

Finally, in solution III A- and B-players respectively choose to allocate low and high
resources only. A-players thus resign winning any item in the competition with B-players
but, on the other hand, maximize their payoffs when playing against each other. The only
situation in which solution III reduces to the distributions obtained in Sect. 2.1 is for the
trivial limit α → 0, when A-players have no resources at all.

Hence, the solutions stand for three different kinds of global strategies, representing the
convenience of allocating either low or high resources in the competition against players
with the same or with different (higher or lower) total resources, in the aim of maximizing
the expected individual payoff. Whether one given strategy is more efficient than another
depends on both the probability of confronting an opponent of either type—which is deter-
mined by the parameter ε—and the relation between the respective total resources—given
by α. The question thus arises, for a given parameter set, as to which strategy prevails in the
regions of the parameter space where two or three strategies coexist.

We choose to deal with such question by introducing a dynamical model for the Colonel
Blotto game, where individual strategies evolve by imitation of the most successful players
and progressively approach a stage where payoffs are maximized. This model, which is
defined and studied numerically in Sect. 3, has the conceptual advantage of proposing an
evolutionary picture that goes beyond the static representation of optimal strategies as Nash
equilibria. At the same time, since numerical simulations make it possible to deal with large
populations, we are able to validate the four-player representation used in this section.

3 Evolution of Strategies: Dynamical Rules and Numerical Simulations

In our evolutionary model of a population playing the Colonel Blotto game, we consider a
set of N players, NA of type A and NB of type B . As before, the respective total resources
are XA and XB for each player. The strategy of player n is characterized by the probability
distribution Pn(x, t) of allocating x resources at any given item at time t . The game is played
successively by randomly chosen pairs of opponents and, as explained below, the players’
strategies evolve in response to the resulting payoffs. As in Sect. 2.2, ε and 1 − ε are the
respective probabilities that the opponent of any given player is of the same type and of
different type.

In principle, the game dynamics occurs over two well-differentiated time scales. In the
short term, many matches are played and information about the relative success of players
with different strategies is stored. In a larger scale, this information is used to implement
changes in the individual strategies, in an attempt to improve the own performance and
maximize payoff. As is customary in evolutionary game theory [14], we bypass the shorter
time scale by making the evolution of strategies to depend on the comparison between the
expected payoffs of different players. This simplification amounts to assuming that many
matches are played before strategies have the chance to change, so that any player is exposed
to a representative sample of all the strategies over the population.
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The dynamical rules for strategy evolution are defined at discrete time steps. At each
step t , the average payoff expected for player n is calculated as

〈

πn(t)
〉 = 1 − ε

NB,A

∑

nB,A

∫ XA,B

0
dxPn(x, t)

∫ x

0
dx ′PnB,A

(x ′, t)

+ ε

NA,B

∑

nA,B

∫ XB,A

0
dxPn(x, t)

∫ x

0
dx ′PnA,B

(x ′, t), (16)

where the first and the second subindex hold when n is of type A and B , respectively. The
summation index nA,B runs over the players of either type, but skips player n.

Then, for each player n, a second player n′ of the same type as n is chosen at random
from the whole population and their expected payoffs are compared. If 〈πn(t)〉 < 〈πn′(t)〉,
player n adopts the strategy of n′, i.e. Pn(x, t) is replaced by Pn′(x, t). If, on the other hand,
〈πn(t)〉 ≥ 〈πn′(t)〉, n does not change the strategy. The comparison is done, on the average,
once per player per time step. This is an event of errorless imitation or, in biological terms,
of inheritance without mutations.

Irrespectively of whether imitation has occurred or not—in order to have genuine evolu-
tion, by allowing the population to explore the space of all possible strategies—the strategy
of player n is additionally submitted to a process of mutation. This consists in summing
to the probability distribution Pn(x, t) a suitably chosen perturbation δPn(x, t). In order
to maintain probability normalization and not to modify the amount of total resources of
player n, the perturbation must satisfy

∫ XA,B

0
dxδPn(x, t) = 0,

∫ XA,B

0
dxxδPn(x, t) = 0. (17)

Moreover, it must be insured that the perturbed distribution is non-negative, Pn(x, t) +
δPn(x, t) ≥ 0. How this is carried out in numerical simulations is explained below.

Once an initial condition—given by the set of probability distributions Pn(x,0) for n =
1, . . . ,N—has been specified, imitation and mutation are successively applied at each time
step over the whole population. In order to implement these rules numerically, it is necessary
to reduce the allocated resource variable x to a set of discrete values. To this end, we divide
the interval (0,2XB/m) into K equal parts, and take the points xk = 2XB(k − 1/2)/mK for
k = 1,2, . . . as the possible values of the variable. The integrals in Eq. (16) are calculated
using this discretization. Working with discretized variables, however, there is now a finite
probability that the resources allocated by two opponents to a given item are exactly the
same. Average payoffs are therefore computed assuming that, in such tied matches, the item
is won by either player with probability 1/2.

Over the discretized variable, we have applied the perturbation δPn using two algorithms.
In the first one, an amount 2q is subtracted from the probability Pn(xk, t) at a randomly
chosen value xk , and amounts q are added to the probabilities at the two nearest values,
Pn(xk+1, t) and Pn(xk−1, t). In the second, the inverse process is performed: amounts q are
subtracted from Pn(xk+1, t) and Pn(xk−1, t), and an amount 2q is added to Pn(xk, t). The
two algorithms, which act only with the proviso that the non-negativity of probabilities is
preserved, can straightforwardly be shown to satisfy the conditions of Eq. (17). Any of them
is chosen with equal probability at every evolution step for each player, thus enhancing
randomness in the process of strategy mutation.

We have performed extensive numerical simulations of the model, for various parameter
sets (ε,α), with NA = NB = 100 (N = 200), K = 40, and q = 1.25 × 10−3. Several kinds
of initial conditions for the probability distributions describing the strategy of each player
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Fig. 3 Numerical results (dots) for the asymptotic probability distributions at three points of the parameter
space (ε,α), from left to right, (0.4,0.5), (0.7,0.4), and (0.6,0.2). One of the three analytical distributions
has been plotted for each parameter set using the same shading code as in Fig. 2, from left to right, solutions I,
II, and III

were considered, including (i) multinomial distributions over x1, . . . , xK ; (ii) Pn(xk,0) cho-
sen from a uniform distribution for each n, and for each k = 1, . . . ,K ; and (iii) distributions
concentrated in a few intermediate values of xk . In all cases, the distributions were properly
normalized and satisfied condition (5), which insures the correct statistical representation
of the total resources of each player. We also tried with a few initial conditions that in-
cluded non-zero probabilities for values of xk with k > K , finding however no qualitative
differences with the other choices.

Since we were interested in a comparison between numerical simulations and the an-
alytical results obtained in Sect. 2 for the optimal strategies we focused on the long-time
behavior of our evolutionary model. In order to assess to which extent an asymptotic stage
had been reached, we have evaluated the time dependence of a series of global quantities de-
fined over the whole population, such as the average of the individual expected payoffs and
the average mean square dispersion of the individual probability distributions. In all cases,
and for all the initial conditions described above, we found that the system had attained a
satisfactorily well-defined asymptotic stage after a time of about 105 steps.

Dots in Fig. 3 represent numerical results for the probability distributions of each kind
of player, and three parameter sets (ε,α). Each numerical distribution was obtained as an
average over the individual distributions of the players of each type, an over time. The time
average was performed over 400 equally spaced time steps along a period of 1.6×105 steps,
after discarding a transient of 2.4 × 105 steps from the initial condition. We verified that, for
each pair (ε,α), the asymptotic distributions are independent of the initial condition.

Continuous lines in each panel of Fig. 3 represent one of the three solutions obtained
in Sect. 2.2 for the corresponding parameter pair (ε,α)—from left to right, solutions I, II,
and III. We find good agreement between the numerical results and the analytical solutions,
indicating that the asymptotic distributions of our evolutionary model coincide with the
optimal strategies obtained from joint maximization of the individual payoffs. At the same
time, this coincidence with numerical results for a total population of N = 200 players
validates the analytical four-player approximation of Sect. 2.2. We have verified that the
agreement between analytical and numerical solutions occurs for a variety of parameter
choices, covering the different behaviors of the system.

Figure 4 shows, in parameter space, various pairs (ε,α) for which one of the three opti-
mal strategies found in Sect. 2.2 is obtained as the asymptotic solution of our evolutionary
model. Diamonds represent parameter sets where the asymptotic solution coincides with
solution III. This happens where the only optimal strategy is, precisely, solution III, i.e. be-
low the curve α − ε(1 − α) = 0 for ε < 1/2 and below the curve 2α − 1 + ε(1 − α) = 0
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Fig. 4 Asymptotic solutions
obtained numerically at different
points of parameter space. Full
dots: solution I; empty dots:
solution II; diamonds: solution
III. Crosses indicate parameter
sets where none of the three
solutions was approached within
the computation time. The curves
are the same as in the first two
upper panels of Fig. 2, namely,
α − ε(1 − α) = 0 and
2α − 1 + ε(1 − α) = 0

for ε > 1/2. In the zones where solution III coexists with the other solutions, on the other
hand, it is never found to be asymptotically approached by the evolving strategies. Above
the same curves, solutions I and II represent the asymptotic strategies for ε < 1/2 (full dots)
and ε > 1/2 (empty dots), respectively. Note that each solution is obtained as the asymp-
totic strategy of the evolutionary model in the zone of parameter space where it correctly
describes the limit cases ε → 0, 1 and α → 0, 1, as explained in Sect. 2.2.

For ε = 1/2 and α � 0.4, we have not got well-defined asymptotic distributions within
the above computation times. At the end of the simulations, probability distributions were
still highly dependent on the initial condition and resembled neither solution I nor solution II.
Since this zone is the boundary between the stability domains of those two solutions, we
interpret this lack of convergence to a kind of critical slowing down associated with the
instability transition of either solution.

It is interesting to realize that the asymptotic strategies obtained for any given pair (ε,α)

correspond to the solution which minimizes the difference between the average expected
payoff of the two types of players, 〈πB − πA〉. For each one of the three solutions, this
quantity equals

〈πB − πA〉I = 1 − α
[

1 − ε(1 − α)
]−1

,

〈πB − πA〉II = [

α + ε(1 − α)
]−1 − 1,

〈πB − πA〉III = 1 − ε.

(18)

Indeed, for fixed ε and α, the minimum among these three functions is obtained for the so-
lution which represents the asymptotic probability distribution of our evolutionary model
at that point of parameter space. Seen as a functional of the individual probability dis-
tributions, the average payoff difference 〈πB − πA〉 can be interpreted as a kind of non-
equilibrium potential, whose minimization over the space of distributions yields the optimal
strategies for a given parameter set. This non-equilibrium potential could be used to propose
a thermodynamic-like picture for the evolution of strategies in this kind of game.

It might come as a surprise, however, that optimal strategies—which are obtained from
a joint maximization of payoffs for all players—correspond to minimizing a function such
as 〈πB − πA〉 which decreases for increasing πA but grows with πB . The solution to this
seemingly paradoxical fact comes from the condition that, Colonel Blotto’s being a constant-
sum game, we always have 〈πB + πA〉 = 1. Taking into account this condition, and the fact
that 〈πB − πA〉 ≥ 0—because the total resources of B-players are larger or equal that those
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of A-players—it is straightforwardly verified that the minimization of the average payoff
difference is equivalent to that of

〈πB − πA〉2 = 1 − 4〈πA〉〈πB〉. (19)

This is in turn equivalent to maximizing the product 〈πA〉〈πB〉, a symmetric function which
grows with both payoffs.

4 Generalizations

Our evolutionary model for resource allocation strategies in the Colonel Blotto game admits
to be extended in several directions. We have implemented some generalizations—briefly
described in the following—which include (i) assigning different interaction probabilities
to the two types of player; (ii) attributing an underlying interaction pattern, i.e. a “social
structure,” to the population; and (iii) relaxing the determinist nature of the imitation of
strategies, thus adding a new stochastic ingredient to the evolution. In all cases, analytical
solutions and numerical simulations disclose no qualitative differences with our previous
findings, pointing to the robustness of the results.

4.1 Player-Dependent Interaction Probabilities

It may have come to the reader’s mind at the very beginning of Sect. 2.2 that the probability
of interaction of a given player with a player of the same type—the parameter ε of our
model—needs not to be the same for both types of player. An evident generalization of the
model is thus to introduce two parameters, εA and εB , respectively giving such probabilities
for each type. The corresponding probabilities of confronting an opponent of the other type
are 1 − εA and 1 − εB . These two parameters arise naturally, for instance, if the probability
of different matches are defined in terms of opponent pairs. In fact, if γA and γB are the
probabilities that the game is played by two A-players and two B-players, respectively—
while 1 − γA − γB is the probability for the players being of different types—we find εA =
γA/(1 − γB) and εB = γB/(1 − γA), which are generally different. This case includes also
the relevant situation where the two opponents are independently chosen from the whole
population, but the number of players of each type is not the same. If the respective fractions
of players are ρA and ρB = 1 − ρA, we find γA = ρ2

A and γB = ρ2
B , and the parameters turn

out to be εA = ρA/(2 − ρA) and εB = ρB/(2 − ρB).
The analytical problem arising from this generalization is essentially the same as in

Sect. 2.2 and, correspondingly, its solution does not show major differences with respect
to the case of εA = εB . As before, three piecewise constant solutions exist for each parame-
ter set. Both the domains within which the three distributions are constant, and the regions of
parameter space where the solutions are well defined, depend on εA, εB , and α. The asymp-
totic behavior of the model should now be numerically studied on a three-dimensional space.
Otherwise, the solutions are qualitatively the same as in the simpler case of two parameters.
Apart from the extra parameter, therefore, this extension does not contribute any substantial
novelty to the model.

4.2 Playing the Game on Small-World Networks

Numerical simulations make it possible to introduce a second, important generalization,
regarding the social structure of the population. Specifically, we have considered the possi-
bility that each player can interact with a prescribed subpopulation only, which defines the
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player’s “neighborhood.” Such structure is conveniently implemented by means of a net-
work, whose nodes represent the players and whose links join players who can confront
each other in the game. This generalization allows, in principle, for the consideration of
complex social structures and for situations where each player can only confront a small
part of the whole population, which are realistic scenarios beyond the reach of analytical
treatment.

In our simulations, we have used small-world networks built from one-dimensional or-
dered arrays with N = 200 and 2000 nodes, and with z = 10 neighbors per node (5 to each
side), following Watts and Strogatz’s rewiring algorithm [15]. We have assumed, as ex-
plained above, that opponents are always chosen within individual neighborhoods—so that
the calculation of the expected payoff of each player only involves the strategies of the cor-
responding neighbors—but that imitation can occurs over the whole population. This adds
the interesting ingredient that a strategy which is successful in a given neighborhood, with
its specific number of players of each type, may be not convenient in other environments.
Numerical results show that, indeed, there is a moderately high correlation between the
asymptotic strategy approached by each player and the composition of the local neighbor-
hood. We have evaluated Pearson’s correlation coefficient r between the average individual
payoff and the local fraction of players of each type and obtained values around r ≈ 0.2.
However, the simulations suggest that the probability distributions observed for long times
are of the same type as those obtained from the analytical calculations. Moreover, results
are not sensible to the degree of disorder of the small-world network, as measured by the
rewiring parameter. We conclude that, at least for this kind of network, our previous results
are robust under changes in the social structure of the population.

4.3 Non-deterministic Imitation

Finally, in order to add randomness to the evolution, strategy imitation between players can
be generalized by admitting that—instead of deterministically depending on the comparison
of average payoffs—the adoption of another player’s strategy is controlled by a probabil-
ity. In our generalization of imitation, we have considered that player n adopts the strat-
egy of player n′ with a probability p(	), which depends on the average payoff difference
	 = 〈πn′ 〉 − 〈πn〉. Specifically, as above, if this difference is negative imitation is rejected:
p(	 < 0) = 0. For positive 	, on the other hand, we have taken p(	 > 0) = 1−exp(−w	),
so that imitation is more likely as 	 grows. The positive parameter w defines how rapidly
the probability varies with 	. The deterministic algorithm introduced in Sect. 2.2 corre-
sponds to the limit w → ∞. We have performed simulations for w = 0.1 and 1, and found
no essential differences with the deterministic case, except for the expected slowing down
of the overall dynamics as w—and, consequently, the imitation probability for any fixed
	—decreases.

A generalization along a similar line would have been to admit that there is a non-zero
probability that player n adopts the strategy of player n′ even when this imitation implies a
decrease of the payoff (	 < 0). A standard implementation of this procedure is the Metropo-
lis algorithm [16], taking p(	 < 0) = exp(	/T ) and p(	 > 0) = 1. The “temperature” T

measures the degree of randomness in the process. The imitation algorithm introduced of
Sect. 2.2 corresponds to zero temperature. As in other statistical problems, the introduc-
tion of temperature could play a role preventing the system to become stuck on metastable
equilibria. In our case, however, there is no evidence of the existence of such states.
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5 Conclusion

Strategies of resource allocation are a basic ingredient of economic and financial manage-
ment, and become increasingly crucial as the complexity of the involved systems and the
pressure of competition grow. They also plays a role in social organization and in biologi-
cal evolution. As it directly underlies the maximization of benefits for a given investment,
resource allocation is a problem naturally adapted for treatment within game theory. The
Colonel Blotto game, which we have studied in this paper, is just one of a class of models
exploiting game theory in that direction.

Here, our main goal has been to frame the Colonel Blotto game within evolutionary game
theory. The Colonel Blotto game considers the competition of two players with different
total resources to be distributed among a set of items. Each item is won by the player that
allocated higher resources to it. We have begun our analysis by treating, within the traditional
theory, a generalized game where a given player can confront an opponent with either the
same or different resources. This situation was conveniently represented by a four-player
population, two of them with low resources and the other two with high resources. For this
simplified version of a larger population we have been able to obtain optimal strategies
by means of a Lagrangian maximization of payoffs. We obtained three solutions, partially
coexisting in parameter space, describing strategies which favor disparate forms of resource
distribution in the competition with players with equal and different resources. Each type of
player can adopt two kinds of behavior. In one of them, common to both types, strategies
are distributed over the whole range of resources. In the other behavior, in contrast, players
with low and high resources respectively concentrate their strategies at the lower and higher
ends of the same range.

We then moved to the definition of evolutionary rules for strategies, based—much like
biological evolution—on the combined action of strategy imitation and variation by random
fluctuations. In this dynamical framework, optimal strategies are expected to be found at
the asymptotic long-time stages of the evolving population. We have performed extensive
numerical simulations in populations of a few hundred players and found that, effectively,
the asymptotic strategies coincide with those obtained by Lagrangian maximization. These
results validate the four-player representation used in our analytical calculations. More im-
portantly, numerical simulations make it possible to identify, in the zones of parameter space
where more than one analytical solution coexist, which of them is actually adopted at long
times. Comparing with the expected average payoffs of each solution, we concluded that
the preferred strategy is the one that maximizes the product of payoffs of the two types of
player. This product, therefore, acts as a kind of non-equilibrium potential for the evolution-
ary process.

Finally, we have verified that our main conclusions are robust against a series of gen-
eralizations of the model, both in the game rules and in the evolutionary dynamics. They
included relaxing some of the symmetries between players in the original version, con-
sidering a population with heterogeneous local structure—as represented by a small-world
network—and adding extra stochastic ingredients to the imitation of strategies. In all cases
we observed no significant changes in the overall behavior of our system.

Previous work formulated and analyzed the Colonel Blotto game within traditional game
theory, and thus was limited to providing a static scenario of optimal resource allocation.
Evolutionary game theory, on the other hand, sets up a dynamical framework with the par-
ticipation of a whole population of agents, where optimal strategies are the outcome of
evolution itself. As such, it provides a more realistic picture of most socio-economical (or
biological) systems, whose nature is inherently dynamical.
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